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1 Introduction

The most straightforward and successful (as well as systematically improvable) approach to

calculations for processes at high-momentum scales M in QCD is a perturbative expansion

in the strong coupling αs(M
2). Cross sections are written as a series expansion in the

parameter αs and an improvement in accuracy is obtained by calculating an increasing

number of coefficients in the series. Until a few years ago, the standard for such calculations

was next-to-leading order (NLO) accuracy. Recent years have seen a number of next-to-

next-to-leading order (NNLO) results for many important processes of interest, such that

the emerging standard for precision calculations relevant for LHC phenomenology is the

second non-trivial order in the strong coupling αs.

Reducing the theoretical uncertainties remains one of the main motivations for the

extension from NLO to NNLO accuracy. This is particularly relevant in two distinct situa-

tions. Firstly, NNLO corrections are mandatory for those processes where NLO corrections

are comparable in size to the leading order (LO) contribution, both to establish the con-

vergence of the perturbative expansion and to obtain reliable predictions. Secondly, many

benchmark processes demand theoretical predictions with the highest possible precision to

be able to fully exploit the extraordinary experimental precision that is achievable for this

class of processes. Such “standard candles” are not only indispensable tools in detector

calibration but also allow for a precise extraction of Standard Model (SM) parameters and

parton distribution functions (PDFs).
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Extending the perturbative accuracy of QCD calculations to one order higher im-

plies developing new methods and techniques to achieve the cancellation of infrared (IR)

divergences that appear at intermediate steps of the calculations. The past few years

have witnessed a great development in NNLO subtraction prescriptions. The transverse

momentum (qT ) subtraction method [1–3], the N -jettiness subtraction [4, 5], projection-

to-Born [8], residue subtraction [6, 7], and the antenna subtraction method [9–11] have all

been successfully applied for LHC phenomenology.

However, in view of the impressive and continuously improving quality of the mea-

surements performed at the LHC, even NNLO accuracy is in some cases not sufficient to

match the demands of the LHC data. Typically, these are processes in which the size of

the NLO corrections are comparable with the LO, and where the NNLO corrections still

exhibit large effects such that the size of the theoretical uncertainties remains larger than

the experimental uncertainties.

This motivated a new theoretical effort to go beyond NNLO to include the next per-

turbative order: the next-to-next-to-next-to-leading order (N3LO). Sum rules, branching

fractions [12] and deep inelastic structure functions [13] have been known to this order

for quite some time. At present, the only hadron collider observables for which N3LO

QCD corrections have been calculated are the total cross section for Higgs boson pro-

duction in gluon fusion [14, 15] and in vector boson fusion [16]. First steps have been

taken towards more differential observables by computing several N3LO threshold expan-

sion terms to the Higgs boson rapidity distribution in gluon fusion [17, 18]. Moreover, the

projection-to-Born method has been most recently extended to compute fully differential

distributions to N3LO, with a proof-of-principle calculation [19] of jet production in deep

inelastic scattering.

In this paper we extend the qT subtraction method at N3LO to compute Higgs boson

production differentially in the Higgs boson rapidity at N3LO accuracy. The paper is

organized as follows: in section 2 we recall briefly the main ideas of the qT subtraction

formalism and we present the necessary ingredients up to N3LO, specifying which elements

are known analytically and identifying the missing coefficients at N3LO. In section 3 we

present a prescription for approximating the missing collinear functions at N3LO based on

the unitarity property of the integral of the transverse momentum distribution. In section 4,

we apply the qT subtraction formalism at N3LO to produce differential distributions in

the rapidity of the Higgs boson. To validate our approach, section 4.1 quantifies the

quality of the approximations by repeating them at NNLO, where all of the ingredients to

qT subtraction are known. We assess the magnitude of different sources of systematic

uncertainties at N3LO in section 4.2, yielding final results for the N3LO Higgs boson

rapidity distribution and the associated theoretical uncertainty in section 4.3. Finally,

in section 5 we summarize our results.

2 The qT subtraction formalism at N3LO

This section is devoted to present briefly the transverse-momentum subtraction formalism

to N3LO in perturbative QCD. The method is illustrated in its general form and spe-
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cial attention is paid to the case of Higgs boson production through gluon-gluon fusion.

The qT subtraction formalism presented in this section is the third-order extension of the

subtraction method originally proposed in refs. [1–3].

We consider the inclusive hard scattering reaction

h1(p1) + h2(p2)→ F ({qi}) +X , (2.1)

where h1 and h2 denote the two hadrons which collide with momenta p1 and p2 producing

the identified colourless final-state system F , accompanied by an arbitrary and undetected

final state X. The colliding hadrons have centre-of-mass energy
√
s, and are treated as

massless particles

s = (p1 + p2)2 = 2p1 · p2 .

The observed final state F consists of a generic system of non-QCD partons composed

of one or more colour singlet particles (such as vector bosons, photons, Higgs bosons,

Drell-Yan (DY) lepton pairs and so forth) with momenta qµi (i = 3, 4, 5, . . . ). The total

momentum of the system F is denoted by

qµ =
∑
i

qµi ,

and the kinematics of the system can be expressed in terms of the total invariant mass M ,

M2 = q2 ,

the transverse momentum qT with respect to the direction of the colliding hadrons (omitting

the azimuthal dependence), and the rapidity in the centre-of-mass system of the hadronic

collision, Y ,

Y =
1

2
ln

(
p2 · q
p1 · q

)
.

The fully differential hadronic cross section can therefore be written as

dσF

dq2
TdM2dY

=

∫ 1

0
dξ1

∫ 1

0
dξ2

dσ̂Fab(ξ1p1, ξ2p2)

dq2
TdM2dY

fa/h1(ξ1, µF) fb/h2(ξ2, µF) , (2.2)

where dσ̂ab is the differential partonic cross section, ξ1, ξ2 are the partonic momentum

fractions and fc/h the distribution function for finding parton c in hadron h. Since F is

colourless, the LO partonic cross section can be either initiated by qq̄ annihilation, as in

the case of the Drell-Yan process, or by gluon-gluon fusion, as in the case of Higgs boson

production. In the case of the Born cross section, the kinematics of the colour-neutral

system F is fully constrained such that

dσ̂FLO;ab(ξ1p1, ξ2p2)

dq2
TdM2dY

= δca δc̄ b δ(q
2
T )δ

(
M2−ξ1ξ2s

)
δ
(
Y −ln(ξ1/ξ2)/2

)
dσ̂FLO;cc̄(ξ1p1, ξ2p2)

= δca δc̄ b δ(q
2
T )δ

(
ξ1−

M√
s

e+Y

)
δ

(
ξ2−

M√
s

e−Y
)

1

s
dσ̂FLO;cc̄(ξ1p1, ξ2p2) .

(2.3)
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In order to explain the basic idea of the subtraction formalism, we first notice that at

LO, the transverse momentum qT of the final state system F is identically zero. Therefore,

as long as qT > 0, the NnLO QCD contributions (with n ≥ 1) are given by the Nn−1LO

QCD contributions to the F + jet(s) final state. Consequently, if qT > 0 we have:

dσFNnLO

dq2
TdM2dY

∣∣∣∣
qT>0

≡
dσ

F+jet(s)

Nn−1LO

dq2
TdM2dY

, (2.4)

where the notation NnLO stands for: N0LO =LO, N1LO =NLO, N2LO =NNLO and so

forth. Equation (2.4) implies that if qT > 0 the infrared (IR) divergences that appear

in the computation of dσFNnLO|qT>0 are those already present in dσ
F+jet(s)

Nn−1LO
. Therefore,

provided that the IR singularities involved in dσ
F+jet(s)

Nn−1LO
can be handled and cancelled

with the available subtraction methods at Nn−1LO, the only remaining singularities at

NnLO are associated with the limit qT → 0 and we treat them with the qT subtraction

method. Since the small-qT behaviour of the transverse momentum distribution is well

known through the resummation program [20–32] of logarithmically-enhanced contribu-

tions to transverse-momentum distributions, we can (in principle) exploit this knowledge

to construct the necessary NnLO counterterms (CT) to subtract the remaining singularity

at qT = 0, thereby promoting the qT subtraction method proposed in ref. [1] to NnLO.

