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1 Introduction

In this paper we show that conformal manifolds in d ≥ 3 superconformal field theories
(SCFTs) with at least 4 supercharges are Kähler-Hodge. Kähler-Hodge manifolds are
Kähler manifolds with the property that the flux of the Kähler form through any two-cycle
is quantized. This extends to 4d N = 1 and 3d N = 2 theories similar results previously
found for 4d N = 2, 4 theories [1, 2], as well as 2d N = (2, 2) SCFTs (see for instance [3, 4]).

A central element in our discussion is the existence of a line bundle L over the conformal
manifoldM of superconformal field theories, which encodes the operator mixing between
supercharges under conformal perturbation theory. The superconformal algebra is invariant
under an automorphism which, for example in the case of 4d N = 1 theories, rotates the
supercharges and superconformal partners as

Qa → eiθQa, Qȧ → e−iθQȧ

Sa → e−iθSa, S
ȧ → eiθS

ȧ (1.1)

leaving all other generators invariant. This automorphism implies that there is an in-
principle coupling constant dependent ambiguity in the choice of this phase and that the
supercharges should be thought of as being associated to sections of a line bundle L over
the conformal manifold. We show that conformal perturbation theory naturally defines a
non-trivial connection on this bundle. This can be interpreted as standard Berry phase
when thinking of states on Sd−1 × time using the state-operator map [5].

As a preliminary result we show that the superconformal manifolds under investigation
are Kähler. This generalizes previous results in the literature [6].

We then show that L is a holomorphic line bundle whose curvature is proportional to
the Kähler form of the Zamolodchikov metric1

Fij = Fi j = 0

Fij = − 1
768cGij for 4d N = 1, 2, 4

Fij = − 1
4π2CT

Gij for 3d N = 2

(1.2)

In the above equations, c is the conformal anomaly in 4d and CT is the 2-point function
coefficient of the stress tensor in 3d —see (4.62) for the precise conventions.2

This means that superconformal manifolds are not only Kähler, but moreover Kähler-
Hodge, since the Kähler form k associated to the Zamolodchikov metric is proportional to
the first Chern class of a line bundle overM, i.e.

k = αCTF (1.3)

where the numerical coefficient α is theory-independent, though it depends on whether we
are in 3d or 4d and the precise conventions. It can be extracted from the equations (1.2).

1The precise numerical coefficients depend on the conventions used in the definition of the Zamolodchikov
metric, as explained in the main text.

2We could write the 4d formula also in terms of CT , using the relation c = π4

40CT in 4d (see e.g. [7, 8]).
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The result (1.2) may be useful in studying global properties of superconformal man-
ifolds. For instance, it implies interesting quantization properties of the Zamoldochikov
metric which we now discuss.

If an n-complex dimensional superconformal manifold is compact and has no singular-
ities, then the fact that the Kähler form is proportional to the first Chern class of a line
bundle (1.3) implies that the total volume of the Zamoldchikov metric must be quantized
in units of CT 3

VM = 1
n!

∫
M
k ∧ . . . ∧ k = (2π)n

n! αn(CT )n × integer . (1.4)

where the integer is determined by the Chern number of L. We emphasize again that the
numerical constant α, given in eqs. (1.2), is theory-independent.

Known conformal manifolds in 4d N = 2 theories are usually non-compact, so more
care has to be taken in the computation of the total volume (see, however, the discussion
below). Compact conformal manifolds have been discussed in [9, 10]. In fact, ref. [11]
has proposed that all 3d conformal manifolds may be compact. In some of these cases,
the conformal manifolds have orbifold singularities, where again special analysis would be
needed to understand the behavior of L near the singularities and how the latter could
contribute to the total Kähler flux and hence volume.

If a superconformal manifold has only singularities of weak-coupling type, the previous
statement can be extended as follows. Suppose we have a submanifold P , where the theory
develops a weak-coupling singularity. We assume that near P we can use local coordinates
involving a complexified gauge coupling τ ,

ds2 = constdτdτImτ2 + . . . , (1.5)

that tends to infinity (τ → i∞) in the weak coupling limit, and additional exactly marginal
couplings at regular, finite values. While the weakly coupled region P is at infinite Zamolod-
chikov distance, the total volume of the hyperbolic cusp is finite. Moreover, one can check
by a weak-coupling computation that the line bundle L does not have any nontrivial holon-
omy (i.e. delta-function curvature) localized on P . This suggests that if the conformal
manifold has only weak-coupling singularities, then it might be possible to define a com-
pactification of the manifoldM and an extension of the bundle L on this compactification
so that the aforementioned quantization condition continues to hold.

The line bundle L and the quantization condition discussed above is reminiscent of
the properties of line bundles on the moduli space of supergravity theories [12].4 The
similarity becomes more precise if we consider the analogue of the Bagger-Witten line
bundle restricted on the vacuum manifold of AdS compactifications of supergravity, which
is holographically dual to the conformal manifold of the boundary CFT. We do not explore

3The quantization condition extends to the quantization of the Kähler flux (and hence to minimal
volumes) over any compact even cycle without any singularities.

4When the supergravity theory arises from a compactification of string theory, the supergravity line
bundle is related to the aforementioned line bundle on the conformal manifold of the internal 2d N = (2, 2)
worldsheet CFT [3, 4].
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this direction in this paper, but it would be interesting to investigate it further. It may also
be interesting to further explore the structure of the line bundle L in the anomaly functional
of SCFTs in the presence of a background metric and spacetime-dependent sources for the
exactly marginal operators [2].

Finally, it would be interesting to explore the potential implications and refinements
of the Kähler-Hodge structure to more general cases of superconformal manifolds, endowed
with other types of singularities (e.g. orbifold singularities), the role of duality symmetries,
and the behavior of the line bundle L in these cases (see [13] for some related discussions).
It would also be interesting to explore potential connections of the Kähler-Hodge structure
to the CFT distance conjecture [11].

The plan of the paper is as follows: in section 2 we review the necessary background
material about superconformal field theories and their marginal deformations. In section 3
we provide a general argument that 4d N = 1 and 3d N = 2 conformal manifolds are
Kähler. In section 4 we show that L is a holomorphic line bundle and compute its curvature
deriving the results (1.2). We collect useful technical details in four appendices at the end
of the paper.

2 Background and setup

The case of 4d N = 2 and N = 4 theories was discussed in [1], where the corresponding
special case of the result (1.2) was derived. In the rest of the paper we focus on the remain-
ing theories in d ≥ 3 with at least 4 supercharges, which can have conformal manifolds [14],
namely 4d N = 1 and 3d N = 2. In both cases, the R-symmetry group of the theory is
U(1)R. Our discussion follows the conventions of refs. [15, 16].

2.1 Marginal deformations in superconformal field theories

2.1.1 4d N = 1

The symmetry algebra of a 4d N = 1 SCFT possesses two left-chiral Poincaré supercharges
Qa, a = 1, 2 and two right-chiral Poincaré supercharges Qȧ, where a, ȧ = 1, 2 are Weyl
spinor indices. It also possesses the corresponding superconformal partners Sa, Sȧ. Under
the U(1)R symmetry group, the supercharges Qa have R-charge −1 and Qȧ have +1. The
R-charge of the superconformal partners is +1 for Sa and −1 for Sȧ.

We will denote the 1
2 -BPS chiral superconformal primary operators as φi (where i is

an index that enumerates them). These operators are annihilated by the supercharges
Qȧ, S

a, S
ȧ and their scaling dimensions ∆i and U(1)R charges Ri obey the shortening

conditions ∆i = 3Ri
2 . Similarly, the antichiral superconformal primaries φi are annihilated

by the supercharges Qa, Sa, S
ȧ and obey the shortening conditions ∆i = −3Ri

2 .

When 4d N = 1 SCFTs have exactly marginal deformations, the corresponding ex-
actly marginal operators are necessarily supersymmetric descendants of chiral (antichiral)
primaries φi , (φj) with scaling dimension ∆ = 3 and U(1)R-charges R = 2, (R = −2) [17].
The chiral and antichiral descendants yield holomorphic and antiholomorphic deformations,

– 3 –
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respectively, of the form5

Oi ≡
1
4ε

ab{Qa, [Qb, φi]} , Oi ≡ −
1
4ε

ȧḃ{Qȧ, [Qḃ, φi]} . (2.1)

Exactly marginal deformations of the action take the form6

S → S + 1
(2π)2 δλ

i
∫
Oi + h.c. (2.2)

More generally, even if the CFT does not have a Lagrangian, we can think of the change
of correlators in conformal perturbation theory as

∇i〈O1(x1) . . .On(xn)〉 = 1
(2π)2

∫
ren
d4z〈O1(x1) . . .On(xn)Oi(z)〉 . (2.3)

The covariant derivative on the l.h.s. of this equation involves a connection on the bundle of
operators over the conformal manifold and the integral on the r.h.s. is renormalized without
allowing operators to collide. Both of these points are reviewed briefly in subsection 2.3.

2.1.2 3d N = 2

For spinors in three dimensions we do not need to use dotted and undotted indices. The
supercharges are divided into Qa and Qa, with U(1)R symmetry charges −1 and +1 re-
spectively. Again, the R-charge of the superconformal partners is +1 for Sa and −1 for Sa.

