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We study machine learning of phenomenologically relevant properties of string compactifications,
which arise in the context of heterotic line bundle models. Both supervised and unsupervised learning are
considered. We find that, for a fixed compactification manifold, relatively small neural networks are
capable of distinguishing consistent line bundle models with the correct gauge group and the correct chiral
asymmetry from random models without these properties. The same distinction can also be achieved in the
context of unsupervised learning, using an autoencoder. Learning nontopological properties, specifically
the number of Higgs multiplets, turns out to be more difficult, but is possible using sizeable networks and
feature-enhanced datasets.
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I. INTRODUCTION

Techniques from machine learning have recently been
introduced into string theory [1–5] and have been explored
for a variety of different machine learning architectures
and string theory settings (for reviews see Refs. [6,7] and
references therein). One of the main motivations for
bringing modern data science methods to string theory
is the vast amount of data generated by string theory.
String theory data describes different solutions to the
theory and, at the most basic level of topological or
quasitopological properties, is discrete data described by
sets of integers, which specifies the compactification
manifold and branes/fluxes thereon.
For a given string solution this integer data determines

(to a large extent) the massless spectrum of the associated
low-energy theory. It is widely believed that the set of
(topological types of) string solutions is finite, although no
general proof is known. (For instance, it is a conjecture of
Yau that the topological types of compact smooth

connected Calabi-Yau manifolds is finite in every dimen-
sion.) If this is indeed the case it is clear, however, that the
set is vast and an impressive lower bound of ∼10272000 has
been given in Ref. [8]. Can machine learning help to deal
with this vast set of string vacua, for example by organizing
the data or distinguishing between models with different
properties?
One of the central problems of string theory remains

understanding its relation to established low-energy particle
physics. It is now known that string theory contains many
models with a promising spectrum of particles and, in the
context of a specific construction, a lower bound of ∼1023
(“a mole of models” [9]) for the number of such models has
been given in Ref. [10]. Nevertheless, string solutions which
lead to such models constitute a very small fraction of the
total. Finding phenomenologically promising models within
string theory and even deciding whether given string vacua
are promising can be nontrivial tasks. In this paper we will
deal with the second problem and the main question we will
address is whether machine learning can distinguish string
vacua which lead to phenomenologically attractive models
from thosewhichdonot. In otherwords, can a neural network
learn whether or not a string solution is of physical interest?
We will be addressing this question in the context of

heterotic line bundle models [11–13], a class of models
which has the virtue of being conceptually relatively simple
and for which sizeable sets of phenomenologically prom-
ising models are known. This means that training sets for
machine learning can readily be constructed. To be clear

*rehan.deen@physics.ox.ac.uk
†hey@maths.ox.ac.uk
‡seung.joo.lee@cern.ch
§andre.lukas@physics.ox.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 046001 (2022)

2470-0010=2022=105(4)=046001(10) 046001-1 Published by the American Physical Society

https://orcid.org/0000-0002-9485-3121
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.046001&domain=pdf&date_stamp=2022-02-02
https://doi.org/10.1103/PhysRevD.105.046001
https://doi.org/10.1103/PhysRevD.105.046001
https://doi.org/10.1103/PhysRevD.105.046001
https://doi.org/10.1103/PhysRevD.105.046001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


about terminology, by “standardlike” model (SLM for
short) we mean a consistent string solution which gives
rise to the standard model gauge group and has the correct
chiral asymmetry of three families of quarks and leptons.
Whether a string solution is a SLM is a topological
question, that is, it only depends on topological quantities
such as Chern classes and indices. Further requirements on
a SLM toward realistic physics are the absence of vector-
like matter and the presence of Higgs doublets. These
properties are controlled by bundle cohomology and are
less robust. They can depend on the (complex structure)
moduli of the model and, in this sense, are nontopological.
For the purpose of this paper, we will only consider

supervised learning and unsupervised learning with autoen-
coders, either based on fully connected feed-forward net-
works. Unsupervised learning for heterotic orbifold models
with autoencoders has been studied in Ref. [14] and
reinforcement learning of string models has been investi-
gated in Refs. [15,16].
In the next section, we briefly review heterotic line

bundle models and in Sec. III we describe the associated
datasets. In Sec. IV we show that simple fully connected
networks with supervised learning can distinguish SLMs
and non-SLMs. This can also be done via unsupervised
learning, using an autoencoder, as explained in Sec. V.
Finally, in Sec. VI, we investigate whether neural networks
can detect the presence or absence of Higgs multiplets in
SLMs. We find this is possible, but requires a more careful
approach which draws on previous experience with line
bundle cohomology [17–20] and machine learning of line
bundle cohomology formulas [21]. We conclude in
Sec. VII.