The generic form of the qT subtraction method [1] for the NnLO cross section is

dσFNnLO

dq2
TdM2dY

= HFNnLO ⊗
dσFLO

dq2
TdM2dY

+

[
dσ

F+jet(s)

Nn−1LO

dq2
TdM2dY

−
dσF CT

NnLO(qT )

dq2
TdM2dY

]
, (2.5)

where the symbol “⊗” denotes convolutions over the momentum fractions and the flavour

indices of the incoming partons and is explicitly defined as

G(. . .)⊗dσF

dO
≡
∫ 1

0
dξ1

∫ 1

0
dξ2

∫ 1

0
dz1

∫ 1

0
dz2

×
dσ̂Fab(ξ1z1p1, ξ2z2p2)

dO
Gab←cd(. . . ;z1,z2) fc/h1(ξ1,µF) fd/h2(ξ2,µF) .

=

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2

×
dσ̂Fab(x1p1,x2p2)

dO
Gab←cd(. . . ;z1,z2) fc/h1

(
x1

z1
,µF

)
fd/h2

(
x2

z2
,µF

)
. (2.6)

The counterterm dσF CT
NnLO constitutes the contribution to the NnLO cross section which

cancels the divergences of dσ
F+jet(s)

Nn−1LO
in the limit qT → 0 and renders the term in square

brackets finite for all values of qT . The n-th order counterterm can be written as

dσF CT
NnLO(qT )

dq2
TdM2dY

= ΣF
NnLO(qT )⊗

dσFLO

dM2dY
, (2.7)

where we note that the dependence of the function ΣF
NnLO(qT ) on the transverse momentum

qT is not kinematically related to the Born-level process.
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The functions ΣF
NnLO(qT ) and HFNnLO correspond to the n-th order truncation of the

perturbative series in αs of the functions

ΣF
cc̄←ab(qT ; z1, z2) =

∞∑
n=1

(αs

π

)n
Σ
F ;(n)
cc̄←ab(qT ; z1, z2) , (2.8)

HFcc̄←ab(z1, z2) = δc aδc̄ b δ(1− z1) δ(1− z2) +
∞∑
n=1

(αs

π

)n
HF ;(n)
cc̄←ab(z1, z2) , (2.9)

where the labels a and b stand for the partonic channels of the NnLO correction that are

mapped to that the Born cross section. The function ΣF (qT ) embodies all the terms of the

form log(q2
T /M

2) that are divergent in the limit qT → 0 and reproduces the logarithmically

singular behaviour of dσF+jet(s) in the small-qT limit. Terms proportional to δ(q2
T ) as well

as IR finite terms are absorbed in the perturbative factor HF . The hard coefficient function

HFNnLO thus encodes all the IR finite terms of the n-loop contributions.

According to the transverse momentum resummation formula [2] and using the Fourier

transformation between the conjugate variables qT and the impact parameter b, the pertur-

bative hard functionHF and the corresponding counterterm are obtained by the fixed-order

truncation of the identity(
ΣF (qT )+HF δ(q2

T )
)
⊗

dσFLO

dM2dY
=

1

s

∫ ∞
0

db
b

2
J0(bqT ) dσ̂FLO;cc̄(x1p1,x2p2)Sc(M,b)

×
∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2

[
HFC1C2

]
cc̄;ab

fa/h1

(
x1

z1
,
b20
b2

)
fb/h2

(
x2

z2
,
b20
b2

)
,

(2.10)

where b0 = 2e−γE (γE = 0.5772 . . . is the Euler-Mascheroni constant).

The large logarithmic corrections are exponentiated in the Sudakov form factor

Sc(M, b) of the quark (c = q, q̄) or of the gluon (c = g), which has the following expression:

Sc(M, b) = exp

{
−
∫ M2

b20/b
2

dq2

q2

[
Ac(αs(q

2)) ln
M2

q2
+Bc(αs(q

2))

]}
, (2.11)

where the functions A and B permit a perturbative expansion in αs:

Ac(αs) =
∞∑
n=1

(αs

π

)n
A(n)
c , Bc(αs) =

∞∑
n=1

(αs

π

)n
B(n)
c . (2.12)

Explicit expressions for the coefficients A
(n)
g and B

(n)
g that are relevant for Higgs production

are collected in appendix A up to n = 3. In particular, we also give the B
(3)
g coefficient in

the hard resummation scheme as needed to evaluate eq. (2.10) for F = H at N3LO.

The analytical form of the function ΣF ;(3) in eq. (2.8) can be obtained by expanding

eq. (2.10) to the corresponding matching order. The full analytical formula for ΣF is re-

summation scheme independent order by order in the strong coupling constant. Therefore,

the logarithmic singular behaviour for ΣF at qT → 0 at each given order in αs does not

depend on the resummation scheme, and can be validated against the behaviour of the

– 5 –
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fixed-order results at small qT . To fully account for the logarithmically enhanced terms at

a given order requires a sufficient depth in the resummation accuracy prior to its fixed-order

expansion in eq. (2.8). Specifically, the LO Higgs boson qT distribution receives singular

contributions from up to NLL (next-to-leading-logarithm) resummation [30, 48], the NLO

Higgs boson qT distribution requires the expansion of NNLL resummation [31, 38, 49–51],

and the NNLO Higgs boson qT distribution has been recently validated against the singular

contributions from N3LL resummation [52, 53].

The structure of the symbolic factor denoted by
[
HFC1C2

]
cc̄;ab

in eq. (2.10), depends

on the initial-state channel of the Born subprocess and is explained in detail in refs. [34, 35].

Here we limit ourselves to the case in which the final state system F is composed of a single

Higgs boson, F ≡ H, in which case,[
HHC1C2

]
gg;ab

= HH
g

(
αs(M

2)
) [
Cg a

(
z1;αs(b

2
0/b

2)
)
Cg b

(
z2;αs(b

2
0/b

2)
)

+Gg a
(
z1;αs(b

2
0/b

2)
)
Gg b

(
z2;αs(b

2
0/b

2)
)]
, (2.13)

where HH
g is the hard-virtual function and respectively Cg a and Gg a the gluonic helicity-

preserving and helicity-flipping hard-collinear coefficient functions.

The gluonic hard-collinear coefficient function Cg a(z;αs) (a = q, q̄, g) has the following

perturbative expansion

Cg a(z;αs) = δg a δ(1− z) +

∞∑
n=1

(αs

π

)n
C(n)
g a (z) . (2.14)

In contrast, the perturbative expansion of the helicity flip hard-collinear coefficient func-

tion Gga, which is specific to gluon-initiated processes, starts only at O(αs), and can be

expanded as [34, 35]

Gg a(z;αs) =

∞∑
n=1

(αs

π

)n
G(n)
g a (z) . (2.15)

The IR finite contribution of the n-loop correction terms to the Born subprocess is contained

in the hard-virtual function (which does not depend on z1 or z2),

HH
g (αs) = 1 +

∞∑
n=1

(αs

π

)n
HH ;(n)
g . (2.16)

Using eqs. (2.10) and (2.13), then, after integration over b and dropping the renormal-

isation group predictable terms that are produced by evolving αs to a common scale (i.e.

setting µF = µR = M), we obtain the resummation scheme independent

HHgg←ab(z1,z2;µF =µR =M)≡HH
g (αs)

[
Cga(z1;αs)Cg b(z2;αs)+Gga(z1;αs)Gg b(z2;αs)

]
.