Similar to the four-dimensional case of the previous subsection, 3d N = 2 SCFTs
can also possess scalar chiral superconformal primary operators annihilated by the su-
per(conformal) charges Qa, Sa, S

a. Such operators are 1
2 -BPS and their scaling dimensions

∆i and U(1)R charges obey the shortening condition ∆i = Ri. Antichiral primaries φi are
annihilated by Qa, Sa, S

a and have scaling dimensions ∆i = −Ri.
The exactly marginal operators are necessarily supersymmetric descendants of chiral

(antichiral) primaries φi (φj) with ∆ = 2 and R = 2 (R = −2), of the form

Oi ≡
1
4ε

ab{Qa, [Qb, φi]} , Oi ≡ −
1
4ε

ab{Qa, [Qb, φi]} . (2.4)

They yield, respectively, holomorphic and antiholomorphic deformations with correspond-
ing correlation function deformations

∇i〈O1(x1) . . .On(xn)〉 = 1
(2π)

∫
ren
d3z〈O1(x1) . . .On(xn)Oi(z)〉 . (2.5)

5The terminology will be justified once we show that the conformal manifolds are complex. In our
conventions ε12 = ε1̇2̇ = +1. The minus sign in the definition (2.1) of Oi is necessary to ensure O†i = Oi.
The overall normalization factor 1

4 is a convenient convention. The final results are independent of this
choice.

6The overall prefactor of 1
(2π)2 is a matter of conventions. Changing this prefactor rescales the Zamolod-

chikov metric by an overall constant, which affects the final formula.
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2.2 Useful superconformal Ward identities

Here we summarize certain superconformal Ward identities for correlators of marginal op-
erators and correlators of marginal operators with chiral primaries. Both types of identities
will be useful in subsequent sections. Their detailed derivation can be found in appendices A
and B.

We begin with a set of straightforward identities that are common in 4d N = 1
and 3d N = 2 SCFTs. They refer to correlation functions involving only holomorphic
(antiholomorphic) marginal operators, which vanish. For example,

〈Oi(x)Oj(y)〉 = 0 , (2.6)
〈Oi(x)Oj(y)Ok(z)Ol(w)〉 = 0 (2.7)

and similarly for their conjugates. These identities follow from the fact that O = [Q, . . .]
and [Q,O] = 0. Another set of vanishing correlation functions are

〈Oi(x)Oj(y)φk(z)φl(w)〉 = 0 , (2.8)
〈Oi(x)Oj(y)Ok(z)Ol(w)〉 = 0 . (2.9)

These follow by using linear combinations of Ward identities for Q’s and S’s (see ap-
pendix A).

Sometimes we also need to compute correlation functions of the form

〈O1(∞)O2(x2) . . .On(xn)〉 ≡ lim
|x1|→∞

|x1|2∆1〈O1(x1)O2(x2) . . .On(xn)〉 , (2.10)

where one of the insertions has been sent to infinity. For example, we will need the Ward
identity

〈φi(∞)φj(y)Ok(z)Ol(w)〉 = �z〈φi(∞)φj(y)φk(z)φl(w)〉 , (2.11)

which is valid in this form both in 3d N = 2 and 4d N = 1 SCFTs. Similarly, we will need
the correlator of 2 holomorphic and 2 antiholomorphic marginal operators in terms of a
corresponding 4-point function of chiral/antichiral primaries. In 4d N = 1 SCFTs we find7

〈Oi(∞)Oj(y)Ok(z)Ol(w)〉 =
[
(y − z)2�y�z + 8(y − z)µ(∂yµ�z − ∂zµ�y)

−32(∂µy · ∂zµ) + 24(�z + �y)
]
〈φi(∞)φj(y)φk(z)φl(w)〉

(2.12)

and in 3d N = 2 SCFTs

〈Oi(∞)Oj(y)Ok(z)Ol(w)〉 =
[
(y − z)2�y�z + 6(y − z)µ · (∂yµ�z − ∂zµ�y)

−18(∂µy · ∂zµ) + 12(�y + �z)
]
〈φi(∞)φj(y)φk(z)φl(w)〉 .

(2.13)

In these expressions, the φ/φ’s are chiral/antichiral primaries of scaling dimension ∆ = 3
in 4d and ∆ = 2 in 3d.

7We use the notation ∂µx or ∂xµ for the partial derivatives with respect to the spacetime variable x.
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2.3 Connection on the space of operators

In conformal perturbation theory, the correlation functions of a CFT deformed by an
exactly marginal operator O can be expressed in terms of integrated correlation functions
of the undeformed CFT. Schematically, the infinitesimal deformation takes the form

δO〈φ1(x1) . . . φn(xn)〉 = 1
(2π)2

∫
d4z〈O(z)φ1(x1) . . . φn(xn)〉 . (2.14)

The integral requires regularization at coincident points. In regularizations with a hard
space cutoff that excises the coincident points the operators never collide and contact terms
do not contribute. Due to this regularization, second order variations by two different
marginal operators do not generally commute. It is then natural to think of the l.h.s.
of (2.14) as a covariant derivative with respect to some connection. The interpretation
of this connection is the following: operators with the same quantum numbers mix under
conformal perturbation theory. They are to be thought of as sections of vector bundles
over the conformal manifold. Conformal perturbation theory naturally defines a connection
on this bundle which encodes operator mixing. Alternatively, one can use the operator-
state correspondence to reformulate the connection on a conformal manifold as the Berry
connection for states of the CFT in radial quantization under adiabatic changes of the
exactly marginal couplings [5].

The connection on the space of operators has been discussed in detail for 2d CFTs, in
terms of contact terms in [18], and in terms of regularized integrated correlators in [19].
A similarly systematic discussion of conformal perturbation theory for higher dimenional
CFTs does not exist in the literature.

For concreteness, consider a set of scalar operators φK with the same quantum num-
bers. We assume that their common scaling dimension ∆ does not change along the con-
formal manifold, as is the case for the operators we consider in this paper. These operators
can be thought of as sections of a vector bundle V over the conformal manifold. On this
bundle, one can define an inner product using the 2-point function coefficients

〈φK(x)φL(y)〉 = gKL(λ)
|x− y|2∆ . (2.15)

The curvature F of the bundle V can be computed by a suitably regularized 4-point function
of two exactly marginal operators and the operators whose curvature we want to compute

(Fij)LK = 1
(2π)4 ren.

[∫
|x|≤1

d4x

∫
|y|≤1

d4y gLM
(
〈φM (∞) Oi(x)Oj(y)φK(0)〉 − (x↔ y)

)]
,

(2.16)
where gLM is the inverse of the metric (2.15).

The renormalization scheme employed here is a higher dimensional generalization of
the one presented in detail in [19] (called connection c in that paper). First, we consider
the y integral in (2.16), with x fixed. These is no singularity as y → x: in the Oi,Oj OPE
the even spin terms cancel because of the antisymmetrization in x, y, while the odd spin
terms cancel because of the angular integral of y around x. Then we consider the potential

– 6 –
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singularities as y → 0. Since we are working with external operators φ whose conformal
dimension does not change, there are no logarithmic singularities. Hence, if we define the
regularized integral

I(x, ε) ≡ 1
(2π)4

∫
ε≤|y|≤1

d4y gLM
(
〈φM (∞) Oi(x)Oj(y)φK(0)〉 − (x↔ y)

)
(2.17)

we expect
I(x, ε) =

∑
ri>0

αi
εri

+ Ĩ(x) +O(ε) (2.18)

where we take Ĩ as the definition of the finite part of the integral over y.
We then proceed with the integral over x by defining

J(ε) ≡
∫
ε≤|x|≤1

d4xĨ(x) (2.19)

and again expand
J(ε) =

∑
si>0

βi
εsi

+ J̃ +O(ε) (2.20)

We finally define the regularized integral in (2.16) that gives the curvature, by the expres-
sion

(Fij)LK = J̃ . (2.21)

Notice that in this scheme no operators ever collide,8 hence we do not have any possible
contributions from contact terms.

For general CFTs, and at a generic point on the conformal manifold, 4-point functions
like those appearing in (2.16) are typically beyond analytic control. In superconformal
field theories, when we consider the curvature of operators belonging to short mulitplets,
we can often use superconformal Ward identities to simplify these 4-point functions and
derive exact non-perturbative properties for the connection.

2.4 The curvature of the Zamolodchikov metric

Applying the formula (2.16) to the bundle of exactly marginal operators, which can be
thought of as vectors in the tangent bundle TM of the conformal manfiold, we obtain
an expression for the Riemann tensor of the Zamolodchikov metric in terms of a doubly
integrated 4-point function

Rijmn = 1
(2π)4

∫
|x|≤1

ddx

∫
|y|≤1

ddy

[
〈On(∞)Oi(x)Oj(y)Om(0)〉 − (x↔ y)

]
. (2.22)

The expected symmetries of the Riemann tensor follow by using the symmetries of the
4-point functions under global conformal permutations which permute the four points
0, x, y,∞ and checking carefully that the regularization scheme does not spoil the sym-
metries.

8We also define the contribution from the region x = y by first cutting-off a ball of size ε and then taking
the limit of the integral. As mentioned in the main text, in this case the limit is always finite.

– 7 –
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Notice that the formula (2.22) gives the Riemann tensor at one point of the conformal
manifold in terms of marginal operators Oi defined at the same point. Thus, it does not
depend on how we select the basis of marginal operators Oi(λ) in a neighborhood of that
point. An arbitrary choice of basis that depends continuously on the exactly marginal
couplings λ can be made.

Now, let us assume that we chose a specific basis of marginal operators Oi(λ) in a
neighborhood of a point. We compute the 2-point functions

〈Oi(x)Oj(y)〉 = Gij(λ)
|x− y|8

. (2.23)

In general, we can not directly interpret the matrix Gij(λ) as a (Zamolodchikov) metric
on the conformal manifold in a coordinate frame. In particular, if we try to compute the
Riemann tensor from (2.23) by using the usual differential geometry formulae, which give
the Christoffel symbols and the Riemann tensor by combinations of derivatives of the met-
ric, it will not agree with the computation from the 4-point function (2.22). For example,
in any family of CFTs we can select a basis of marginal operators in a neighborhood of a
point such that Gij(λ) = δij everywhere in that neighborhood, which would erroneously
suggest that the Riemann tensor is zero.