II. HETEROTIC LINE BUNDLE MODELS

Heterotic line bundle models have been introduced and
analyzed in Refs. [11–13] and we refer to these papers for
details. Here, we present a concise summary with emphasis
on aspects relevant to machine learning applications. The
data which specifies a heterotic line bundle model is a tuple
ðX;Γ; VÞ, where X is a Calabi-Yau three-fold, Γ is a freely
acting symmetry on X and V is a (Γ-equivariant) line
bundle sum on X, here taken to be of rank five1

V ¼ ⨁
5

a¼1

La; ð2:1Þ

where La → X are line bundles. For this to define a
consistent string compactification on X we require that

c1ðVÞ ¼
X5
a¼1

c1ðLaÞ ¼! 0;

c2ðTXÞ − c2ðVÞ ∈ Mori cone of X; ð2:2Þ

where the first condition is required for an embedding of
the structure group of V into E8 and the second condition
guarantees that the anomaly cancelation condition can be
satisfied. A further consistency condition, which serves to
ensure that the bundle V preserves supersymmetry, is that
the slopes

μðLaÞ ≔
Z
X
c1ðLaÞ ∧ J2 ¼! 0 ð2:3Þ

for all five line bundles vanish simultaneously for some
Kähler class J of X.
Such a consistent model on X defines a four-dimensional

N ¼ 1 grand unified theory (GUT) with gauge group
SUð5Þ and matter fields in the SUð5Þ multiplets 10, 10,
5̄ and 5 (plus fields uncharged under SUð5Þ).2 We recall
that one standard model family fits precisely into the SUð5Þ
multiplet 10 ⊕ 5̄. The numbers of these multiplets are
governed by the bundle cohomologies

#10 ¼ h1ðX; VÞ; #10 ¼ h2ðX; VÞ;
#5̄ ¼ h1ðX;∧2 VÞ; #5 ¼ h2ðX;∧2 VÞ: ð2:4Þ

The chiral asymmetry is measured by the index of the
bundle V and is given by3

#GUT families ¼ #10 − #10 ¼ #5̄ − #5

¼ −indðVÞ¼! 3jΓj; ð2:5Þ

where jΓj is the order of the freely acting symmetry Γ. Note
this equation implies that the chiral spectrum always consist
of a number of complete GUT families 10 ⊕ 5̄. The reason
for demanding 3jΓj rather than just 3 such families is that the
final model is defined on the quotient Calabi-Yau X̂ ¼ X=Γ
with a bundle V̂ → X̂ which descends from V. Since the
index satisfies indðV̂Þ ¼ indðVÞ=jΓj, Eq. (2.5) does indeed
guarantee three chiral families “downstairs.”The downstairs
model on X̂ also allows for the inclusion of an additional flat
bundle (a Wilson line) which breaks SUð5Þ to the standard
model gauge group without disturbing the index. In the
present paper, we will not be concerned with the downstairs
construction. We know that it can be carried out and it is,

1Line bundle sums with different rank, specifically with rank
four, can also lead to phenomenologically promising models.
However, Wilson line breaking of such models requires large
symmetries Γwhich are rare. As a result, large datasets are not yet
available.

2Additional Green-Schwarz anomalous Uð1Þ gauge sym-
metries are also present but their associated vector bosons are
usually supermassive.

3This follows from h0ðX;LÞ ¼ h3ðX;LÞ ¼ 0 which holds for
line bundles L with vanishing slope and from indðVÞ ¼
indð∧2 VÞ, a general property of rank five bundles V.
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hence, sufficient to focus on the data of the upstairs GUT
model.4

A further physical condition, in addition to Eq. (2.5), is

#10 ¼ h2ðX; VÞ ¼! 0; ð2:6Þ
which ensures the absence of vectorlike 10–10 pairs. We
also need at least one vectorlike 5̄–5 pair to account for the
Higgs, which amounts to the condition

#pairs of Higgs doublets ¼ #5 ¼ h2ðX;VÞ>! 0: ð2:7Þ
In summary, the data ðX;Γ; VÞ defines a consistent string

compactification, iff the Chern class conditions (2.2) and the
slope conditions (2.3) are satisfied. The most basic physical
requirement on such a model is that is has the correct chiral
asymmetry of matter which amounts to the condition (2.5).
We call a model with these properties, all of which are
topological, a standardlike model (SLM). The next most
basic physical requirements are the absence of vectorlike
pairs of matter, Eq. (2.6), and the presence of multiplets to
account for the Higgs, Eq. (2.7). Both of these conditions
depend on cohomology and are, hence, not strictly topo-
logical.5 For the purpose of machine learning, we need to
translate the above geometrical data into numerical, integer
data. To this end, we introduce a basis fJig of the second
cohomology and a dual basis fνig of the fourth cohomology
of X, where i ¼ 1;…; h and h ¼ h1;1ðXÞ. Relative to this
basis the second Chern class of the tangent bundle can be
written as c2ðTXÞ ¼ c2iðTXÞνi, with integers c2iðTXÞ. The
Kähler form of X can be expanded as J ¼ tiJi, where ti are
the Kähler parameters.6 We will also need the triple
intersection numbers of X, defined by

dijl ¼
Z
X
Ji ∧ Jj ∧ Jl: ð2:8Þ

Further, a line bundle on X can be represented by an
h-dimensional integer vector k ¼ ðk1;…; khÞ and is written

as OXðkÞ, such that c1ðOXðkÞÞ ¼ kiJi. This means that the
line bundle sum (2.1) takes the form