(2.17)

Note that in the literature, it is often the rapidity-integrated variant HHgg←ab(z) that is

quoted which is related to HHgg←ab(z1, z2) via the convolution

HHgg←ab(z) ≡
∫ 1

0
dz1

∫ 1

0
dz2 δ(z − z1z2) HHgg←ab(z1, z2) . (2.18)

– 6 –
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The HH function in eq. (2.17) can be expanded perturbatively without approximation

to any order in the strong coupling constant αs. Inserting the expansions of the hard

functions into eq. (2.17), then,

HH;(1)
gg←ab(z1, z2;µF = µR = M) = δg a δg b δ(1− z1) δ(1− z2)HH;(1)

g

+ δg a δ(1− z1)C
(1)
g b (z2) + δg b δ(1− z2)C(1)

g a (z1) , (2.19)

HH;(2)
gg←ab(z1, z2;µF = µR = M) = δg a δg b δ(1− z1) δ(1− z2)HH;(2)

g

+ δg a δ(1− z1)C
(2)
g b (z2) + δg b δ(1− z2)C(2)

g a (z1)

+HH;(1)
g

(
δg a δ(1− z1)C

(1)
g b (z2) + δg b δ(1− z2)C(1)

g a (z1)
)

+ C(1)
g a (z1)C

(1)
g b (z2) +G(1)

g a(z1)G
(1)
g b (z2) . (2.20)

Explicit expressions for the known fixed-order coefficients are collected in appendix A.

The new third-order contribution is given by

HH;(3)
gg←ab(z1, z2;µF = µR = M) = δg a δg b δ(1− z1) δ(1− z2)HH;(3)

g

+ δg a δ(1− z1)C
(3)
g b (z2) + δg b δ(1− z2)C(3)

g a (z1)

+G(1)
g a(z1)G

(2)
g b (z2) +G(2)

g a(z1)G
(1)
g b (z2)

+HH;(1)
g

(
δg a δ(1− z1)C

(2)
g b (z2) + δg b δ(1− z2)C(2)

g a (z1)
)

+HH;(2)
g

(
δg a δ(1− z1)C

(1)
g b (z2) + δg b δ(1− z2)C(1)

g a (z1)
)

+HH;(1)
g C(1)

g a (z1)C
(1)
g b (z2) +HH;(1)

g G(1)
g a(z1)G

(1)
g b (z2)

+ C(1)
g a (z1)C

(2)
g b (z2) + C(2)

g a (z1)C
(1)
g b (z2) . (2.21)

The second-order helicity-flip functions G
(2)
g a(z), the third-order collinear functions C

(3)
g a (z)

and the third-order hard-virtual coefficient H
H;(3)
g are only known in parts or not at all,

thereby presenting an obstacle to applying the qT subtraction formalism at N3LO. Nev-

ertheless, within the qT subtraction formalism, all these resummation coefficients can be

inferred for any hard scattering process whose corresponding total cross section is known

at N3LO. This point is discussed in detail in section 3.

Although the hard-virtual coefficient H
H;(3)
g is currently not known in analytical form,

parts of it can be inferred from known results in threshold resummation. This relies on the

knowledge of the general structure of HF
c (to all orders), which relates H

F ;(n)
c to the finite

part of the n-loop virtual Matrix Element [35]. To this end, we split H
H;(3)
g into two pieces,

HH;(3)
g ≡ H̃H;(3)

g +
[
HH;(3)
g

]
(δ

qT
(2)

)
, (2.22)

where H̃
H;(3)
g can be computed using the corresponding hard-virtual factor C

th(3)
gg→H [57] from

threshold resummation (in the large-mt limit) and the exponential equation that relates

– 7 –
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hard-virtual coefficients in threshold- and qT -resummation (eq. (81) of ref. [35]). We find,

H̃H;(3)
g = C3

A

(
−15649ζ3

432
− 121π2ζ3

432
+

3ζ2
3

2
+

869ζ5

144
+

215131

5184
+

16151π2

7776
− 961π4

15552

+
π6

810
+

105

32
ζ6

)
+ C2

A

(
605ζ3

72
+

55π2ζ3

36
+

737π2

432
+

167π4

432
+
π6

72

)
+ CA

(
19π2Lt

48
− 55π2ζ3

8
− π6

480
+

133π4

72
+

11399π2

864
+

63

32
ζ6

)
+N2

f

(
43CAζ3

108
− 19π4CA

3240
− 133π2CA

1944
+

2515CA
1728

− 7CF ζ3

6

+
4481CF

2592
− π4CF

3240
− 23π2CF

432

)
+Nf

(
101C2

Aζ5

72
− 97

216
π2C2

Aζ3 +
29C2

Aζ3

8
+

1849π4C2
A

38880
−

35π2C2
A

243
−

98059C2
A

5184

+
5CACF ζ5

2
+

13CACF ζ3

2
+

1

2
π2CACF ζ3 −

63991CACF
5184

+
11π4CACF

6480

− 71

216
π2CACF +

1

9
π2CALt −

5

36
π2CAζ3 −

55CAζ3

36
− 5π4CA

54
− 1409π2CA

864

− 5C2
F ζ5 +

37C2
F ζ3

12
+

19C2
F

18

)
, (2.23)

with Lt = ln(M2/m2
t ) and ζn denoting the Riemann zeta-function for integer values n

(ζ2 = π2/6, ζ3 = 1.202 . . . , ζ4 = π4/90). Note that we neglect all the third-order terms

in the exponent of eq. (81) in ref. [35], considering the entire O(α3
s ) correction (in the

exponent) as unknown. However, the full top-mass dependence of H
H;(3)
g is already fully

embodied in H̃
H;(3)
g . The currently unknown

[
H
H;(3)
g

]
(δ

qT
(2)

)
represents a single coefficient

(of soft origin) belonging to the finite part of the structure of the IR singularities contained

in the third-order virtual amplitude of the corresponding partonic subprocess gg → H.

As a consequence, the only missing ingredients to HH;(3) are the functions G
(2)
g a(z),

C
(3)
g a (z) and

[
H
H;(3)
g

]
(δ

qT
(2)

)
. The details on their numerical extraction will be discussed in

the following section.

3 The Higgs boson total cross section at N3LO

We start this section by reviewing some properties of the hard-scattering function HFcc̄←ab.
This function is resummation-scheme independent, but it depends on the specific hard-

scattering subprocess c+ c̄→ F . The coefficients HF ;(n)
cc̄←ab of the perturbative expansion in

eq. (2.9) can be determined by performing a perturbative calculation of the qT distribution

in the limit qT → 0. In the right-hand side of eq. (2.10), the function HF controls the

strict perturbative normalization of the corresponding total cross section (i.e. the integral

of the total qT distribution). This unitarity-related property can be exploited to determine

the coefficients HF ;(n)
cc̄←ab from the perturbative calculation of the inclusive cross section. In

particular, the integral of the full qT spectrum in eq. (2.5) must reproduce the inclusive
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cross section σF (tot.),

σ
F (tot.)
NnLO =

∫ ∞
0

dq2
T

dσFNnLO

dq2
T

,
dσFNnLO

dq2
T

≡
∫

dM2 dY
dσFNnLO

dq2
TdM2dY

. (3.1)

Since the hard-scattering function HFcc̄←ab is accompanied by δ(q2
T ), we evaluate the qT

spectrum on right-hand side of eq. (2.5) according to the following decomposition [2]

σ
F (tot.)
NnLO = HFNnLO ⊗ σFLO +

∫ ∞
0

dq2
T

dσ
F (fin.)
NnLO

dq2
T

, (3.2)

where dσF (fin.) is directly related to the quantity in square brackets in the right-hand side

of eq. (2.5)

dσ
F (fin.)
NnLO

dq2
T

≡

[
dσ

F+jet(s)

Nn−1LO

dq2
T

−
dσF CT

NnLO

dq2
T

]
. (3.3)

The relation in eq. (3.2) is valid order-by-order in QCD perturbation theory [2]. If

the perturbative coefficients of the fixed-order expansion of σF (tot.), HF and dσF (fin.)/dq2
T

are all known, the relation (3.2) has to be regarded as an identity, which can be explic-

itly checked. Since the fixed-order truncation of dσF (fin.)/dq2
T is free of any contribution

proportional to δ(q2
T ), its NLO contribution does not contain the coefficient HF ;(1), and so

forth. Therefore, HF ;(3) can be isolated from the N3LO term in eq. (3.2):[
σ
F (tot.)