The geometric interpretation of the above observations is clear. In general, a choice of
a basis of marginal operators Oi(λ) should be thought of as a choice of a basis section on
the tangent bundle. This choice will not be related always to a coordinate system. The
sections Oi(λ) of marginal operators is a set of linearly independent vector fields on the
conformal manifold, which are not in general integrable, i.e. they can not be thought of as
dual to coordinates on the manifold.

This issue does not arise when we define marginal operators in terms of the variation
of certain parameters in the Lagrangian, since then they are automatically integrable.
However, from an abstract CFT point of view, that does not employ the use of a Lagrangian,
we need to check independently whether we are working with integrable marginal operators.
One necessary, though not sufficient, condition for a choice of marginal operators Oi(λ) to
correspond to tangent vectors in the system of coordinates λi is that the Riemann tensor
as computed by thinking of (2.23) as the actual metric agrees with that from (2.22).

2.5 Vector bundles of chiral primaries

Since U(1)R charge conservation prevents operator mixing between chiral primaries of dif-
ferent charge, for each value of the R-charge we have a corresponding vector sub-bundle VR.

As we will discuss later, the conformal manifolds of the theories we are considering are
complex, Kähler and the bundles VR are holomorphic vector bundles. In 4d SCFTs with
extended supersymmetry (N = 2, 4) the bundles of half-BPS operators exhibit additional
structure. In N = 4 theories the corresponding bundles are flat (a property which is related
to a non-renormalization theorem for 3-point functions [20–29]). In N = 2 theories there
are two types of half-BPS operators: Higgs-branch and Coulomb-branch, [15]. The bundles
of the former type are also flat [30], while the bundles of the latter type exhibit non-trivial
curvature, which obeys the tt∗ equations [1, 31]. SCFTs with four Poincaré supercharges
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(in 3d or 4d) are expected to have bundles of half-BPS chiral primary operators with non-
trivial curvature as well, but it is not known if these bundles exhibit a structure akin to
the tt∗ geometry. The tt∗ geometry of half-BPS operators in 2d N = (2, 2) theories was
originally discussed in [32].

Of particular interest in this paper will be the bundle of chiral primaries in 4d N = 1
and 3d N = 2 SCFTs, whose descendants are marginal operators (i.e. chiral primaries of
∆ = 3 in 4d and ∆ = 2 in 3d). We denote these bundles as V (and V for the corresponding
anti-chiral primaries).

2.6 Supercharge line bundle L

We need one more ingredient: the line bundle L encoding the operator mixing between
the supercharges. We start by considering the supercurrents. In 4d N = 1 SCFTs, the
supercurrents are conformal primary operators Gµa, Gµȧ with scaling dimension ∆ = 7

2 and
spin (1, 1

2) and (1
2 , 1) respectively. Since they are the only operators with these quantum

numbers (otherwise SUSY would be enhanced) the only possible mixing that we can have
is a phase rotation of the form

Gµa → eiθGµa, Gµȧ → e−iθGµȧ . (2.24)

As we will see, conformal perturbation theory implies that there is indeed a nontrivial phase
rotation under conformal perturbation theory on the conformal manifold. This means that
the supercurrents G should be associated to a line bundle L over the conformal manifold
(and the conjugate G to a line bundle L).

Recall that the supercharges (and superconformal charges) are integrals of the super-
currents

Qa =
∫
d3xG0,a Qȧ =

∫
d3xG0,ȧ (2.25)

and
Sa =

∫
d3xxaȧG0,ȧ Sȧ =

∫
d3xxaȧG0,a (2.26)

so the phase rotation (2.24) implies the following rotation of the supercharges and their
superconformal partners

Qa → eiθQa, Qa → e−iθQa ,

Sa → e−iθ Sa, Sȧ → eiθ Sȧ ,

which corresponds to an automorphism of the N = 1 superconformal algebra.9 Completely
analogous statements hold for the 3d N = 2 SCFTs.

The conclusion is that the supercharges and superconformal partners should be thought
of as associated to a line bundle L over the conformal manifold, whose curvature is deter-
mined by the dynamics of the CFT. Similar results hold for 2d SCFTs, see for example [33]
for a review in N = (2, 2) 2d theories. For completeness, we notice that for 2d N = (4, 4)
theories the corresponding bundles of supercurents have SU(2)L ⊗ SU(2)R structure [34].

9For 4d SCFTs with extended supersymmetry we have QIa → eiθ QIa , Q
I

a → e−iθ Q
I

a, SIa →
e−iθ SIa , S

I
ȧ → eiθ S

I
ȧ. For N = 1, 2 this automorphism is inner (it can be generated by R-charge ro-

tation) while for N = 4 it is outer.

– 9 –
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3 Kähler structure

In this section we show that the superconformal manifolds of interest are complex and
Kähler. An argument for the Kähler property of 4d N = 1 superconformal manifolds was
given in [6] based on the possible forms of contact terms that can be written in superspace.
Here we recast the argument in a language which is more suitable to a scheme of conformal
perturbation theory that does not involve directly contact terms. In addition, we generalize
the proof in [6] in two ways. First, in contrast to [6] we do not assume the existence of local
complex coordinates but instead we prove it. Second, our proof also applies to 3d N = 2
theories. Finally, we provide a check of Kählerity by explicitly computing the Riemann
tensor at a generic point of the conformal manifold and show that it has the expected
properties of a Kähler manifold.

3.1 Proof of Kählerity

At each point on the conformal manifold supersymmetry divides the marginal operators
into descendants of chiral primaries and antichiral primaries (2.1), (2.4), hence the tangent
space is split pointwise into holomorphic and antiholomorphic subspaces. This defines an
almost complex structure on the conformal manifold. The integrability of this complex
structure, and relatedly the existence of local complex coordinates, is not obvious from
this argument and will be proven below.

The Zamolodchikov metric is Hermitian with respect to this almost complex structure:
the only non-vanishing components are of the form Gij , since the Ward identities (2.6)
imply that

Gij = Gi j = 0 . (3.1)

The arguments so far demonstrate that the conformal manifold is an almost hermitian
manifold.

To show that the almost complex structure is integrable and that the metric is Kähler
we proceed as follows. Consider the following vector bundles over the conformal manifold
which were all introduced in section 2: the tangent bundle TM, the supercharge line
bundle L and the vector bundles V,V of chiral, antichiral primaries whose descendants are
the exactly marginal operators.

Each of these bundles is equipped with a connection, which is determined by conformal
perturbation theory. Suppose that the conformal manifold has real dimension 2n. The
tangent bundle TM has (local) holonomy which is generically SO(2n). The vector bundles
V,V have holonomy which is generically U(n). The line bundle L has holonomy U(1).

In addition, the holonomy of the tangent bundle TM splits as

TM = (L2 ⊗ V)⊕ (L2 ⊗ V) , (3.2)

or
TM = TholM⊕Tanti−holM , (3.3)

where we defined the holomorphic/antiholomorphic split as TholM = L2⊗V , Tanti−holM =
L2 ⊗ V .
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This implies that the holonomy of the tangent bundle TM is reduced to U(n). Then,
Berger’s classification theorem [35] implies that the conformal manifold M is Kähler. In
particular, it guarantees the existence of local complex coordinates compatible with the
almost hermitian structure.

An important point in this argument is that chiral primaries V and antichiral primaries
V can not mix due to charge conservation. Another important point is that when consid-
ering the exactly marginal operators Oi = 1

4ε
ab{Qa, [Qb, φi]}, the connection for Oi is the

sum of the connection for φi plus two times that for the Q’s. We confirm that this is indeed
the case in appendix D.

3.2 A check: direct computation of the curvature

In this subsection we provide a check of the previous formal argument that the manifold
is Kähler by confirming that the Riemann tensor in 4d N = 1 SCFTs satisfies at generic
points the expected properties of Kählerity. Exactly analogous results can be derived for
3d N = 2 theories.

For a Kähler manifold we expect the following components of the Riemann tensor to
be zero

Rijkl Rijkl Rijlk Rijk l ,

and their complex conjugate, as well as

Rijkl Rijk l Rjikl Rjik l .

Taking into account the symmetry properties of R, as well as the behavior under
complex conjugation we have the following independent vanishing conditions that need to
be verified

Rijkl = 0 , (3.4)

Rijkl = 0 , (3.5)

Rijk l = 0 . (3.6)

For a Kähler manifold, the Riemann tensor also obeys an additional symmetry property

Rijkl = Rilkj , (3.7)

which is not true for general Riemannian manifolds. However, this symmetry follows
from the 1st Bianchi identity of the Riemann tensor combined with the previous vanishing
statements.

The vanishing of the components (3.4) and (3.5) follows from the vanishing of the
4-point functions (2.7) and (2.9) by Ward identities. It is a little harder to prove the
vanishing of (3.6). The relevant 4-point function is

〈Oi(∞)Ok(x)Ol(y)Oj(0)〉 (3.8)

This is not identically zero, but a vanishing curvature arises after integration in the relevant
formula

Rij,k l = 1
(2π)4

∫
|x|≤1

d4x

∫
|y|≤1

d4y
[
〈Oi(∞)Ok(x)Ol(y)Oj(0)〉 − (x↔ y)

]
.
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This double integral can be drastically simplified by integration by parts using the Ward
identity (2.12). After a straightforward analysis, that we present in appendix C, we find
that the integral vanishes and thus (3.6) is satisfied.