V ¼ ⨁
5

a¼1

OXðkaÞ ↔ K ¼ ðkiaÞ ð2:9Þ

and it can be represented by the h × 5 integer matrix K. In
practice, a model, for a fixed Calabi-Yau manifold X and a
fixed symmetry Γ, will be represented by this integer matrix
K. In terms of this matrix, the Chern classes of such a line
bundle sum are given by7

c1ðVÞ ¼
X5
a¼1

kiaJi;

c2ðVÞ ¼ −
1

2
dijl

X
a

kjaklaνi;

indðVÞ ¼ 1

6
dijl

X5
a¼1

kiak
j
akla:

Hence, a matrix K ¼ ðkiaÞ satisfies the Chern class con-
sistency conditions (2.2) iff

X5
a¼1

kia ¼! 0; −
1

2
dijl

X5
a¼1

kjakla ≤
!
c2iðTXÞ; ð2:10Þ

for all i ¼ 1;…; h and it satisfies the slope conditions (2.3)
iff there exit Kähler parameters ti > 0 such that

μðOXðkaÞÞ ¼ dijltik
j
akla ¼! 0 ð2:11Þ

for all a ¼ 1;…; 5. The condition (2.5) for the correct chiral
asymmetry translates into

1

6
dijl

X5
a¼1

kiak
j
akla ¼! − 3jΓj: ð2:12Þ

We have now expressed all conditions for a SLM in terms of
thematrixK. The cohomology conditions (2.6) and (2.7) are
not so easily dealt with. Standard methods to compute line
bundle cohomology, usually based on a version of Cech
cohomology, are complicated and usually algorithmic in
nature. On the other hand, it has been observed in Refs. [17–
20] that line bundle cohomology dimensions can be
described by relatively simple formulas, which are piece-
wise polynomial in the line bundle integers ki. It has also
been shown in Ref. [21] that these formulas can be obtained
using machine learning techniques. We will rely on some of
these results in Sec.VIwhenwe attempt tomachine learn the
number of Higgs multiplets.

4To be precise, the Hosotani mechanism that breaks the SUð5Þ
GUT group down to the standard model gauge group is available
unless the discrete Wilson line takes values in Z5 [22] (cf. see
Table I). Since the heterotic line bundle models have a reduced
structure group, additional Uð1Þ gauge fields may in principle be
present at low energy in case they survive the Green-Schwarz
mechanism. See also the discussions in Sec. 3 of Ref. [11].

5One may as well imagine that one of the three 5̄ multiplets
leads to the down-type Higgs. In order to give a sizable mass to
the top quark, however, an up-type Higgs still needs to be present,
which, in turn calls for an additional down-type Higgs as well.
Therefore, Eq. (2.7) should still apply.

6For simplicity, we assume that the Kähler cone of X is given
by all J ¼ tiJi with ti ≥ 0 and the Mori cone by all positive linear
combinations of the νi. This is indeed the case for all the CICY
three-folds studied in this paper, as listed in Table I (see Ref. [26]
for the comparison between the Kähler cone of a CICYand that of
its ambient space).

7The results for the second Chern class and the index are valid
provided that c1ðVÞ ¼ 0.

MACHINE LEARNING STRING STANDARD MODELS PHYS. REV. D 105, 046001 (2022)

046001-3



III. DATASETS

In Ref. [13], complete sets of SLMs of the type described
above have been found, by brute-force scanning, for all
complete-intersection Calabi-Yau manifolds in products of
projective spaces (CICYs) [23,24] with h ¼ h1;1ðXÞ ≤ 6.
The data for these manifolds and the lists of matrices K for
SLMs on these manifold can be found here [25]. There are
12 pairs of ðX; jΓjÞ for which the set of SLMs is sufficiently
large (meaning at least 1000 models) to make machine
learning viable and the basic properties for these cases are
listed in Table I. We emphasize that these sets contain
models with and without Higgs multiplets and we will use
this fact in Sec. VI. As an example, the distribution of the
number of Higgs pairs (given by h2ðX;∧2 VÞ) for the
largest dataset in Table I, the manifold #5302 with jΓj ¼ 4,
is shown in Fig. 1. As is evident from the plot, about a
quarter of the SLMs have no Higgs pair and the remaining
three quarters have one or more than one pair.
A useful way to characterize models is by the norm