N3LO
− σF (tot.)

N2LO

]
−
∫ ∞

0
dq2
T

[
dσ

F (fin.)

N3LO

dq2
T

−
dσ

F (fin.)

N2LO

dq2
T

]
=
(αs

π

)3
HF ;(3) ⊗ σFLO , (3.4)

where αs = αs(µ
2
R).

If all the components on the left-hand side of eq. (3.4) are known analytically (as

it was the case at NNLO in refs. [39, 40]), the function HF can be extracted exactly in

analytical form. At NLO the extraction of the function HF ;(1) is straightforward for Drell-

Yan and Higgs boson production. The function HF ;(2) at NNLO (for Higgs (F = H) boson

production [39] and Drell-Yan (F = DY ) [40]) can be obtained with a dedicated analytical

computation using the analogue of eq. (3.4) at NNLO. Since the transverse momentum

distributions for H+jet and DY+jet at NNLO are not known analytically, eq. (3.4) can be

used only numerically to compute HF ;(3).

As was elaborated on at the end of the previous section, the general structure of the

coefficient HF ;(3) is not known in analytic form for any hard-scattering process. Nonethe-

less, within the qT subtraction formalism, HF ;(3) can be reliably approximated for any

hard-scattering process whose corresponding total cross section is known at N3LO. As

identified in eqs. (2.21) and (2.22), the only missing ingredients to HF ;(3) are the functions

G
(2)
g a(z), C

(3)
g a (z) and

[
H
H;(3)
g

]
(δ

qT
(2)

)
. Their contribution to eq. (3.4) can be approximated

as follows:[
HH;(3)
g

]
δ
qT
(2)

δg a δ(1− z1) δg b δ(1− z2)

+ C(3)
g a (z1) δg b δ(1− z2) + δg a δ(1− z1)C

(3)
g b (z2) +G(2)

g a(z1)G
(1)
g b (z2) +G(1)

g a(z1)G
(2)
g b (z2)

≈ CN3 δg a δ(1− z1) δg b δ(1− z2) , (3.5)
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where the third-order coefficient CN3 embodies the numerical extraction of the hard-virtual

coefficient
[
H
H;(3)
g

]
(δ

qT
(2)

)
plus the approximation of the zi-dependent functions by a numer-

ical constant proportional to δ(1 − zi). The resulting coefficient
[
H
H;(3)
g

]
(δ

qT
(2)

)
is exact

since CN3 is proportional to δ(1− z) (or equivalently δ(1− z1)δ(1− z2)). In other words,

the approximation that is made in eq. (3.5) is related only to the functions G
(2)
g a(z) and

C
(3)
g a (z), whose functional dependence on the variable z goes beyond terms proportional to

δ(1 − z), and which involves not only gluon-to-gluon transitions (a = g), but also contri-

butions from other parton species (a = q, q̄). The latter are not explicitly distinguished

in the above approximation, which fully attributes their numerical contribution to the

gluon-induced processes.

The method outlined in eq. (3.5) to approximate the unknown terms in the hard-

virtual function HHgg←ab numerically is not new. It was first used in ref. [2] in order to

compute the second order function HH;(2)
gg←ab numerically at NNLO, providing a reasonable

estimate of the exact result to better than 1% accuracy. Notice that eq. (3.5) ensures that

one recovers the total cross section (at N3LO in this case) with no approximation. After

integration over the transverse momentum qT , eq. (3.1) provides the same total integral

(numerically in this case) as in the fully analytical case. Even more, for IR-safe observables

(at fixed order) where the back-to-back kinematical configuration (qT = 0) is located at a

single phase space point (e.g. the qT distribution, the angular separation ∆ϕγγ between

the two photons for a Higgs boson decaying into diphotons, etc.), the fixed order result is

also exact, i.e. the integral of the analytical unknown terms in eq. (3.5) (which all have

qT = 0) is located in one single point of the exclusive differential distributions.

The previous considerations about the approximation underpinning eq. (3.5) were re-

garding the total cross section or differential distributions in which the Born-like config-

urations belong to one single phase space point. In order to quantify the quality of the

approximation proposed in eq. (3.5) at the differential level when the Born differential cross

section populates the entire differential range, we perform a detailed numerical study of

the Higgs boson rapidity Y ≡ yH distribution in section 4.1 at NNLO. Anticipating these

results, we find that in the rapidity range 0 ≤ yH ≤ 4 the approximated NNLO result

differs by less than 0.2% from the exact NNLO Higgs boson rapidity distribution.

3.1 Implementation and setup of the numerical calculations

To extract the value of CN3, we first introduce the numerical tools and the calculational

setup in this section. We use the same setup for the inclusive and differential predictions

presented in sections 3.2, 4.1, 4.2 and 4.3.

We consider Higgs boson production in proton-proton collisions at a centre-of-mass

energy of
√
s = 13 TeV. In our computation, we set the Higgs boson mass to M ≡ MH =

125 GeV and the vacuum expectation value to v = 246.2 GeV. The Born process is initiated

via gluon-gluon fusion mediated through a top-quark loop, which can be integrated out

in the large-mt limit (mt → ∞). In this limit, the production of the Higgs boson is

described through an effective gluon-gluon-Higgs boson vertex [59–61]. The mass of the

top quark is taken as mt = 173.2 GeV, which enters in the contributions that have a residual
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mt dependence (e.g. eqs. (A.10) and (2.23) and effective vertex coefficient corrections at

N3LO). With the top quark loop replaced by an effective vertex, we consider a five-flavour

scheme QCD with all light quarks being massless. We use the central set of the PDF4LHC15

PDFs [62] as implemented in the LHAPDF framework [63] and the associated strong coupling

constant with αs(MZ) = 0.118. Note that we systematically employ the same order in the

PDFs (in particular the set PDF4LHC15_nnlo_mc) for the LO, NLO, NNLO and N3LO

results presented in this paper. The central factorization and renormalization scale is

chosen as µ ≡ µR = µF = MH/2. The theoretical uncertainty is estimated by varying

the default scale choice independently for µR and µF by factors of {1/2, 2} while omitting

combinations with µR/µF = 4 or 1/4, resulting in the common seven-point variation of

scale combinations.

As stated in section 3 and in ref. [1], the computation of the total cross section or

differential distributions with the qT subtraction formalism can be separated into two main

parts by inserting eq. (3.3) into eq. (3.2):

σ
F (tot.)
NnLO =

[
HFNnLO ⊗ σFLO −

∫ ∞
0

dq2
T

dσF CT
NnLO

dq2
T

]
+

∫ ∞
0

dq2
T

dσ
F+jet(s)

Nn−1LO

dq2
T

. (3.6)

The contribution dσF+jet(s) in eq. (3.6) is computed with the parton-level event generator

NNLOJET which provides the necessary infrastructure for the antenna subtraction method

up to NNLO [9–11]. Processes at NNLO with the structure of dσF+jet(s) implemented in

NNLOJET are: F = H [64], F = γ∗, Z [65, 66] and F = W± [67]. In this paper we focus

on Higgs production F = H, where the relevant matrix elements in NNLOJET are: (H + 1)-

parton production at two loops [68], (H + 2)-parton production at one loop [69–71] and

(H + 3)-parton production at tree-level [72–74]. The subtraction formalism that we are

applying to Higgs boson production could be easily extended to Z and W± production [75].

The terms in square brackets in eq. (3.6) for F = H are encoded in a new Monte Carlo

generator HN3LO [76] up to the third order in the strong coupling constant. After expanding

eq. (2.10) to this order, several non-trivial convolutions emerge and we briefly document

the corresponding formulae implemented in HN3LO in appendix B. All our results up to

the NNLO level are in full agreement with the Monte Carlo generator HNNLO [1] at the

per mille level of accuracy. On the left-hand side of eq. (3.4), the Higgs boson total cross

sections at NNLO (σ
H (tot.)
NNLO ) and N3LO (σ

H (tot.)