4 Kähler-Hodge structure

In this section we compute the curvature of the (supercharge) line bundle L and show that
the conformal manifold is not only Kähler, but in fact Kähler-Hodge. We start by first
showing that L, V are holomorphic vector bundles.

4.1 Proof that L, V are holomorphic line bundles

Consider the purely holomorphic components of the curvature of L. Since

TholM = L2 ⊗ V

we have
Rlijk = 2δlkFLij + (FVij )lk . (4.1)

Hence, the curvature of the bundle L can be computed via the difference of the curvature
of TholM and V. For the computation of the holomorphic curvature components (FVij )lk of
the bundle of chiral primaries V we need to use in (2.16) the 4-point function

〈φm(z)Oi(x)Oj(y)φk(w)〉 , (4.2)

which vanishes identically due to the Ward identities (2.8). Consequently,

(FVij )lk = 0 (4.3)

Similarly, we can show that
(FV

i j
)lk = 0 . (4.4)

Altogether, we conclude that V is a holomorphic line bundle, see also [1].
In the previous section we argued that Rlijk vanishes due to the Ward identity (2.9).

Hence, from (4.1) we find that
FLij = 0 . (4.5)

Similarly,
FL
i j

= 0 . (4.6)

As a result, we have established that L is a holomorphic line bundle over the conformal
manifold.

This result can also be obtained by directly computing the purely holomorphic compo-
nents of the curvature of the supercurrent operator using eq. (2.16). In that case we need
to consider the 4-point function

〈Gν,ȧ(∞)Oi(x)Oj(y)Gµ,a(0)〉 . (4.7)

Using the fact that Gµ,a = [Qa, Jµ], where Jµ is the R-current, and the appropriate su-
perconformal Ward identities it is easy to show that (4.7) vanishes. This is an alternative
proof of (4.5) and similarly (4.6).
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4.2 Mixed components of the curvature of L in 4d N = 1

For the mixed components of the curvature

Rl
k,ij

= 2δlkFLij + (FV
ij

)lk (4.8)

To compute the l.h.s. we need to apply the curvature formula (2.16) to the 4-point function

Gml〈Om(∞)Oi(x)Oj(y)Ok(z)〉

We start with the Ward identity (2.12)

〈Om(∞)Oi(x)Oj(y)Ok(z)〉 =
[
(x− z)2�x�z + 8(x− z) · (∂x�z − ∂z�x)

− 32(∂x · ∂z) + 24(�z + �x)
]
〈φm(∞)φi(x)φj(y)φk(z)〉

(4.9)

and take the limit z → 0. To apply the usual curvature formula (2.16) it is convenient to
eliminate the z-derivatives. This can be done using the ordinary translation Ward identity

∂zµ〈φm(∞)φi(x)φj(y)φk(z)〉 = −(∂xµ + ∂yµ)〈φm(∞)φi(x)φj(y)φk(z)〉 . (4.10)

Implementing (4.10) into (4.9), and sending z → 0, we obtain

〈Om(∞)Oi(x)Oj(y)Ok(0)〉 =

=
{
x2�x(∂x + ∂y)2 + 8x · (∂x(∂x + ∂y)2 + (∂x + ∂y)�x)

+ 32(∂x · (∂x + ∂y)) + 24[(∂x + ∂y)2 + �x]
}
〈φm(∞)φi(x)φj(y)φk(0)〉.

(4.11)

To proceed further we notice that the 2-point functions of chiral primaries with scaling
dimension ∆ = 3 and the 2-point functions of marginal operators

〈φi(x)φj(y)〉 =
gij

|x− y|6
, 〈Oi(x)Oj(y)〉 =

Gij
|x− y|8

(4.12)

are related by Ward identities as

〈Oi(x)Oj(y)〉 = �x〈φi(x)φj(y)〉 , (4.13)

which implies that Gij = 24gij and Gml = 1
24g

ml.
We then multiply (4.11) by Gml, we split off the last term and use the Ward iden-

tity (2.11) to write

Gml〈Om(∞)Oi(x)Oj(y)Ok(0)〉 = W (x, y) + gml〈φm(∞)Oi(x)Oj(y)φk(0)〉 (4.14)

where

W (x, y) ≡
{
x2�x(∂x + ∂y)2 + 8x · (∂x(∂x + ∂y)2 + (∂x + ∂y)�x)

+ 32(∂x · (∂x + ∂y)) + 24(∂x + ∂y)2
}
Gml〈φm(∞)φi(x)φj(y)φk(0)〉.

(4.15)
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The last term in eq. (4.14) precisely reproduces the curvature of the chiral primaries, that
is the second term in (4.8). Hence, we find that the curvature of the line bundle L is

FL
ij
δlk = 1

2
1

(2π)4

∫
|x|≤1

d4x

∫
|y|≤1

d4y
(
W (x, y)−W (y, x)

)
. (4.16)

Our next goal is to try to recastW as a double total-derivative to facilitate the computation
of the integral on the r.h.s. of eq. (4.16).

First, we rewrite W as

W =
{
�xx

2�x + �x�yx
2 + 2(∂x · ∂y)x2�x

+ 12(x · ∂x)�x + 4(x · ∂x)�y + 16(x · ∂x)(∂x · ∂y) + 4(x · ∂y)�x

+ 48�x + 80(∂x · ∂y) + 16�y

}
Gml〈φm(∞)φi(x)φj(y)φk(0)〉 .

(4.17)

Some of the terms above have only x-derivatives. In order to be able to do a double partial
integration in (4.16) we want to convert some of them to y-derivatives. To do that we can
use the following conformal Ward identity, which is true for scalar operators of conformal
dimension ∆ = 3,10

�x〈φm(∞)φi(x)φj(y)φk(0)〉 = 1
x2y2�y

(
y4〈φm(∞)φi(x)φj(y)φk(0)〉

)
(4.18)

to recast (4.17) as

W =
{
�x�yy

2 + 4�x∂
y
ky

k + �x�yx
2 + 2(∂x · ∂y)x2�x

+ 12(∂x · x)(�y
y2

x2 + 4∂yk
1
x2 y

k) + 4(∂x · x)�y + 16(∂x · ∂y)(∂x · x) + 4�x(x · ∂y)

− 8(∂x · ∂y)
}
Gml〈φm(∞)φi(x)φj(y)φk(0)〉.

(4.19)

This has allowed us to write W a double total-derivative with respect to both x and y

W (x, y) = ∂yµ∂
x
νH

µν(x, y) , (4.20)

where

Hµν(x, y) =
{
∂µy ∂

ν
xy

2 + 4yµ∂νx + ∂µy ∂
ν
xx

2 + 2ηµνx2�x + 12xν
(
∂µy
y2

x2 + 4y
µ

x2

)
+ 4∂µy xν + 16ηµν(∂x · x) + 4∂νxxµ − 8ηµν

}
Gml〈φm(∞)φi(x)φj(y)φk(0)〉.

(4.21)

Moreover,
W (y, x) = ∂xµ∂

y
νH

µν(y, x) = ∂yµ∂
x
νH

νµ(y, x) . (4.22)

10This identity can be proved easily by direct computation after expressing the 4-point function in terms
of the conformally-invariant cross-ratios (see eq. (4.26) below).
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Consequently, we need to compute the quantity

FL
ij
δlk = 1

2
1

(2π)4

∫
|x|≤1

d4x

∫
|y|≤1

d4y (W (x, y)−W (y, x))

= 1
2

1
(2π)4

∫
|x|≤1

d4x

∫
|y|≤1

d4y ∂yµ∂
x
ν (Hµν(x, y)−Hνµ(y, x)).

(4.23)

Doing the integration by parts we find11

FL
ij
δlk = 1

2
1

(2π)4 lim
r→1−

∫
|y|=1

dΩy

∫
|x|=r

dΩx |x|2|y|2yµxν(Hµν(x, y)−Hνµ(y, x)) . (4.24)

Furthermore, in the limit r → 1−, the contribution to the integral from angular regions on
the spheres |x| = 1, |y| = 1, which have finite distance, cancels after antisymmetrization.
The only possible contributions come from the region x ≈ y on the spheres. We need to
evaluate this contribution before taking the r → 1− limit. To compute it we can use the
OPE between the operators at x, y.

Hence, to evaluate these integrals it is convenient to perform a conformal block ex-
pansion of the 4-point functions in the channel (ij) → (kl). We denote by O the primary
exchanged operator of dimension ∆ and spin s.12 The relevant 4-point functions can be
expanded as

〈φm(∞)φi(x)φj(y) φk(0)〉 = 1
|x− y|6

∑
∆,s

CO
ij
COkm g∆,s(u, v) , (4.25)

where g∆,s(u, v) is the conformal block and u, v the cross-ratios given by

u = |x− y|
2

|x|2
v = |y|

2

|x|2
. (4.26)

For the second term in (4.24) we have a similar expansion interchanging x, y, which implies
u→ u/v, v → 1/v. Hence, we have

〈φm(∞)φi(y)φj(x) φk(0)〉 = 1
|x− y|6

∑
∆,s

CO
ij
COkm g∆,s(u/v, 1/v) . (4.27)

Since conformal blocks obey the identity

g∆,s(u/v, 1/v) = (−1)sg∆,s(u, v) , (4.28)
11To arrive at this expression we have checked that there are no finite contributions from the limits

x→ 0 and y → 0, according to the regularization method given in equations (2.16)–(2.21). Such potential
contributions either cancel out automatically or they have to involve scalar operators with scaling dimension
2 or 4 in the OPE of a chiral and an anti-chiral operator. It can be argued that these are absent: i) The
argument that scaling dimension 2 operators cannot contribute appears below, see equation (4.33). ii) At
generic points of the conformal manifold, scalar scaling-dimension-4 operators would have to be exactly
marginal, namely descendants of chiral primaries. Since the corresponding three-point functions vanish, as
a consequence of superconformal Ward identities, such operators cannot contribute.