jKj ≔
�X

a;i

jkiaj2
�

1=2
; ð3:1Þ

which is an indicator of the size of the entries of K. As a
typical example, the distribution of jKj for CICY #5302
with jΓj ¼ 4 is shown in Fig. 2 (plot on the left).
For learning of SLMs in Sec. IV and in Sec. V we

combine the lists of SLMs with random nonstandard
models which are defined by random matrices K of the
appropriate size. How should these random matrices be
generated? One option is to generate random entries in the
range observed for the SLMs (typically from −5 to 5) with
a flat probability distribution. However, this method gen-
erated a distribution of jKj-values with a large mean and
practically no overlap with that for the SLMs. Hence,
random models generated in this way can be easily
distinguished from SLMs by the value of jKj.

Instead, we generate entries with a normal distribution,
where the mean and width are taken the same as observed
for the SLMs. This ensures that the matrices K for SLMs
and non-SLMs have a similar distribution of entries. For all
datasets in Table I, the mean of the entries is close to 0 and
the standard deviation of the entries is between 1 and 1.3,
depending on the dataset. In addition, we ensure that all
random models satisfy the trivial Chern class condition
c1ðVÞ ¼ 0, that is, the first Eq. (2.10). For CICY #5302 and
jΓj ¼ 4 the combined distribution of SLMs and non-SLMs
is shown on the right-hand side of Fig. 2.
What is the distribution of the properties which define

SLMs within this set of random non-SLMs, generated as
described above? The anomaly condition, that is, the
second Eq. (2.10), is satisfied by practically all random
models (more precisely, by a fraction of 0.94–0.99 depend-
ing on the manifold). This is expected, given we have
chosen random matrices with entries similar to those for the
SLMs and the condition in question is an inequality. On the
other hand, the slope condition (2.11) is almost never
satisfied for the random models (at most for a fraction of
0.01). Finally, the random models also very rarely satisfy
the family condition (2.12) (a fraction of 0.02 to 0.06,
depending on the manifold). A neural network which
distinguishes SLMs from random non-SLMs will have
to be sensitive to at least one of the last two conditions. A
network with a success rate close to 1 needs to be sensitive
to each of the conditions separately.
For the practical machine learning application, we will

focus on a particular manifold X and symmetry order jΓj,
corresponding to one of the rows in Table I. For supervised
learning of the standard model property on this manifold
we will use a dataset of the form

fK ¼ ðkiaÞ → 0 or 1g; ð3:2Þ

where K is either a random integer matrix, generated
as explained above, describing a non-SLM if assigned
to 0 or a matrix describing a SLM if assigned to 1.

0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

FIG. 1. Fractional distribution of the number of Higgs pairs for
SLMs on the manifold #5302 with jΓj ¼ 4.

TABLE I. Properties of CICYs with h1;1ðXÞ ≤ 6 and with at
least 1000 standardlike rank five line bundle models. The ID of X
refers to the ordering of the standard list in Refs. [23–25].

ID of X h ¼ h1;1ðXÞ ðc2iðTXÞÞ jΓj
Number of

SLMs

5256 5 (24,24,24,24,40) 4 2128
5452 5 (24,24,24,24,40) 4 2122
6890 5 (24,24,24,24,56) 2 1750
6927 5 (24,24,24,24,64) 4 1264
7487 5 (24,24,24,24,24) 4 2115
3413 6 (36,36,36,36,36,36) 3 1737
4109 6 (24,24,24,24,36,36) 2 2058
5273 6 (24,24,24,24,36,36) 2 6753
5302 6 (24,24,24,24,24,24) 2 6294
5302 6 (24,24,24,24,24,24) 4 17329
5425 6 (24,24,24,24,44,44) 2 3128
6738 6 (24,24,24,24,44,44) 2 4243
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For unsupervised learning of the standard model property
we use the same dataset fKg but with the labels omitted.
To learn about the Higgs, the datasets will be of the form

fK ¼ ðkiaÞ → 0 or 1g
fK ¼ ðkiaÞ → # of Higgs pairsg; ð3:3Þ

where we only include matrices K which describe SLMs.
Recall that SLMs can have varying numbers of Higgs
pairs, as shown in Fig. 1. The first above set is appropriate
for a simple binary classification of the absence (0) or
presence (1) of Higgs multiplets and the second set is used
to learn the actual number of Higgs multiplets.
As we will see in Sec. VI, training sets of this form are

not quite suited for successful learning of the Higgs
property. Instead, we will be using the feature-enhanced
datasets

fðkia; kiakja; kiakjaklaÞ → 0 or 1g
fðkia; kiakja; kiakjaklaÞ → # of Higgs pairsg; ð3:4Þ