N3LO
) are also required. We use the analytical

coefficient function for the total Higgs boson cross section that was recently calculated in

ref. [15] and which is available within the public program ihixs 2 [77]. This program is

further used to compute any of the analytical total cross-section ingredients required to

extract the coefficient CN3.

The numerical computation of the integral of the difference dσ
F+jet(s)
NNLO − dσF CT

N3LO
in

eq. (3.3), although finite, requires the introduction of a suitable technical lower bound or

qcut
T , since both terms in this difference are logarithmically divergent at qcut

T → 0. This

technical cut introduces systematic uncertainties to both dσ
F+jet(s)
NNLO and dσCT

N3LO
. Once can-

cellations between the terms on the right-hand side of eq. (3.6) take place, the numerically

calculated total cross sections and differential distributions have to be qcut
T independent
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p p → H + X

μ = MH
μ = MH/2
μ = MH/4

Figure 1. The qT integrated finite contribution to the cross section of eq. (3.3) at N3LO-only (i.e.

N3LO−NNLO) between qcutT and ∞, for three different scales (µ = µR = µF).

(within the statistical errors) over some range of qcut
T . At the lower end of this range,

numerical instabilities in dσ
F+jet(s)
NNLO (arising from the large dynamical range in this calcu-

lation) will limit the accuracy of the result, while at the higher end of the range, missing

non-logarithmic terms in dσF CT
N3LO

will start to become significant. The numerical stability

of dσ
F+jet(s)
NNLO at small qT using NNLOJET has been systematically validated for Higgs boson

production (with qcut
T = 0.7 GeV in ref. [52]) and Drell-Yan production (with qcut

T = 2 GeV

in ref. [53]) at the LHC. In sections 3.2, 4.1, 4.2 and 4.3, we document numerical results

obtained with the qT subtraction formalism using qcut
T = (2± 1) GeV.

3.2 The numerical extraction of CN3

In the following, we describe the numerical results regarding the extraction of the CN3

coefficient and the corresponding N3LO total cross section.

In figure 1 we display the σ
H (fin.)

N3LO
at N3LO-only coefficient as a function of the qcut

T ,

i.e., the difference σ
H (fin.)

N3LO
−σH (fin.)

NNLO . The error bars denote the numerical integration errors

from NNLOJET. Since the figure displays cumulant cross sections as function of the lower

integration boundary, the central values and errors are fully correlated among the points.

Using eq. (2.21) with eq. (3.4) and the value of the resulting integral σH (fin.)(qcut
T = 1 GeV)

in figure 1, it is possible to obtain the qT -integrated cross section of the unknown terms on

the left-hand side of eq. (3.5) and consequently extract CN3.

The behaviour of σ
H (fin.)

N3LO
as a function of qcut

T is shown in figure 1 and gives an estimate

of the systematical uncertainty corresponding to the use of this technical cut which turns

out to be at the per mille level in the domain qcut
T = (2± 1) GeV for the total Higgs boson

cross section at N3LO. More specifically, variations of the qcut
T parameter from qcut

T = 1 GeV

to 3 GeV produce variations in the central value of the N3LO contribution to σH (fin.) cross
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qT
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qT
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qT
cut
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Figure 2. The numerically extracted CN3 coefficient (for three different values of qcutT ) as a function

of the combination of scales, as enumerated in table 1. The error bars for each particular CN3

point are obtained propagating the statistical uncertainties of the different terms involved in the

computation. The red band corresponds to our best estimation for CN3 obtained with the central

scale µ = MH/2 at qcutT = 1 GeV, as detailed in the text.

n
[
µ̃R, µ̃F

]
×MH CN3 (qcutT = 1 GeV) CN3 (qcutT = 2 GeV) CN3 (qcutT = 3 GeV)

(1)
[
1/2, 1/2

]
−943± 222 −967± 179 −988± 164

(2)
[
1, 1
]

−971± 207 −965± 168 −989± 151

(3)
[
1/4, 1/4

]
−883± 243 −866± 198 −850± 162

(4)
[
1/2, 1

]
−986± 222 −1021± 179 −1033± 179

(5)
[
1, 1/2

]
−990± 206 −976± 167 −968± 158

(6)
[
1/2, 1/4

]
−985± 221 −978± 181 −923± 152

(7)
[
1/4, 1/2

]
−977± 243 −859± 199 −883± 179

Table 1. Extracted values of the CN3 coefficients as a function of the qcutT as shown in figure 2 for

each scale choice. In bold typeface the CN3 coefficient (for the case qcutT =1 GeV) which constitutes

our best estimation. The uncertainty for each one of the CN3 coefficients is determined with the

customary propagations of the uncertainties. The first column is used to label each particular scale

choice used in figure 2.

section of less than 0.1% for the scales µ = MH and µ = MH/2, and variations of the

order of 0.3% for µ = MH/4. These variations are considerably smaller than the numerical

integration error at fixed qcut
T .

In table 1 and figure 2, we collect the values of CN3 extracted for all seven combinations

of scale choices and three different values of qcut
T . We note that the central value of each CN3

is independent of the scale (within the uncertainties), in complete agreement with eq. (2.21).
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N3LO [exact]
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cut
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cut
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Figure 3. Total cross section of Higgs boson production, σ
H (tot.)

N3LO
, as obtained by the qT subtraction

formalism, compared with the corresponding analytical σ
H (tot.)

N3LO
of ref. [15] (dark red dots). Green

crosses with error bar denote the qT subtraction prediction for qcutT = 1 GeV, red dots with error bar

represents σ
H (tot.)

N3LO
using qcutT = 2 GeV, and purple square dots with error bar having qcutT = 3 GeV.

Whereas the qcutT is changed (from 1 to 3 GeV) the coefficient CN3 is always fixed to be the value

extracted in figure 2 for qcutT = 1 GeV. The qT subtraction prediction at N3LO with the CN3

numerical coefficient fixed to zero (using qcutT = 1 GeV) is shown using yellow dots with error bar.

The NNLO analytical Higgs boson cross section (σ
H (tot.)

N3LO
) is represented by blue dots. All the cross

sections are shown for three different scales: µ ≡ µR = µF = {1/4, 1/2, 1}MH and horizontally

displaced for better visibility. The uncertainty bars in the qT subtraction predictions are calculated

with the customary propagation of statistical uncertainties.

This scale independence of CN3 is unrelated to the ansatz of eq. (3.5): the terms in the

right-hand side of eq. (2.21) are all scale independent and the relation between CN3 and

H̃
H;(3)
g is defined through eqs. (2.21), (2.22) and (3.5). The uncertainties shown in figure 2

are determined using conventional error propagation and are almost entirely dominated by

the size of the statistical errors of the N3LO σ
(fin.)
H cross section shown in figure 1.

Since the resulting cross sections at different scale values are statistically correlated,

we propose as our estimation for the CN3 coefficient the value obtained for qcut
T = 1 GeV at

the central scale µF = µR = MH/2, CN3 = −943±222, which is indicated in bold typeface

in table 1. The solid red central line in figure 2, and the associated red band are obtained

using this single value.

The numerically extracted CN3 coefficient allows the total cross section to be computed

at N3LO using the qT subtraction method, which serves as a closure test of the approach

and the approximations used, and allows the impact of uncertainties associated with the

numerical evaluation of the ingredients to be quantified. In figure 3 we compare the fully

analytical N3LO Higgs boson total cross section [15] (dark red dot) and our estimation

(red dot with error bar) for three central scales, using qcut
T = 2 GeV. The yellow dots

with error bar represent our best approximation without the use of the CN3 coefficient (i.e.
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σH (tot.) (pb) Exact qT subtraction

(qcutT = 1 GeV)

qT subtraction

(qcutT = 2 GeV)

qT subtraction

(qcutT = 3 GeV)

qT subtraction

(CN3 = 0)

N3LO
[
µ = MH/2

]
44.97 44.97± 0.21 44.98± 0.17 45.01± 0.15 45.86± 0.21

N3LO
[
µ = MH

]
43.50 43.51± 0.12 43.51± 0.10 43.53± 0.09 44.08± 0.12

N3LO
[
µ = MH/4

]
45.06 44.97± 0.38 44.95± 0.31 44.92± 0.28 46.44± 0.38

NNLO
[
µ = MH/2

]
43.47 43.46± 0.02 43.46± 0.02 43.46± 0.02 43.46± 0.02

NNLO
[
µ = MH

]
39.64 39.62± 0.02 39.62± 0.02 39.62± 0.02 39.62± 0.02

NNLO
[
µ = MH/4

]
47.33 47.33± 0.02 47.33± 0.02 47.33± 0.02 47.33± 0.02

Table 2. The total cross section for Higgs boson production σH (tot.) at the LHC (
√
s = 13 TeV).