12Since the external operators are scalars, in the intermediate channel we will only have operators with
Lorentz spin jL = jR. We define s = 2jL.
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we can write the final result for the curvature as

F = 1
2G

ml ×
∑
∆,s

CO
ij
COkm X∆,s , (4.29)

where we have defined the kinematic quantity

X∆,s ≡
1

(2π)4 lim
r→1−

∫
|x|=r

dΩx
3

∫
|y|=1

dΩy
3 |y|

2|x|2×

×
{[

(x · ∂x)(y · ∂y)y2 + 4y2(x · ∂x) + (x · ∂x)(y · ∂y)x2 + 2(x · y)x2�x

+ 12(y · ∂y)y2 + 48y2 + 4x2(y · ∂y) + 16(x · y)(x · ∂x + 4)

+ 4(x · ∂x)(x · y)− 8(x · y)
]g∆,s(u, v)
|x− y|6

− (−1)s × [same string as above with x, y interchanged acting on]
g∆,s(u, v)
|x− y|6

}
.

(4.30)

After some work in Mathematica we find that the only non-zero X∆,s are those correspond-
ing to intermediate exchanged operators O with

1. ∆ = 2, s = 0 with coefficient X2,0 = 3.

2. ∆ = 3, s = 1 with coefficient X3,1 = 6.

So finally we find that the curvature is

Fijδ
l
k = 1

2G
ml

(
3
∑
n

CAn
ij
CAnkm + 6

∑
n

CJn
ij
CJnkm

)
, (4.31)

where the first sum runs over scalar primaries An of ∆ = 2, s = 0 and the second over
conserved currents Jn of ∆ = 3, s = 1.

Scalar contribution. Consider a neutral scalar primary A with scaling dimension ∆ = 2.
This belongs to a short multiplet [36] and the second superconformal descendant of the
form Jaȧ = [Qa, [Qȧ, A]] is a conserved flavor current. At a generic point on the conformal
manifold the marginal operators must be neutral under flavor currents [17]. This implies
that φi must be neutral under J , hence

〈φiφjJaȧ〉 = 0 . (4.32)

Inserting the expression Jaȧ = [Qa, [Qȧ, A]] and using appropriate superconformal Ward
identities we deduce that

〈φiφjA〉 = 0 . (4.33)

As a result, the scalar contribution in (4.31) vanishes.
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Spin 1 contribution. First, we consider a flavor (non-R) current JFµ . At a generic point
on the conformal manifold the marginal operator must have zero charge under JFµ . Since
the supercharges Qa are uncharged under JFµ , this implies that the chiral primaries φi must
have zero charge under JFµ and hence JFµ cannot appear in the φiφj OPE. This argument
does not apply to the R-current, since Qa is charged under it.

To compute the contribution of the R-current we proceed as follows. Suppose that the
2-point function of the R-current is normalized as

〈Jµ(x)Jν(0)〉 = CV
|x|6

(
ηµν − 2xµxν

x2

)
. (4.34)

We also have the OPEs

Jµ(x)φi(0) = i
Ri
2π2

xµ

|x|4
φi(0) + . . . , (4.35)

φi(x)φj(y) = −i Ri
2π2CV

gij
(x− y)µ

|x− y|4
Jµ(y) + . . . . (4.36)

These imply that in the limit x→ y

〈φm(∞)φi(x)φj(y)φk(0)〉 = RiRk
4π4CV

gijgkm
(x− y) · y
|x− y|4|y|4

+ . . . . (4.37)

In our case we have Ri = Rk = 2. Also for 4d N = 1 SCFTs we have CV = 4
π4 c. Hence,

comparing (4.37) to the conformal block expansion we find

CJ
ij
CJkm = − 1

4cgijgkm . (4.38)

Final expression for the curvature. Implementing (4.33) and (4.38) in (4.31) we
finally obtain

FL
ij
δlk = 1

2G
ml × 6×

(
− 1

4cgijgkm
)
, (4.39)

that is
FL
ij

= − 1
32cgij . (4.40)

In terms of the Zamolodchikov metric Gij = 24gij

FL
ij

= − 1
768cGij . (4.41)

Comparison with results in N = 2 and N = 4 SCFTs. A similar computation for
the curvature of the line bundle L in 4d N = 2 SCFTs was performed in [1]. There it was
found that the corresponding curvature is FL

ij
= − 1

4cgij , where gij is the 2-point function
of N = 2 chiral primaries with scaling dimension ∆ = 2. In the case of N = 2 theories, the
Zamolodchikov metric Gij can be expressed in terms of gij̄ as Gij = 192gij . Consequently,
in a 4d N = 2 theory we have

FL,N=2
ij

= − 1
768cGij ,

which agrees with the N = 1 result (4.41).
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Two comments are in order here:

a) Notice that the computation of FL,N=2
ij

in [1] was done by considering the relative
holonomy between a chiral superconformal primary and its first superconformal de-
scendant, while in this paper we are using a second superconformal descendant. While
we do not include the detailed computation in this paper, we have checked that the
result (4.41) for N = 1 can be also derived by using the first descendant, as in [1].

b) If we have an N = 2 SCFT we can also view it as an N = 1 SCFT, where we simply
ignore the extra supercharges. In this approach and for computations like the one
we presented above, we need to be careful about the existence of operators which
are protected from the point of view of N = 2, but seem “accidentally protected”
from the point of view of N = 1 (for example, the hidden supercharges, or some
of the currents of the enhanced R-symmetry). In some cases these “accidental”
operators can contribute to the integrals of the curvature and modify the final result.13

However, in this particular case we have checked that it does not happen. So the
computation of the curvature of L in a 4d N = 2 (or N = 4 SCFT) can be done either
in exactly the way we presented above by writing the theory in N = 1 language, or
as in [1] using the full structure of N = 2 SUSY.

4.3 Mixed components of the curvature of L in 3d N = 2

A similar computation can be performed in 3d N = 2 SCFTs. We start with the super-
conformal Ward identity (2.13)

〈Om(∞)Oi(x)Oj(y)Ok(z)〉 =
[
(x− z)2�x�z + 6(x− z) · (∂x�z − ∂z�x)

− 18(∂x · ∂z) + 12(�x + �z)
]
〈φm(∞)φi(x)φj(y)φk(z)〉.

(4.42)

Making the replacement ∂zµ → −∂xµ − ∂yµ and sending z → 0 we find

〈Om(∞)Oi(x)Oj(y)Ok(0)〉 =
[
x2�x(∂x + ∂y)2 + 6x · (∂x(∂x + ∂y)2 + (∂x + ∂y)�x)

+ 18(∂x · (∂x + ∂y)) + 12[�x + (∂x + ∂y)2]
]
〈φm(∞)φi(x)φj(y)φk(z)〉.

(4.43)

In this case, the relation between the 2-point function coefficients of the exactly marginal
operators and the chiral primaries with scaling dimension ∆ = 2 is

Gij = 12gij . (4.44)

So, as before, we can write

Gml〈Om(∞)Oi(x)Oj(y)Ok(0)〉 = W (x, y) + gml〈φm(∞)Oi(x)Oj(y)φk(0)〉 , (4.45)
13For example, this is relevant when writing a 2d N = (4, 4) theory as an N = (2, 2) theory, see for

instance [37].
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where

W (x, y) ≡
[
x2�x(∂x + ∂y)2 + 6x · (∂x(∂x + ∂y)2 + (∂x + ∂y)�x)

+ 18(∂x · (∂x + ∂y)) + 12(∂x + ∂y)2
]
Gml〈φm(∞)φi(x)φj(y)φk(0)〉.

(4.46)

The latter can be recast as

W (x, y) =
[
�xx

2�x + �x�yx
2 + 2(∂x · ∂y)x2�x + 8(∂x · x)�x + 2�y(∂x · x)

+ 2�x(∂y · x) + 12(∂x · ∂y)(∂x · x)− 10(∂x · ∂y)
]
Gml〈φm(∞)φi(x)φj(y)φk(0)〉.

(4.47)

Next we use the following conformal Ward identity for scalar primaries of ∆ = 2 in a 3d
CFT.14

�x〈φm(∞)φi(x)φj(y)φk(0)〉 = 1
x2|y|

�y

(
|y|3〈φm(∞)φi(x)φj(y)φk(0)〉

)
(4.48)

to rewrite eq. (4.47) as

W (x, y) =
{
�x�yy

2 + 2�x∂
y
ky

k + �x�yx
2 + 2(∂x · ∂y)x2�x

+ 8(∂x · x)
(
�y

y2

x2 + 2∂yk
yk

x2

)
+ 2�y(∂x · x) + 2�x(∂y · x)

+ 12(∂x · ∂y)(∂x · x)− 10(∂x · ∂y)
}
Gml〈φm(∞)φi(x)φj(y)φk(0)〉.

(4.49)

These manipulations have allowed us to express W as a double total derivative with
respect to both x and y

W = ∂yµ∂
x
νH

µν(x, y) , (4.50)

where

Hµν(x, y) =
[
∂µy ∂

ν
xy

2 + 2yµ∂νx + ∂µy ∂
ν
xx

2 + 2ηµνx2�x + 8xν
(
∂µy
y2

x2 + 2y
µ

x2

)
+ 2∂µy xν + 2∂νxxµ + 12ηµν(∂x · x)− 10ηµν

)]
Gml〈φm(∞)φi(x)φj(y)φk(0)〉.