with the quadratic and cubic monomials in the line bundle
integers kia added to the input. This method is informed by
the observation [17–21] that line bundle cohomology
dimensions on three-folds are described by piecewise cubic
formulas.
For the purpose of Higgs learning, we will also find that

our datasets as in Table I are still too small. In this context,
it is useful to observe that our modelsK ¼ ðk1;…; k5Þ have
an obvious permutation symmetry S5 which permutes the
five line bundles ka. Model properties are of course
completely independent of these permutations and the
resulting redundancies have already been removed from
the datasets in Table I. Conversely, we can now use these
permutation to enhance the size of our datasets. We will
return to this point in Sec. VI.
Throughout the paper, neural networks will be realized

both in TENSORFLOW and inMathematica, and trained with
a standard stochastic gradient descent method and using a
mean square loss. Training and validation will be measured

by the loss and by the success rate, by which we mean the
fraction of models for which the trained network produces
the correct integer target after rounding.

IV. LEARNING STANDARD MODELS WITH
SUPERVISED LEARNING

In this section, we will study whether neural networks
can distinguish SLMs from non-SLMs. Our datasets are of
the form (3.2) and are split into a training set (70%) and a
validation set (30%). As we will see, for the purposes of
this section, it is sufficient to consider relatively simple
networks of the form

K ∈ Z5h ⟶
L

R16 ⟶
selu

R16 ⟶
L

R⟶
σ ½0; 1� ⊂ R; ð4:1Þ

where L is an affine transformation x ↦ Wxþ b with a
weight matrix W and a bias vector b of the appropriate
dimensions, selu is the scaled exponential linear unit
activation function, defined for each element as

seluðxÞ ¼
�
x; if x > 0

αex − α; if x ≤ 0;
ð4:2Þ

and σ is the logistic sigmoid activation function

σðxÞ ¼ ð1þ e−xÞ−1: ð4:3Þ

We train this network for all cases listed in Table I and find
that the training and validation success rates are always
≥ 0.99. We conclude that, for a given compactification
space, neural networks of the form (4.1) can successfully
distinguish SLMs from non-SLMs. This works for a range
of compactification spaces, as in Table I.
The successful generalization of the network (4.1) for

the problem at hand motivates tackling a somewhat more
ambitious task. The main problem in searching for SLMs
systematically is the shear number of integer matrices K
(with c1ðVÞ ¼ 0) which increases with a power 4h. For
h ≥ 7 a full systematic search basically becomes impossi-
ble but it is still feasible to scan matrices K with entries

2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

K

N

2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

K

N

FIG. 2. Distribution of jKj in Eq. (3.1) for SLMs (left) and for SLMs and non-SLMs combined (right) for CICY #5302 and jΓj ¼ 4.
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constrained in a suitably small range. Suppose we generate
a training set of matrices with small entries from such a
restricted scan. Does a network trained on such a set
generalize to matrices with larger entries?
In order to answer this question, we focus on the

manifold #5302 with jΓj ¼ 4 from Table I, which provides
our largest dataset. We select from this set all matrices with
jKj ≤ 5 (roughly 1=3 of the models, corresponding to the
left part of the distribution in Fig. 2), which we split into a
training set (70%) and a validation set (30%). The other
matrices with jKj > 5 (roughly 2=3 of the models, corre-
sponding to the right part of the distribution in Fig. 2) are
used as a test set in order to test the generalization of
the network to matrices with a size beyond the training
range.
For the data structured in this way, we train the network

(4.1). The training and validation loss as a function of
training rounds is shown in Fig. 3 and training and
validation success rates are both ≥ 0.99. Crucially, the
success rate of the network trained on this set of matrices
with jKj ≤ 5 on the test set of matrices with jKj > 5 is
≥0.98, and the values of Matthew’s phi and F-score
are 0.991 and 0.9956, respectively. In other words, the
network generalizes extremely well to matrices with larger
entries.
For this case, it is instructive to look at the three

properties which are required for a SLM, namely the
anomaly condition [second Eq. (2.10)], the slope condition
(2.11) and the family condition (2.12), separately. Table II
presents the relevant confusion matrix, covering all eight
combinations of these three properties, for the complete
dataset including all values of jKj. As discussed earlier, the
eight combinations of properties have very different
frequencies. However, the message from Table II is that
the network does well to distinguish SLMs from non-SLMs
for most combinations of properties. (The combination
(0,1,1) of slope zero models with the right family number
which fail on the anomaly condition has such a low
frequency that the success rates are not conclusive.)