Results for NNLO and N3LO cross sections for three different scales µ = MH/2 (central scale),

µ = MH and µ = MH/4. The column ‘‘Exact’’ contains the results of ref. [15] computed with the

numerical code of ref. [77] as detailed in the text. The results with the qT subtraction method are

obtained using three different values of qcutT (1,2 and 3 GeV), and their uncertainties are calculated

with the customary propagation of statistical errors. The last column shows σH (tot.) obtained with

the qT subtraction method and using CN3 = 0 at N3LO. The values of σH (tot.) reported in this

table are shown in figure 3. The NNLO cross sections computed with the qT subtraction method

are obtained using qcutT = 1 GeV, i.e. the variation of this parameter in the N3LO cross section is

considered at N3LO-only.

CN3 = 0), that can be considered as the prediction of the qT subtraction method in the case

in which the total cross section is unknown (e.g. for Drell-Yan at N3LO). The uncertainty

bars in the qT subtraction prediction correspond to the statistical errors of the numerical

computations and are mainly due to the finite contribution in eq. (3.3) at N3LO-only. The

green crosses and purple squares correspond to our N3LO prediction using qcut
T = 1 GeV

and 3 GeV respectively. Notice that the qcut
T variation is performed at N3LO-only, while the

NNLO cross section is evaluated at fixed qcut
T parameter. The NNLO cross section is also

shown in figure 3 (blue dots) in order to put the size of the N3LO corrections in relation

to the previous perturbative order. The total cross sections shown in figure 3 are reported

in table 2.

4 The rapidity distribution of the Higgs boson

In this section we use the CN3 coefficient (extracted in section 3.2) to produce differential

predictions at N3LO. In particular, we present differential results for the rapidity dis-

tribution of the Higgs boson. In section 4.1 we first estimate at NNLO the uncertainties

introduced in the rapidity distribution by the procedure proposed in eq. (3.5). In section 4.2

we present the rapidity distribution at N3LO with the estimation of the uncertainties as-

sociated to the variation of the qcut
T and CN3 parameters.

4.1 The NNLO rapidity distribution

In this section we aim to quantify the uncertainty in the approximation used in eq. (3.5).

This approximation was first proposed in ref. [2] for Higgs production at NNLO. Since all

the ingredients of the qT subtraction formalism at NNLO are known in analytical form [39],

– 15 –



J
H
E
P
0
2
(
2
0
1
9
)
0
9
6

0.998

0.999

1

1.001

1.002

1.003

0 0.5 1 1.5 2 2.5 3 3.5 4

HN3LO + NNLOJET √s‾ = 13 TeV
Ra
ti
o 
to
 
NN
LO
 
[e
xa
ct
]

yH

0

5

10

15

20

25
HN3LO + NNLOJET √s‾ = 13 TeV

μ [μR=μF] = (¼,½,1) MH

dσ
H /
dy

H 
[p
b]

p p → H + X

NNLO [exact]
NNLO [CN2, μ = MH]
NNLO [CN2, μ = MH/2]
NNLO [CN2, μ = MH/4]

HN3LO + NNLOJET √s‾ = 13 TeV

μ [μR=μF] = (¼,½,1) MH

NNLO [exact]
NNLO [CN2, μ = MH]
NNLO [CN2, μ = MH/2]
NNLO [CN2, μ = MH/4]

(a)

0.98

0.99

1

1.01

1.02

1.03

0 0.5 1 1.5 2 2.5 3 3.5 4

HN3LO + NNLOJET √s‾ = 13 TeV

Ra
ti
o 
to
 
ℋ

H;
(2

)  
[e
xa
ct
]

yH

0

0.5

1

1.5

2

2.5

3

3.5

4
HN3LO + NNLOJET √s‾ = 13 TeV

μ [μR=μF] = (¼,½,1) MH

dσ
(ℋ

H;
(2

) )
/d
y H
 
[p
b]

p p → H + X

ℋH;(2)
 [exact]

ℋH;(2)
 [CN2, μ = MH]

ℋH;(2)
 [CN2, μ = MH/2]

ℋH;(2)
 [CN2, μ = MH/4]

HN3LO + NNLOJET √s‾ = 13 TeV

μ [μR=μF] = (¼,½,1) MH

ℋH;(2)
 [exact]

ℋH;(2)
 [CN2, μ = MH]

ℋH;(2)
 [CN2, μ = MH/2]

ℋH;(2)
 [CN2, μ = MH/4]

(b)

Figure 4. Comparison of the rapidity distribution between the exact result at NNLO (blue hatched)

and an evaluation using the CN2 numerical coefficient (cross, dot and square points). We perform

the comparison both at the level of (a) the full NNLO cross section and (b) for the coefficient

function HH;(2). The lower panels show the ratio to the exact result. For this particular example

at NNLO, we employ the three-point scale variation: µ = µR = µF = {MH/4,MH/2,MH}.

it is possible to quantify the difference induced by the approximation compared to the exact

result. This analysis further allows to assess the potential impact of the approximation

that could be present at N3LO in section 4.2 and 4.3 below. For this quantitative study

we consider the collinear functions C
(1)
g a and the hard-virtual factor H

H;(1)
g in eq. (2.20)

as known. The collinear functions C
(2)
g a and the first order helicity-flip functions G

(1)
g a are

regarded as unknown. The hard-virtual factor H
H;(2)
g is divided in two contributions in

analogy to eq. (2.22)

HH;(2)
g ≡ H̃H;(2)

g +
[
HH;(2)
g

]
(δ

qT
(1)

)
, (4.1)

where
[
H
H;(2)
g

]
(δ

qT
(1)

)
is considered as unknown for the present NNLO study.

These so-called unknown functions (for this exercise) which depend on the variables

zi in eq. (2.20) are approximated with a single numerical coefficient CN2 proportional to

δ(1−z1)δ(1−z2) (the CN2 here was labeled as CN in ref. [2]) in direct analogy to eq. (3.5):[
HH;(2)
g

]
δ
qT
(1)

δg a δ(1− z1) δg b δ(1− z2)

+ C(2)
g a (z1) δg b δ(1− z2) + δg a δ(1− z1)C

(2)
g b (z2) +G(1)

g a(z1)G
(1)
g b (z2)

≈ CN2 δg a δ(1− z1) δg b δ(1− z2) . (4.2)

In figure 4(a) we show the rapidity distribution of the Higgs boson at NNLO computed

with the exact qT subtraction (blue hatched band) and the NNLO prediction using the
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CN2 coefficient (dot, cross and square points). For this particular example at NNLO, we

employ the three-point scale variation: µ = µR = µF = {MH/4,MH/2,MH}. Repeating

the analysis performed for table 1 and figure 2, we obtain: CN2 = 28 ± 1. The numerical

value of the CN2 parameter corresponds to a specific H̃
H;(2)
g hard coefficient:

H̃H;(2)
g =

11399

144
+

19

8
Lt−

1189

144
Nf+

2

3
NfLt+

83

6
π2− 5

18
π2Nf+

13

16
π4− 165

4
ζ3+

5

6
Nfζ3 ,

(4.3)

which is obtained with the same method that was used to arrive at eq. (2.23). Using this

CN2 parameter we can produce differential predictions which are obtained mimicking the

strategy that we intend to apply at N3LO.