(4.51)

Notice that
W (y, x) = ∂xµ∂

y
νH

µν(y, x) = ∂yµ∂
x
νH

νµ(y, x) , (4.52)

hence we need to compute the quantity

FL
ij
δlk = 1

2
1

(2π)2

∫
|x|≤1

d3x

∫
|y|≤1

d3y(W (x, y)−W (y, x))

= 1
2

1
(2π)2

∫
|x|≤1

d3x

∫
|y|≤1

d3y ∂yµ∂
x
ν (Hµν(x, y)−Hνµ(y, x)) .

(4.53)

14Again, this identity can be proved easily by direct computation after expressing the 4-point function
in terms of the conformally-invariant cross-ratios.
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Doing the integration by parts (and checking that there are no finite contributions from
the limits x→ 0 and y → 0 for reasons similar to the ones outlined in the 4d N = 1 case)
we find

FL
ij
δlk = 1

2
1

(2π)2 lim
r→1−

∫
|y|=1

dΩy

∫
|x|=r

dΩx |x||y|yµxν(Hµν(x, y)−Hνµ(y, x)) . (4.54)

In the limit r → 1−, the contribution to the integral from angular regions on the spheres
|x| = 1, |y| = 1, which have finite distance, cancels out after antisymmetrization. Similar
to the 4d N = 1 computation, the only possible contributions come from the region x ≈ y
on the spheres. These can be computed using the OPE between the operators at x, y.

In 3d, analytic closed form expressions of the conformal blocks are not readily available,
but we can consider separately the contribution of a general operator O (not necessarily
conformal primary) of dimension ∆ and spin s in the channel (ij) → (kl). We denote
this as

〈φm(∞)φi(x)φj(y)φk(0)〉 = . . .+ CO
ij
COkm

1
|x− y|4−∆

1
|y|∆

Ps(cos θ) + . . . . (4.55)

where Ps(cos θ) is given by an (appropriately normalized) Legendre polynomial of cos θ ≡
(x−y)·y
|x−y||y| which arises by contracting symmetric-traceless polynomials of rank s in (x−y) with
those in y [38]. For the second term in (4.54) we have a similar expansion interchanging
x, y. Hence, we can write the final result for the curvature as

F = 1
2G

ml ×
∑
∆,s

CO
ij
COkm X∆,s , (4.56)

where we have defined the kinematic quantity

X∆,s ≡
1

(2π)2 lim
r→1−

∫
|x|=r

dΩx
2

∫
|y|=1

dΩy
2 |y||x|×

×
{[

(x · ∂x)(y · ∂y)y2 + 2y2(x · ∂x) + (x · ∂x)(y · ∂y)x2 + 2(x · y)x2�x + 8(y · ∂y)y2 + 16y2

+ 2x2(y · ∂y) + 12(x · y)(x · ∂x + 3) + 2(x · ∂x)(x · y)− 10(x · y)
] 1
|x− y|4−∆

1
|y|∆

Ps(cos θ)

− (x↔ y)
}
.

(4.57)

In the range of conformal dimensions allowed by the unitarity bounds we find that the only
potential contributions can arise from operators with

1. ∆ = 1, s = 0 and coefficient X1,0 = −8.

2. ∆ = 2, s = 1 and coefficient X3,1 = 48.

In 3d N = 2 theories, neutral scalar operators of ∆ = 1 are superconformal primaries
of short multiplets containing flavor currents, see for example [36]. Using the fact that
marginal operators have to be neutral under flavor symmetries and following a similar
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argument as the one we employed in 4d we conclude that such scalar operators can not
appear in the OPE of φi and φj .

For the same reason, in the case of spin 1 operators only the R-current can contribute.
Considering the limit x→ y we have

〈φm(∞)φi(x)φj(y)φk(0)〉 = RiRk
16π2CV

gijgkm
(x− y) · y
|x− y|4|y|6

+ . . . . (4.58)

Consequently,
CJ
ij
CJkm = − RiRk

16π2CV
gijgkm . (4.59)

For the operators of interest we have again Ri = Rk = 2.
As a result, we find that the curvature is

Fij̄δ
l
k = 1

2G
ml × 48×

(
− 4

16π2CV
gijgkm

)
(4.60)

or by using the relation Gij = 12gij ,

Fij = − 1
24π2CV

Gij . (4.61)

It is convenient to express the coefficient CV in terms of the stress tensor two-point function
coefficient CT . We will use conventions where

〈Tµν(x)Tκλ(0)〉 = CT
1
|x|6

Iµν,κλ(x) (4.62)

with

Iµν,κλ(x) = 1
2(Iµκ(x)Iνλ(x)+Iµλ(x)Iνκ(x))− 1

3δµνδκλ), Iµν(x) = δµν−2xµxν
x2 . (4.63)

From ref. [8], we observe that CV = 1
6CT . So, all in all we obtain

Fij = − 1
4CTπ2Gij . (4.64)
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A SUSY Ward identities

For the convenience of the reader, in this appendix we summarize useful superconformal
Ward identities in 4d N = 1 SCFTs. Very similar Ward identities exist in 3d N = 2
SCFTs, but we will refrain from spelling out their detailed form. Moreover, in this paper
we are always considering correlators in the superconformal vacuum of the theory, which
obeys

Qa|0〉 = Qȧ|0〉 = Sa|0〉 = S
ȧ|0〉 = 0 . (A.1)

For simplicity, we do not write explicitly the bra and ket in correlators and use the notation

〈O1(x1) . . .On(xn)〉 ≡ 〈0|O1(x1) . . .On(xn)|0〉 . (A.2)
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A.1 Ward identities for supercharges

We start with the case of bosonic operators. Since 〈0|Qa = 0, we have

〈QaO1(x1) . . .On(xn)〉 = 0 . (A.3)

We start moving Qa towards the right until it annihilates the ket. In the process, using

QaO = [Qa,O] +OQa (A.4)

we pick up commutators to get
n∑
k=1
〈O1(x1) . . . [Qa,Ok(xk)] . . .On(xn)〉 = 0 . (A.5)

Since [Qa,O(x)] = [Qa,O](x), this can also be written as

n∑
k=1
〈O1(x1) . . . [Qa,Ok](xk) . . .On(xn)〉 = 0 . (A.6)

If some of the operators are fermionic, then it is more useful to form the anticommutator
when passing Qa towards the right. We can do it using

QaO = {Qa,O} −OQa (A.7)

Then we get an identity like (A.6) but with additional minus signs depending on the pattern
of fermionic operators.

An obviously similar Ward identity holds for the supercharge Qȧ.

A.2 Ward identity for superconformal charges

Following a similar reasoning for the superconformal charges Sa we obtain the equivalent
of (A.5) as

n∑
k=1
〈O1(x1) . . . [Sa,Ok(xk)] . . .On(xn)〉 = 0 . (A.8)

Notice, however, that unlike the case [Qa,O(x)] = [Qa,O](x), now we have [Sa,O(x)] =
[Sa,O](x) + ixȧa[Qa,O](x). Hence, the Ward identity (A.5) can be written as

n∑
k=1
〈O1(x1) . . .

(
[Sa,Ok] + ixȧak [Qȧ,Ok](xk)

)
. . .On(xn)〉 = 0 . (A.9)

The equivalent identity for Sȧ is
n∑
k=1
〈O1(x1) . . .

(
[Sa,Ok]− ixȧak [Qa,Ok](xk)

)
. . .On(xn)〉 = 0 . (A.10)

Again, if some operators Oi are fermionic we can derive similar identities with anticommu-
tators and some additional minus signs.
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A.3 Combining the two superconformal Ward identities

It is often useful to consider linear combinations of the previous Ward identities. In par-
ticular, consider the following combination of fermionic generators, which depends on an
arbirarily chosen spacetime point z that we can select to our convenience

qa(z) ≡ Sa − izȧaQȧ .

This operator obeys
qa(z)|0〉 = 0, 〈0|qa(z) = 0 .

Hence, we have
n∑
k=1
〈O1(x1) . . . [qa,Ok(x)] . . .On(xn)〉 = 0 (A.11)

or using (A.10)
n∑
k=1
〈O1(x1) . . .

(
[Sa,Ok](xk) + i(xk − z)ȧa[Qȧ,Ok](xk)

)
. . .On(xn)〉 = 0 . (A.12)

A useful application of this identity, that we use several times in the main text, is to select
z = xk0 where xk0 is the spacetime coordinate xk0 of one of the operators Ok0 in the
correlator. Then, as we can see above, the term [Qȧ,Ok0(xk0)] does not contribute. If
Ok0(xk0) also happens to be annihilated by Sa, for example if it is superconformal primary,
then that particular operator in the correlator does not contribute at all to the Ward
identity.

We also have a similar Ward identity if we start with

qȧ(z) ≡ Sȧ + izȧaQa , (A.13)

which gives
n∑
k=1
〈O1(x1) . . .

(
[Sȧ,Ok](xk)− i(xk − z)ȧa[Qa,Ok](xk)

)
. . .On(xn)〉 = 0 . (A.14)

B Proof of 4-point function Ward identities with marginal operators

B.1 4d N = 1

Consider the 4-point function

〈Oi(x)Oj(y)Ok(z)Ol(w)〉 .

Using the superconformal Ward identities of appendix A, this can be related to the 4-point
function of chiral/antichiral primaries 〈φi(x)φj(y)φk(z)φl(w)〉. In this appendix we sketch
the derivation.