V. AUTOENCODING STANDARD MODELS

We have seen that supervised learning can be used to
distinguish SLMs from non-SLMs quite efficiently. In this
section, we will investigate whether something similar can
be accomplished in the context of unsupervised learning,
using an autoencoder.
We will focus on the manifold #5302 with jΓj ¼ 4, our

largest training set and, as before, we split into subsets with
jKj ≤ 5, used for training, and with jKj > 5, used
for testing. Guided by the observation in Ref. [14] we
also one-hot encode the matrices K which leads to binary
input vectors Khot of dimension 330. The structure of the
encoder is

Khot ∈ Z330 ⟶
L̃

R32 ⟶
L̃

R16 ⟶
L̃

R8 ⟶
L̃

R2; ð5:1Þ

while the decoder

R2 ⟶
L̃

R8⟶
L̃

R16 ⟶
L̃

R32 ⟶
L̃

Z330 ∋ K̂hot; ð5:2Þ

maps between the same dimensions, in reverse order. Here,
L̃ ¼ selu∘L is the combination of an affine transformation
x ↦ Wxþ b between the appropriate dimensions and a
selu activation function (4.2). Training is performed by
minimising the mean square difference jKhot − K̂hotj, as
usual. Note that the latent space (the output space of the
encoder) is R2, so the compression of the matrix K
facilitated by this autoencoder is to two dimensions.
We remark that one could perform analyses using other

methods of dimensional reduction and interestingly arrive
at similar results to Fig. 4. For instance, a principal
component analysis was carried out to reduce the initial
labeled data (without hot-encoding but just flattening the
bundles into an integer vector of length 6 × 5 ¼ 30)
directly to 2 dimensions. One finds that for each of the
jKj ≤ 5 and jKj > 5 cases, there is a separation between the
SLMs and non-SLMs much like Fig. 4.

FIG. 3. Training loss (orange) and validation loss (blue) for the
network (4.1) as a function of training rounds for the data from
CICY #5302 and jΓj ¼ 4 with jKj ≤ 5.

TABLE II. Confusion matrix for the dataset on the CICY #5302
with jΓj ¼ 4 and the network trained on models with jKj ≤ 5.
The left column indicates the various combinations of properties
found in the dataset and the final two columns give the fractions
of those models identified as SLMs and non-SLMs.

(Anomaly,
slope, family)

Number of
models Non-SMs (0) SMs (1)

(0, 0, 0) 573 0.96 0.04
(0, 0, 1) 33 0.91 0.09
(0, 1, 0) 46 0.96 0.04
(0, 1, 1) 2 1.00 0.00
(1, 0, 0) 15956 0.99 0.01
(1, 0, 1) 517 1.00 0.00
(1, 1, 0) 197 0.98 0.02
(1, 1, 1) 17329 0.02 0.98
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From the above autoencoder, trained with the subset of
matrices with jKj ≤ 5, we then extract the encoder (5.1) and
compute the image of all models in the two-dimensional
latent space. The results are shown in Fig. 4. As is evident
from those plots, the separation between SLMs and non-
SLMs in the two-dimensional latent space is quite con-
vincing. We emphasize that the autoencoder was trained on
the models with jKj ≤ 5 only while the models with jKj >
5 are “unseen data.” Nevertheless, the separation between
SLMs and non-SLMs occurs for the training set (left plot in
Fig. 4) as well as for the test set (right plot in Fig. 4). Just as
in the case of supervised learning, the autoencoder, there-
fore, generalizes beyond the training range.

VI. LEARNING ABOUT HIGGS MULTIPLETS

So far we have used neural networks to distinguish
SLMs and non-SLMs. The properties separating these two
classes of models are topological in nature so we have
studied machine learning of topological quantities. In this
section, we will be more ambitious and try to learn
properties which are nontopological. Specifically, we will
restrict our datasets to SLMs and attempt to learn the
presence/absence of Higgs multiplets and, in a second step,
the number of Higgs multiplets.
More specifically, we will focus on our largest dataset of

SLMs on the manifold #5302 with jΓj ¼ 4 with 17329
models. The distribution of the number of Higgs pairs for
this dataset is shown in Fig. 1. Roughly a quarter of the
models have no Higgs pairs and all others have one or more
than one Higgs pair.
We begin with the less ambitious task of learning the

presence or absence of Higgs pairs, so the structure of the
dataset is fK → 0 or 1g as in Eq. (3.3). As usual we use
70% of these models for training and the other 30% for
validation. We consider a variety of networks of the form