In the lower panel of figure 4(a) we show the ratio to the exact NNLO result, i.e. we

present the ratio for each scale. As expected, the approximation presents its best behaviour

at central rapidity and the deviation from the exact results is at per mille level throughout

the considered rapidity range of |yH | ≤ 4.

The study shown in figure 4(a) validates the quality of our method for the total ra-

pidity distribution of the Higgs boson at NNLO. One could argue that a more stringent

check would involve only the quantities involved in the approximation, i.e., the rapidity

distribution of the second-order coefficient functions HH;(2).

In figure 4(b) we compare the rapidity distribution for HH;(2)
exact (defined in eq. (2.20))

with the approximated yH distribution of the coefficient HH;(2)
CN2

, defined in eq. (4.2). The

function HH;(2)
CN2

approximates the exact HH;(2)
exact within a precision of 2%, demonstrating the

accuracy of the proposed method even at the level of individual coefficients. This directly

implies that the contribution of the hard-virtual factor H
H;(2)
g is more important than the

rapidity-dependent functions G
(1)
g a(z) and C

(2)
g a (z) across the whole rapidity range.

We performed at NNLO variations of the qcut
T value between 0.1 GeV and 3 GeV, and

the NNLO cross sections (and differential distributions) present deviations within a range

of size 0.26% (the largest deviation is always observed for the scale choice µ = MH/4). We

consider qcut
T = 1 GeV enough to proceed at NNLO (and as our reference value), as we can

understand from table 2 at NNLO.

Summarizing, we have presented in this subsection a validation at NNLO of the ap-

proximation used at N3LO. We have performed two kinds of tests: i) a check over the

observable and ii) a validation at the level of the coefficients involved in the approxima-

tion. While case ii) establishes the quality of the approach regarding the approximated

particular quantities, case i) evaluates the precision of the approximation at the level of

the observable which is the decisive and strongest test.

4.2 Numerical stability of the N3LO rapidity distribution

In this section, we quantify the numerical stability (as well as the involved intrinsic un-

certainties) of the Higgs boson rapidity distribution at N3LO concerning the qcut
T and CN3

parameters and the statistical uncertainties introduced by dσH (fin.)/dyH at N3LO-only.

In figure 5 we show the rapidity distribution at N3LO obtained with the qT subtraction

method using the CN3 coefficient determined in section 3.2 (CN3 = −943±222). The NNLO
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Figure 5. Rapidity distribution of the Higgs boson as computed using the qT subtraction formalism

at N3LO. All bands include the seven-point scale variation as detailed in table 1. The red band

constitutes our result with qcutT = 2 GeV using the central value for the CN3 coefficient (CN3 =

−943). The pale yellow band is obtained as the envelope between the prediction at qcutT = 1 GeV

and 2 GeV using CN3 = −943. The black band is computed at fixed qcutT = 2 GeV taking the

two extremal values of the CN3 coefficient according to the uncertainty (CN3 = −943 ± 222), and

performing seven-point scale variation as described in the text.

prediction is always computed with qcut
T = 1 GeV. The red band in figure 5 shows the size

of the seven-point scale variation for qcut
T = 2 GeV.

The pale yellow band is calculated as the envelope of the scale variation bands for two

different values of qcut
T : 1 GeV and 2 GeV. Therefore, the pale yellow band in figure 5 can be

taken as an estimate of the uncertainty due to the variation of the qcut
T parameters at N3LO.

In figure 3 (and table 2), we observed that the total cross section (for the three central

scales) is rather stable as a function of the qcut
T value. The variations of the N3LO cross

sections were at the per mille level of accuracy if we consider qcut
T = 2±1 GeV, which is far

better than the associated statistical uncertainty (see table 2). The uncertainty estimate

due to the qcut
T variation performed in figure 5, which is differential in the Higgs-boson

rapidity, confirms the stability of the total cross section reported in table 2. The rapidity

distribution is almost insensitive to the change in the qcut
T parameter in the region where

the bulk of the cross section is concentrated (|yH | ≤ 3.6). At large rapidities (|yH | ∼ 4),

where the overall contribution to the total cross section is less than 0.5%, we found the

largest deviations. Such deviations are mainly related to the numerical uncertainties from

dσH (fin.)/dyH at N3LO-only.
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Figure 6. Rapidity distribution of the Higgs boson computed using the qT subtraction formalism

up to N3LO. The seven-point scale variation bands (as stated in table 1) of the LO, NLO, NNLO

and N3LO (CN3) results are as follows: LO (pale grey fill), NLO (green fill), NNLO (blue hatched)

and N3LO (CN3) (red cross-hatched). The central scale (µ = MH/2) at each perturbative order

(except LO) is shown with solid lines. In the lower panel, the ratio to the NNLO prediction is shown.

While the bands for the predictions at LO, NLO and NNLO are computed with the seven scales as

detailed in the text, the N3LO (CN3) band is obtained after considering also the uncertainties due

to the variation of the qcutT and the CN3 coefficient in the N3LO-only contribution.

Finally, we consider the uncertainty introduced by the statistical errors of the CN3

coefficient. The black band in figure 5 is obtained as the envelope of the seven-point scale

variation at qcut
T = 2 GeV now considering for each scale the two extremal CN3 coefficients

corresponding to its maximum and minimum statistical deviations: CN3 = {−1165,−721}.
The envelope is therefore taken from a total of 14 rapidity distributions (two extremal

predictions for each one of the seven scales). The net effect of this CN3 variation result in

an overall enlargement of the red band at qcut
T = 2 GeV. Our final uncertainty estimate in

the rapidity distribution of the Higgs boson at N3LO is computed as the envelope of three

bands: seven-point scale variation only, combined with qcut
T variation, and combined with

CN3 variation.

4.3 The rapidity distribution of the Higgs boson at N3LO

In this section we present our predictions for the Higgs boson rapidity distributions at the

LHC, applying the N3LO qT subtraction method presented in section 2. The setup of the

calculation is summarised in section 3.2.
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Figure 6 shows the rapidity distribution of the Higgs boson at LO (pale grey fill),

NLO (green fill), NNLO (blue hatched) and N3LO (red cross-hatched). The central scale

(µ = MH/2) is shown as a solid line while the bands correspond to the envelope of seven-

point scale variation. At N3LO, the band additionally includes the uncertainties due to

qcut
T and CN3 as described in section 4.2. Going from LO to NNLO, the scale µ = MH/2 is

always at the center of the respective scale variation band in figure 6. The central prediction

at N3LO, on the other hand, almost coincides with the upper edge of the band, as was

already observed for the total cross section [14, 15], see table 2 and figure 3. Figures 3

and 6 respectively show a substantial reduction in the size of the scale variation band at

N3LO both in the total cross section and in differential distributions.

In the central rapidity region of |yH | ≤ 3.6, the impact of the N3LO corrections on the

NNLO result is almost independent of yH with a flat K-factor about 1.034 for the central

scale choice. The combined theoretical uncertainty at N3LO is at most of ±5% level with

respect to the central scale choice. The uncertainty on the yH distribution is reduced by

more than a factor of 1/2 by going from NNLO to N3LO. The N3LO uncertainty band lies

fully within the scale variation band at NNLO, exhibiting a stable perturbative behaviour.

The only exception is the very high rapidity region, where the qcut
T uncertainty becomes

the dominant source for the size of the N3LO band as shown in figure 5.

The N3LO corrections to the Higgs boson rapidity distribution have been investigated

in refs. [17, 18] employing a threshold expansion. The first two leading terms in the thresh-

old expansion were computed in ref. [17], which agrees well with our calculation for the

rapidity region yH < 0.5 despite different choices of PDFs and scale-variation prescrip-

tions. Both calculations display a considerable reduction of scale uncertainties going from

NNLO to N3LO in this central rapidity region. For the rapidity region yH > 1, however,

larger differences are observed between the two calculations, where the results using the qT
subtraction formalism generally yield smaller N3LO corrections (within the NNLO scale

uncertainty band). Most recently, the calculation of the threshold expansion including the

first six terms was completed in ref. [18], which exhibits a stabilisation of the perturbative

series together with a reduction of scale uncertainties. Comparing figure 6 with the results

obtained in ref. [18], we observe very good agreement between the two calculations.