First, we notice that the marginal operator

Oi(x) = 1
4ε

ab{Qa, [Qb, φi]}(x) (B.1)
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can also be written as
Oi(x) = − 1

x2
1
4εȧḃ{S

ȧ
, [S ḃ, φi(x)]} . (B.2)

In the last formula (B.2) it is important to distinguish between the commutators [Sȧ, φi(x)]
and [Sȧ, φi](x). Consequently,

〈Oi(x)Oj(y)Ok(z)Ol(w)〉 = − 1
x2

1
4εȧḃ〈

(
{Sȧ, [S ḃ, φi(x)]}

)
Oj(y)Ok(z)Ol(w)〉.

The successive application of the superconformal Ward identities yields

〈Oi(x)Oj(y)Ok(z)Ol(w)〉 = − 1
x2

1
4εȧḃ〈φi(x)

(
{Sȧ, [S ḃ,Oj(y)]}

)
Ok(z)Ol(w)〉

− 1
x2

1
4εȧḃ〈φi(x)Oj(y)

(
{Sȧ, [S ḃ,Ok(z)]}

)
Ol(w)〉 (B.3)

−2 1
x2

1
4εȧḃ〈φi(x)

(
[Sȧ,Oj(y)]

)(
[S ḃ,Ok(z)]

)
Ol(w)〉.

For the first and second terms on the r.h.s. of (B.3) we use the following result, which can
be derived by straightforward application of the superconformal algebra

εȧḃ

(
{Sȧ, [S ḃ,Oj(y)]}

)
= −4

[
y2�y + 8(y · ∂y) + 24

]
φj(y) . (B.4)

For the last term in (B.3) we consider the 4-point function

εȧḃ〈φi(x)
(
[Sȧ,Oj(y)]

)(
[S ḃ,Ok(z)]

)
Ol(w)〉 .

We are interested in the limit x → ∞, which exhibits some simplifications. For instance,
if we move the Q’s away from w, we can ignore any terms where the Q’s act on x as those
will be subleading as x → ∞. Also notice that if two Q’s act on either the operator at y
or z, it will be annihilated. Hence, we only need to consider terms of the form

εȧḃε
cd〈φi(x)

(
{Qc, [S

ȧ
,Oj(y)]}

)(
{Qd, [S

ḃ
,Ok(z)]}

)
φl(w)〉

Like (B.4) this correlation function can be simplified using the relations of the supercon-
formal algebra.

Using these manipulations, we can write the 4-point function of interest as a sum of
three terms

〈Oi(∞)Oj(y)Ok(z)Ol(w)〉 = I1 + I2 + I3 . (B.5)

For the first term, eq. (B.4) yields

I1 = −1
4εȧḃ〈φi(∞)

(
{Sȧ, [S ḃ,Oj(y)]}

)
Ok(z)Ol(w)〉

=
[
y2�y + 8(y · ∂y) + 24

]
〈φi(∞)φj(y)Ok(z)Ol(w)〉 .

(B.6)

By moving the Q’s away from Ol(w), we obtain

I1 =
[
y2�y + 8(y · ∂y) + 24

]
�z〈φi(∞)φj(y)φk(z)φl(w)〉 . (B.7)
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Similarly, for the second term we find

I2 =
[
z2�z + 8(z · ∂z) + 24

]
�y〈φi(∞)φj(y)φk(z)φl(w)〉 (B.8)

and finally for the third term

I3 = − [32(∂y · ∂z) + 8(z · ∂y)�z + 8(y · ∂z)�y + 2(y · z)�y�z] 〈φi(∞)φj(y)φk(z)φl(w)〉 .
(B.9)

The desired Ward identity is

〈Oi(∞)Oj(y)Ok(z)Ol(w)〉 =
{

(y − z)2�y�z + 8(y − z) · (∂y�z − ∂z�y)

− 32(∂y · ∂z) + 24(�z + �y)
}
〈φi(∞)φj(y)φk(z)φl(w)〉.

(B.10)

Notice that it is possible to recast this identity in various other forms either by: i)
Pulling the derivatives through the coordinate factors or ii) Using ordinary conformal Ward
identities for the correlator 〈φi(∞)φj(y)φk(z)φl(w)〉.

We consider two applications of this identity in the main text: i) to confirm Kählerity
and ii) to compute the curvature of L. For the first one we need to take w → 0. For the
second one we take z → 0 and replace the z-derivatives with w, y derivatives.

We also notice that by pulling all the derivatives to the left on the r.h.s. , the formula
can be written as

〈Oi(∞)Oj(y)Ok(z)Ol(w)〉 =
{
�y�z(y − z)2 + 4�z(∂y · (y − z))

− 4�y(∂z · (y − z))− 8(∂y · ∂z)
}
〈φi(∞)φj(y)φk(z)φl(w)〉.

(B.11)

B.2 3d N = 2

An analogous Ward identity can be derived in 3d N = 2 SCFTs. Since many of the
intermediate steps are very similar to the corresponding ones in the 4d N = 1 discussion,
we will omit many of the pertinent details. In 3d N = 2 SCFTs the marginal operators
take the form

Oi = 1
4ε

ab{Qa, [Qb, φi]} , (B.12)

where again we introduced a specific convenient normalization factor and by convention
ε12 = 1. In addition, there is a complex-conjugate version of Oi. Similar to the expres-
sion (B.2), we can also recast the exactly marginal operator into the form

Oi = − 1
x2

1
4εab{S

a
, [Sb, φi]} , (B.13)

where ε12 = −1. Then, by successive application of the superconformal Ward identities
we arrive at the analog of eq. (B.3). We consider each term that arises in this expression
separately.

The first term of interest involves result

εab{S
a
, [Sb,Oj(y)]} = −4(y2�y + 6(y · ∂y) + 12)φj(y) . (B.14)
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which follows from straightforward application of the superconformal algebra. The second
term that arises in the computation involves the 4-point function

4εabεcd〈φi(x)
(
{Qc, [Sa,Oj(y)]}

) (
{Qd, [Sb,Ok]}(z)

)
φl(w)〉

= −16
[
18(∂y · ∂z) + 6(y · ∂z)�y + 6(z · ∂y)�z + 2(y · z)�y�z

]
〈φi(x)φj(y)φk(z)φl(w)〉.

(B.15)

Using these results, and taking the x→∞ limit, we finally obtain the result

〈Ok(∞)Oj(y)Ok(z)Ol(w)〉 =
{

(y − z)2�y�z

+ 6(y − z) · (∂y�z − ∂z�y)− 18(∂y · ∂z) + 12(�y + �z)
}
〈φi(∞)φj(y)φk(z)φl(w)〉.

(B.16)

C Curvature components and the Kähler structure

In this appendix we derive the identity (3.6),

Rijk̄l̄ = 0 , (C.1)

for the Riemann tensor on a 4d N = 1 superconformal manifold. This identity is one of the
consequences of the Kähler structure of the superconformal manifold. The corresponding
identity in 3d N = 2 superconformal manifolds can be derived in an exactly analogous
manner and will not be discussed here explicitly.

We first use the superconformal Ward identity (B.11) to rewrite the 4-point func-
tion (3.8) as

〈Ol(∞)Oi(x)Oj(y)Ok(0)〉 =
{
�x�y(x− y)2 + 4�y(∂x · (x− y))

− 4�x(∂y · (x− y))− 8(∂x · ∂y)
}
〈φl(∞)φi(x)φj(y)φk(0)〉.

(C.2)

Consequently,
〈Ol(∞)Oi(x)Oj(y)Ok(0)〉 = ∂yµ∂

x
νG

µν(x, y) (C.3)

where

Gµν(x, y)=
{
∂µy ∂

ν
x(x− y)2+4∂µy (x− y)ν−4∂νx · (x− y)µ−8ηµν

}
〈φl(∞)φi(x)φj(y)φk(0)〉.

(C.4)
Since the 4-point function (C.3) is integrated over x, y in the curvature formula (2.22),
we can use the total-derivative form on the r.h.s. of eq. (C.3) to evaluate the integral by
integrating by parts. We need to analyze carefully the potential boundary contributions
as x, y → 0. As explained below eq. (2.16) there are no contributions from the coincidence
limit x→ y.
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Behaviour near y → 0. First we consider the singularity structure as y → 0. For that
we need to examine the integral

I(x, ε) ≡
∫
ε<|y|≤1

d4y
(
〈Ol(∞)Oi(x)Oj(y)Ok(0)〉 − (x↔ y)

)
(C.5)

and study the potential divergences as ε → 0. These can be analyzed by considering the
OPE of the operators at y and 0. Notice that since there is no scalar operator of dimension
4 in this OPE (or else the operators would not be exactly marginal), we do not expect any
logarithmic divergences. Thus, we have

I(x, ε) =
∑
a

ca
ε4−∆a

+ Ĩ(x) +O(ε) , (C.6)

where possible divergent terms are coming from operators with ∆a < 4 in the OPE between
marginal operators. We want to isolate the finite piece Ĩ(x).