K ∈ Zn ⟶
L̃

Rn1 ⟶
L̃ � � �⟶L̃ Rnl ⟶

L
R⟶

σ ½0; 1�; ð6:1Þ

where L̃ ¼ selu∘L combines an affine transformation L
with a selu activation (4.2) and σ is a logistic sigmoid
activation (4.3). We vary the widths ni as well as the depth l
of the network. A typical result for training and validation
loss for the choice l ¼ 4, n ¼ 30 and ðn1; n2; n3; n4Þ ¼
ð256; 128; 64; 16Þ is shown in Fig. 5. The confusion
matrices for this case are given by

target 0
target 1

training set

0 1�
0.01 0.23

0.01 0.75

�
validation set

0 1�
0.01 0.25

0.01 0.73

� . ð6:2Þ

Both the loss plot and the confusion matrices indicate
complete failure of generalization. In fact, the confusion
matrices shows that all models, including the quarter
without Higgs pairs, is identified by the network as having
Higgs pairs. We have considered the network (6.1) for a
variety of depths and widths and with a number of standard
measures to improve generalization, including optimizing
hyperparameters, different activation functions, inclusion
of batch normalization and dropout layers. The results
remain essentially unchanged from the above example. It
appears a simple network (6.1) is not capable of learning a
nontopological property, such as the presence or absence of
Higgs pairs.
What saves the day is an insight into the structure of line

bundle cohomology. It is conjectured and, in some cases,
proved [17–21], that line bundle cohomology dimensions
on three-folds are described by piecewise cubic polyno-
mials in the line bundle integers ki. As we have discussed,
the number of Higgs pairs is governed by line bundle
cohomology, so this insight is relevant. It suggests we
should feature-enhance our datasets and add to the line
bundle integers K ¼ ðkiaÞ their quadrics ðkiakjaÞ and their
cubics ðkiakjaklaÞ (for i ≤ j ≤ l). This means we now
consider a dataset of the form fðkia; kiakja; kiakjaklaÞ →
0 or 1g, as in Eq. (3.4).

1.0 0.5 0.0 0.5 1.0 1.5

0

1

2

3

1.0 0.5 0.0 0.5 1.0

0

1

2

3

FIG. 4. The models on manifold #5302 with jΓj ¼ 4 encoded in the two-dimensional latent space of the autoencoder (5.1), (5.2),
trained on models with jKj ≤ 5. Red points represent SLMs and blue points non-SLMs. The plot on the left (right) is for models with
jKj ≤ 5 (jKj > 5).
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However, there is one further problem. The dimensions
of the enhanced feature space is now 415 and the available
training set of 17329 models is simply not large enough to
train efficiently for such a high dimension. We can solve
this problem by using the S5 symmetry which permutes the
five line bundles. For each of our models we generate 19
random permutations and thereby increase the size of our
dataset by a factor of 20. As usual, we split this set into a
training set (70%) and a validation set (30%) and we use a
network (6.1) with l ¼ 3, n ¼ 415 and ðn1; n2; n3Þ ¼
ð256; 64; 16Þ. The result for training and validation loss
is in Fig. 6, which shows that both training and validation
are successful.
The confusion matrix

target 0
target 1

trainingset

0 1�
0.25 0

0 0.75

�
validation set

0 1�
0.25 0

0 0.75

� ð6:3Þ

indicates models with and without Higgs pairs are recog-
nized with success rate 1.
Encouraged by this success we now attempt to learn

the number of Higgs multiplets for manifold #5302
with jΓj ¼ 4, using a feature-enhanced dataset fðkia; kiakja;
kiak

j
aklaÞ → #Higgs pairsg, as in Eq. (3.4). As before, we

increase the size of the dataset 20-fold by using the
invariance under permutations of the five line bundles.
Networks are similar to (6.1) but with the final logistic
sigmoid activation omitted, as appropriate for more general
integer target values:

K ∈ Zn ⟶
L̃

Rn1 ⟶
L̃ � � � ⟶L̃ Rnl ⟶

L
R: ð6:4Þ

A network of this type with depth l ¼ 3, n ¼ 415 and
ðn1; n2; n3Þ ¼ ð256; 64; 16Þ trains and validates success-
fully, as shown in Fig. 7. The confusion matrices for both
training and validation sets are nearly diagonal, with all off-
diagonal entries < 0.01, and the diagonal entries correctly
reproduce the fractional distribution in Fig. 1, with devia-
tions uniformly less than 0.01.

VII. CONCLUSION

In this paper, we have demonstrated that neural networks
are capable of learning phenomenologically relevant prop-
erties of string compactifications. Our datasets have been
constructed from heterotic line bundle models [11–13], one
of the few datasets where considerable numbers of models
with the standard model spectrum have been constructed.
For a givenCalabi-Yau three-foldX, a line bundlemodel is

defined by a sum V¼ ⊕5
a¼1 OXðkaÞ of five line bundles,

where ka are h ¼ h1;1ðXÞ dimensional integer vectors
classifying line bundles. Hence, such models can be repre-
sented by ah × 5 integermatricesK ¼ ðkiaÞwhich constitute
the features in our applications to machine learning. In
Ref. [13] complete intersection Calabi-Yau manifolds with
h ≤ 6 have been scanned for phenomenologically interesting

FIG. 6. Training loss (orange) and validation loss (blue) for
the network (6.1) with l ¼ 3, n ¼ 415 and ðn1; n2; n3Þ ¼
ð256; 64; 16Þ, learning the absence/presence of Higgs pairs for
SLMs on the manifold #5032 with jΓj ¼ 4. A feature-enhanced
dataset (3.4) is used.

