Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

 
:
The \met\ model predicted trigger rate as a function of $\mu$ for the \cell\ algorithm with a threshold of $80\,\GeV$ and $120\,\GeV$, assuming no additional pile-up mitigation.
width=.45\linewidth
width=.45\linewidth : width=\linewidth
width=.45\linewidth
width=.45\linewidth : width=\linewidth
:
:
: Caption not extracted
:
width=.49\linewidth
width=.49\linewidth :
width=0.48\linewidth
width=0.48\linewidth :
width=0.48\linewidth :
width=0.48\linewidth : Efficiencies for \Zmumu{} events are shown for the \lonealg{} $\met{}>50\,\GeV{}$ trigger (square) and for the complete L1+HLT trigger chain (circle) that also requires $\pufit>110\,\GeV{}$. The uncertainties are statistical. Each is shown as a function of $\langle\mu\rangle$, either for a \ptmumu{} threshold as in the left plots: \protect\subref{fig:ZvsOffline-a} and \protect\subref{fig:ZvsOffline-c} or for an offline \met{} threshold as shown in the right plots: \protect\subref{fig:ZvsOffline-b} and \protect\subref{fig:ZvsOffline-d}. The upper two plots \protect\subref{fig:ZvsOffline-a} and \protect\subref{fig:ZvsOffline-b} show thresholds of 150\,\GeV, while the lower two plots \protect\subref{fig:ZvsOffline-c} and \protect\subref{fig:ZvsOffline-d} correspond to thresholds of 175\,\GeV.
High-level trigger output rates, as a function of $\langle\mu\rangle$, shown separately for example runs in each year 2015--2018, for triggers \texttt{HLT\_xe70\_mht} (2015), \texttt{HLT\_xe90\_mht} and \texttt{HLT\_xe110\_mht} (2016), \texttt{HLT\_xe110\_pufit} (2017), \texttt{HLT\_xe110\_pufit\_xe65} and \texttt{HLT\_xe110\_pufit\_xe70} (2018). The \texttt{HLT\_xe110\_pufit} trigger used during 2017 also included an implicit requirement of $\cell>50\,\GeV$.
width=0.48\linewidth
width=0.48\linewidth :
width=0.45\linewidth
width=0.45\linewidth :
width=0.45\linewidth :
width=0.45\linewidth : Efficiencies for the first-level trigger \texttt{L1XE50} and the combined L1+HLT trigger chain \texttt{HLT\_xe110\_pufit\_xe65\_L1XE50} in data recorded in the year 2018 are shown as a function of $\langle\mu\rangle$ for two different offline \met{} thresholds and four different physics selections: \protect\subref{fig:EffEventChar-a} $\Wboson\rightarrow e\nu$ and $\Zmumu$ selections with offline \met $>$ 150\,\GeV~\protect\subref{fig:EffEventChar-b} $\ttbar$ and vector boson fusion selections with offline \met $>$ 150\,\GeV~\protect\subref{fig:EffEventChar-c} $\Wboson\rightarrow e\nu$ and $\Zmumu$ selections with offline \met $>$ 175\,\GeV~\protect\subref{fig:EffEventChar-d} $\ttbar$ and vector boson fusion selections with offline \met $>$ 175\,\GeV. The uncertainties are statistical.
width=0.45\linewidth
width=0.45\linewidth :
width=0.45\linewidth
width=0.45\linewidth :
The probability density function $P(\SumEtShort| \mu, \vec{\gamma})$ described in the text is shown and compared with data recorded using a zero bias trigger. The model and the data both correspond to pile-up of $\langle\mu\rangle \approx 50$.