To do this we can rewrite the above integral in total-derivative form as

I(x, ε) =
∫
ε<|y|≤1

d4y ∂yµV
µ(x, y) , (C.7)

where
V µ = ∂xνG

µν(x, y)− ∂xνGνµ(y, x) . (C.8)

Using the divergence theorem we find

I(x, ε) =
∫
|y|=1

dΩy|y|2yµV µ −
∫
|y|=ε

dΩy|y|2yµV µ (C.9)

For the computation of the curvature we are instructed to expand the integral above in
powers of ε as ε→ 0, throw away the divergent pieces and keep the finite piece (as discussed
above there are no log divergences). Taking into account the angular integral at fixed |y| = ε

the only possible finite contribution to Ĩ(x) can arise if we there is a term of the form

V µ = const× yµ

|y|4
+ . . . (C.10)

Inspecting the relation of V µ to the 4-point function 〈φφφφ〉 via Gµν , we infer that the only
operators capable of contributing a term of the form (C.10) are operators in the φk(y)φl(0)
OPE with integer ∆ and ∆ ≤ 4. This means that their spin obeys s ≤ 2. Considering the
explicit functional form of contribution of possible operators of scaling dimension ∆ and
spin s ≤ 2 in the φk(y)φl(0) OPE, we find that none of them contributes a term of the
form (C.10). Thus, we conclude that there is no finite contribution in the y → 0 limit and
we have

Ĩ(x) ≡ lim
reg,ε→0

I(x, ε) =
∫
|y|=1

dΩy|y|2yµV µ . (C.11)

– 27 –



J
H
E
P
0
9
(
2
0
2
2
)
1
0
4

Behaviour near x → 0. Next, we consider the integral over x. We have

H(ε, r) =
∫
ε<|x|≤r

d4x Ĩ(x) , (C.12)

where we first want to send ε → 0, throw away the divergent terms, and afterwards send
r → 1−.

Writing V µ = ∂xνG
µν − (x↔ y) we obtain

H(ε, r) =
∫
|y|=1

dΩy|y|2yµ×

×
{[∫

|x|=r
dΩx|x|2xν(Gµν(x, y)− (x↔ y))

]
−
[∫
|x|=ε

dΩx|x|2xν(Gµν(x, y)− (x↔ y))
]}

.

(C.13)

There are finite contributions in the limit ε→ 0, if the integrand has a term of the form

xν

|x|4
. (C.14)

Examining the potential contribution of operators with ∆ ≤ 4 and spin l ≤ 2, we find
that none of them can arise. As a result, there are no finite contributions from the limits
x, y → 0.

Boundary terms from |x|, |y| → 1. The above considerations have reduced the com-
putation of the curvature components of interest to a double integral over a boundary
term

R = lim
r→1−

∫
|x|=r

dΩx

∫
|y|=1

Ωy|x|2|y|2xµyν(Gµν(x, y)−Gνµ(y, x)) (C.15)

with explicit form

R = lim
r→1−

∫
|x|=r

dΩx

∫
|y|=1

Ωy|x|2|y|2
[
(x · ∂x)(y · ∂y)(x− y)2

+ 4(y · ∂y)(x2 − x · y)− 4(x · ∂x)(x · y − y2)− 8x · y)
]
〈φi(∞)φj(x)φk(y)φl(0)〉 − (x↔ y).

(C.16)

In the limit r → 1−, the contribution to the above integrals of any region where Ωx 6= Ωy

vanishes, due to the antisymmetrization. The only possible contribution comes from regions
Ωx near Ωy, where the r → 1− limit can not be taken inside the integral. For that region
we can use the OPE in the channel (j k) → (i l). Inspecting the form of the integrand,
we notice that only terms with a singularity at least as strong as 1

|x−y|3 have a chance of
contributing. This means that such terms must originate from operators with ∆ ≤ 3 in
the OPE φjφk. Since both of these operators are antichiral primaries, the lowest scaling
dimension that can appear on the r.h.s. is ∆ = 6. Consequently, the double integral is zero
in the limit r → 1−.

In summary, we have verified that the curvature components in eq. (C.1) are indeed
zero in accordance with the arguments about the Kähler structure in section 3.1.

– 28 –



J
H
E
P
0
9
(
2
0
2
2
)
1
0
4

D On the additivity of holonomies

In subsection 3.1 we argued that the holonomy of the holomorphic part of the tangent
bundle splits into the separate holonomies of the line bundle L2 and the vector bundle V.
A similar statement applies to the anti-holomorphic part. This requires that the connection
of the exactly marginal operators Oi = 1

4ε
ab{Qa, [Qb, φi]} is the sum of the connection for

the chiral primaries φi and the connection for the two Q’s. A sufficient condition for this is
that the covariant derivative of 3-point functions of the form 〈O(x)Gµ,a(y)[Qb, φ](z) must
vanish. In this appendix we elaborate on this requirement.

As a warmup, let us first consider the additivity of holonomies for the first supercon-
formal descendant. For that we consider the 3-point function

〈[Qȧ, φ](x)Gµ,a(y)φ(z)〉 ,

where the supercurrent is Gµ,a = [Qa, Jµ] with Jµ the U(1) R-current. We want to prove
that this 3-point function is covariantly constant. We will show this by inserting a marginal
operator and proving that the resulting 4-point function is identically zero.

Anti-Holomorphic deformation. Consider the 4-point function

I = 〈O(w) [Qȧ, φ](x)Gµ,a(y)φ(z)〉 . (D.1)

We select to first move a Q away from O, whose spinor index is different from the ȧ of
the operator at x. We do this by selecting a linear combination of superconformal Ward
identities so that Q does not act on y. The operator φ(z) is annihilated by both Q,S so
we do not get any contribution from it. We will then get two types of terms, one from S

acting on Gµ,a(y) = [Qa, Jµ(y)], that gives back Jµ

I1 = 〈[Qȧ, φ(w)] [Qȧ, φ](x) Jµ(y)φ(z)〉 , (D.2)

and another term from Q acting on the operator at x, which will look like

I2 = 〈[Qȧ, φ(w)] {Qḃ, [Qȧ, φ]}(x)Gµ,a(y)φ(z)〉 . (D.3)

To show that I1 vanishes, we move the Qȧ away from w, using a superconformal Ward
identity so that we get no contribution from Jµ(y), which is annihilated by S. Again there
is no contribution from φ(z) and the contribution from x also vanishes, since we have two
supercharges Qȧ with the same spinor index acting on the operator.

To show that I2 vanishes, we move Qȧ away from w, arranging that Q does not act on
y (so only S will act on y). We do not get a contribution from x since there is already a
Qȧ there. Hence, we get that I2 is proportional to the correlator I′2 given by

I′2 = 〈φ(w) {Qḃ, [Qȧ, φ]}(x) Jµ(y)φ(z)〉 . (D.4)

Now we move each of the two Q’s from x, with a Ward identity so that Q does not act on
w, and then both Q’s will end on Jµ. Since Jµ is a short multiplet, when two Q’s act on
it we get zero. Hence I2

′ (and thus I2) vanish. So all in all the original correlator (D.1)
vanishes.
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Holomorphic deformation. Similarly for the holomorphic deformation consider the
4-point function

I = 〈O(w) [Qȧ, φ](x)Gµ,a(y)φ(z)〉 . (D.5)

First we move Q away from O. We select a linear combination of Ward identities so that we
do not get any contribution from φ(z). The operator Gµ,a(y) = [Qa, Jµ(y)] is annihilated
by Q, because it is a semi-short multiplet, and by S, because Jµ is superconformal primary.
As a result, we obtain a sole contribution from the term at x. Both Q and S remove the
Q, hence the computation is reduced to the evaluation of the 4-point function

I′ = 〈[Qc, φ](w)φ(x)Gµ,a(y)φ(z)〉 . (D.6)

Repeating the same analysis by moving Qc away from w we finally obtain I′ = 0.

Similar arguments can be applied to the second descendants that appear in the exactly
marginal deformations. More specifically, we can similarly show that the 3-point function

〈{Qȧ, [Qa, φ]}(x)Gµ,a(y)[Qb, φ](z)〉 (D.7)

is covariantly constant.

Holomorphic deformation. Consider the 4-point function

〈O(w){Qȧ, [Qa, φ]}(x)Gµ,a(y)[Qb, φ](z)〉 . (D.8)

First, we move Q away from O. It acts as a linear combination of Q,S:

1. We select the linear combination of Ward identities so that we do not get any con-
tribution from the operator at z.

2. As before, Gµ,a(y) is annihilated by both Q and S.

3. We obtain a single contribution from the term at x. Both Q and S remove one Q.

4. When we apply the above steps for both Q’s in O we end up with a correlator of the
form

〈φ(w)φ(x)Gµ,a(y)[Qa, φ](z)〉 . (D.9)

In this 4-point function we move Qa away from z using a Ward identity so that Q
does not act at w. For the reasons mentioned previously the correlator vanishes.

Anti-Holomorphic deformation. Finally, we consider the 4-point function

〈O(w){Qȧ, [Qḃ, φ]}(x)Gµ,a(y)[Qb, φ](z)〉 . (D.10)

We start by moving Q away from O. It acts as a linear combination of Q,S and gives no
contributions from the operator at x. We select the Ward identity so that Q does not act
at y.
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We then obtain two types of correlators

〈[Qċ, φ(w)]{Qȧ, [Qḃ, φ]}(x)Jµ(y)[Qb, φ](z)〉 (D.11)

and
〈[Qċ, φ(w)]{Qȧ, [Qḃ, φ]}(x)Gµ,a(y)φ(z)〉 . (D.12)

Moving the Qċ away from w we obtain correlators of the form

〈φ(w){Qȧ, [Qḃ, φ]}(x)Jµ(y)φ(z)〉 . (D.13)

Next we move Qȧ away from x. We arrange the Ward identity so that we Q does not act
on the operator at w. That yields a correlation function of the form

〈φ(w)[Qḃ, φ](x)[Qȧ, Jµ](y)φ(z)]〉 . (D.14)

Repeating the process for Qḃ we end up with the 4-point function

〈φ(w)φ(x){Qḃ, [Qȧ, Jµ]}(y)φ(z)]〉 , (D.15)

which vanishes because of shortening conditions of J .
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