FIG. 7. Training loss (orange) and validation loss (blue) for the
network (6.4) with l ¼ 3, n ¼ 415 and ðn1;n2;n3Þ¼ð256;64;16Þ,
learning the number of Higgs pairs for SLMs on the manifold
#5032 with jΓj ¼ 4. A feature-enhanced dataset (3.4) is used.

FIG. 5. Training loss (orange) and validation loss (blue)
for the network (6.1) with l ¼ 4, n ¼ 30 and ðn1; n2; n3; n4Þ ¼
ð256; 128; 64; 16Þ, attempting to learn the absence/presence of
Higgs pairs for SLMs on the manifold #5032 with jΓj ¼ 4. The
increase of the validation loss indicates a failure to generalize.
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line bundle models. Sizeable datasets (see Table I) of
standardlike models (SLMs), that is consistent models with
the correct gauge group and the correct chiral asymmetry,
have been found. These datasets, described in Table I, form
the basis of the machine learning applications we have
discussed. Many further properties of these models have
been computed [12] and we will rely on the results for the
number of Higgs pairs.
Our first task has been to learn topological properties of

line bundle models. To this end, we have merged SLMs for
a given Calabi-Yau manifold with similar sized datasets of
random models to obtain sets of the form fK → 0 or 1g,
where 1 indicates an SLM and 0 a random model. Training
is carried out one manifold at a time. Relatively simple
networks of the form (4.1) lead to near perfect success rates
of ≥ 0.99 on both training and validation sets for all cases
in Table I. In a more ambitious approach, for the manifold
#5302 with symmetry order jΓj ¼ 4 (see Table I), we have
used a training set drawn from matrices K with small
entries (jKj ≤ 5) and a test set of matrices with large entries
(jKj > 5). It turns out that neural networks (4.1) trained on
such a training set still perform extremely well, at a success
rate of ≥ 0.98, on the test set. In other words, the neural
network generalizes well beyond the “training range.”
For the same dataset, on manifold #5302, split into a

training set with small entries and a test set with large
entries, we have considered unsupervised learning with an
autoencoder (5.1), (5.2). The results, summarized in
Figure 4, show that the autoencoder is capable of distin-
guishing SLMs from non-SLMs and that it retains this
capacity on the test set. In particular, this means the
generalization beyond the training range observed for
supervised learning, persists for the autoencoder.
The final task has been to learn a nontopological

property, namely the absence or presence (or, more
ambitiously, the number) of Higgs pairs. This property is
determined by the values of line bundle cohomology
dimensions. For this task we have focused on the
dataset of SLMs on manifold #5302 with symmetry order
jΓj ¼ 4 which provides the largest number of models
(about 17000). We have started with simple datasets
fK → 0 or 1g, where 1 is for the presence and 0 for the
absence of Higgs pairs, and fully connected networks of the
form (6.1). This simple approach resulted in complete

failure to generalize, as exemplified in Fig. 5. Inspired by
the observation [17–21] that line bundle cohomology
dimensions on three-folds are described by piecewise cubic
expressions in the line bundle integers kia we have feature-
enhanced our dataset to fðkia; kiakja; kiakjaklaÞ → 0 or 1g,
that is, by including quadratic and cubic monomials.
Given the significantly increased dimension of the feature
space (to 415) we have also increased the size of the dataset
by using the invariance under permutations of the five line
bundles. A simple fully connected neural network (6.1)
trained with this enhanced dataset does indeed succeed
and distinguishes models with and without Higgs pairs
reliably. We have also trained a network (6.4) with a
dataset fðkia; kiakja; kiakjaklaÞ → # of Higgs pairsg to predict
the number of Higgs multiplets successfully.
Our results show that neural networks are capable of

learning both topological and nontopological properties of
string vacua and are able to select models with phenom-
enological promise. Recognizing nontopological properties
is considerably more difficult and has been achieved by
feature engineering based on insight into the underlying
mathematical structure. The observed generalization
beyond the training range is encouraging. It implies that
networks trained on models with small flux integers—
which may be obtained by systematic scanning—can be
used to identify promising models for larger flux integers.
Our results may also be helpful in designing more com-
plicated networks, required for generative approaches
(GANs) or reinforcement learning, for instance.
It would be interesting to study whether the present

results for heterotic line bundle models persist for other
classes of string models, for example for F-theory models
or for heterotic models with non-Abelian bundles.
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