5 Conclusions and outlook

In this paper we have performed a detailed study of Higgs boson production at the LHC

using the qT subtraction formalism at N3LO. We systematically describe the qT subtraction

formalism for a generic colourless and massive system F ({qi}) produced at hadron colliders.

Fully differential cross sections for this type of final state system are separated into δ(qT )

and qT 6= 0 contributions. The contribution for qT 6= 0 is calculated, using a phase space

cut-off qcut
T , as the difference between F ({qi}) + jet(s) production and qT counterterms.

Specifically, we use the NNLOJET package to compute NNLO Higgs-plus-jet production and

expand the Sudakov from factor in the hard resummation scheme to the matching order

for the corresponding qT counterterms. The contribution at δ(q2
T ) is further factorized

into convolutions of the Sudakov form factor, the hard-virtual function, the helicity-flip
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coefficient function, the hard-collinear coefficient function as well as the PDFs (section 2).

The factorization guarantees that all the process-dependent contributions proportional to

a form factor are included in the hard-virtual function, which depends on both initial- and

final-state particles. All other factorized contributions only depend on the initial states.

Some of the factorized ingredients contributing at δ(q2
T ) are not known analytically at

N3LO for the moment. We collect all analytically available contributions and approximate

the unknown pieces by a constant coefficient CN3 which is scale- and process-independent

(section 3). Using the available inclusive total cross section for N3LO Higgs production

and the known pieces from the qT subtraction formalism, we numerically extract the value

of CN3. By comparing the numerical values for CN3 using different scales and qcut
T setups

in the extraction, we conclude from mutually consistent results that CN3 is independent of

the scale choice with a value obtained for µ = MH/2 and qcut
T = 1 GeV of CN3 = −943±222

(section 3.2).

As a proof-of-concept implementation of the qT subtraction method at N3LO, we

calculate the total cross section and rapidity distributions for Higgs boson production at

LHC using a new Monte Carlo generator HN3LO [76]. Using the extracted value of CN3, we

perform a closure test for the inclusive total cross section for three different scale choices

and find excellent agreement with the exact results (from ihixs 2 [77]) at the 0.2% level.

For the differential rapidity distribution of the Higgs boson, we first study the systematic

error from the CN3 approximation by considering the NNLO calculation and introducing an

approximate CN2. The NNLO yH distribution exhibit per-mille level agreement between

the CN2 approximation and the exact result, supporting the reliability of the procedure.

We calculate the yH distribution at N3LO employing a seven-point scale variation and

carefully assess systematic errors arising form different qcut
T and CN3 values. Compared to

the NNLO yH distributions, we observe a large reduction of theory uncertainties by more

than 50% at N3LO. The scale variation band at N3LO stays within the NNLO band with a

flat K-factor of about 1.034 in the central rapidity region (|yH | ≤ 3.6). Both the systematic

error analysis and the phenomenological predictions confirm that our calculations at N3LO

using qT subtraction formalism are well under control. The approximation related to

the CN3 coefficient in our approach can be easily replaced by the full analytical results

once available.

With the upcoming larger data set and more accurate measurements of Higgs proper-

ties at the LHC, we prepare precise theoretical tools that could match the frontier accuracy

of experimental results. More differential properties at N3LO involving the Higgs boson

and its decay products can be studied using the same framework established in this paper.

The current N3LO calculation, using the approximation of large top quark mass, attains a

level of precision that several other contributions will need to be taken into account for a

full study of precision phenomenology [78]: finite top quark mass effects, heavy-light quark

interference contributions and electroweak corrections.
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A Fixed-order expressions

The precise identification of the Sudakov form factor Sc, the hard-virtual function HF=H
g

and the hard-collinear coefficient functions, Cg a and Gg a is not unique, and the resumma-

tion formula (2.10) is invariant under “resummation scheme” transformations [32]:

HF
c (αs)→ HF

c (αs) [h(αs) ]−1 ,

Bc(αs)→ Bc(αs)− β(αs)
d lnh(αs)

d lnαs
,

Cab(αs, z)→ Cab(αs, z) [h(αs) ]1/2 ,

Gab(αs, z)→ Gab(αs, z) [h(αs) ]1/2 . (A.1)

This invariance can easily be proven by using the following renormalization-group identity:

h(αs(b
2
0/b

2)) = h(αs(M
2)) exp

{
−
∫ M2

b20/b
2

dq2

q2
β(αs(q

2))
d lnh(αs(q

2))

d lnαs(q2)

}
, (A.2)

which is valid for any perturbative function h(αs). Notice that eq. (A.2) establishes the

evolution of the perturbative functions from the scale q2 = b20/b
2 to q2 = M2. The QCD

β-function and its corresponding n-th order coefficient βn are defined as

d lnαs(µ
2)

d lnµ2
= β(αs(µ

2)) = −
+∞∑
n=0

βn

(αs

π

)n+1
. (A.3)

The explicit expression of the first three coefficients [36, 37], β0, β1 and β2 read

β0 =
1

12
(11CA−2Nf ) , β1 =

1

24

(
17C2

A−5CANf−3CFNf

)
,

β2 =
1

64

(
2857

54
C3
A−

1415

54
C2
ANf−

205

18
CACFNf+C2

FNf+
79

54
CAN

2
f +

11

9
CFN

2
f

)
, (A.4)

where Nf is the number of massless QCD flavours and the SU(Nc) colour factors are

CA = Nc and CF = (N2
c − 1)/(2Nc).

Throughout this paper we always use the hard resummation scheme [35] to report

explicit expressions for the perturbative expansion of these individual coefficients. The

hard resummation scheme states that all the contributions proportional to δ(1 − z) are

associated with the hard-virtual functions HF
c . This directly implies that HF

c is process

dependent. The collinear Cab and Gab functions and the resummation coefficients Ac and

Bc are independent of the final state system F .
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The truncation of eq. (2.10) at a given fixed order requires the explicit knowledge of

resummation coefficients and hard collinear coefficient functions. For F = H at NLO,

the knowledge of the coefficients A
(1)
g , B

(1)
g , C

(1)
ga (a = q, q̄, g) and H

H;(1)
g are sufficient to

compute the inclusive total cross section and differential distributions. Assuming that the

Higgs boson couples to a single heavy quark of mass mQ, the first-order coefficient H
H;(1)
g

in the hard resummation scheme is [35]

HH;(1)
g = CAπ

2/2 + cH(mQ) . (A.5)

The function cH(mQ), which depends on the NLO virtual corrections of the Born subpro-

cess, is given in eq. (B.2) of ref. [54]. In the limit mQ →∞, the function cH becomes

cH(mQ) −→ 5CA − 3CF
2

. (A.6)

Therefore, the complete set of coefficients necessary to compute Higgs boson production (in

the limit in which the mass of the top quark Q = t is larger than any other scale involved

in the process) at NLO are

A(1)
g = CA , B(1)

g = −1

6
(11CA − 2Nf ) , HH;(1)

g =
1

2
(CA(π2 + 5)− 3CF ) ,

C(1)
gg (z) = 0 , C(1)

ga (z) =
1

2
CF z [a = q, q̄] . (A.7)

The coefficients A
(1)
g and B

(1)
g are process and resummation scheme independent. The

collinear functions C
(1)
ga (a = q, q̄, g) are process independent, while H

H;(1)
g depends on the

final-state system (F = H). Together, they depend on the resummation scheme in such

a way to ensure the resummation scheme independence of eq. (2.10) at NLO. In ref. [38]

was shown that the NLO hard-virtual coefficient H
F ;(1)
c is explicitly related to dσ̂FLO and

to the IR finite part of the NLO virtual correction to the Born cross section.

At NNLO, the coefficients A
(2)
g and B

(2)
g are needed [2, 35, 38],

A(2)
g =

1

2
CA

[(
67

18
− π2

6

)
CA −

5

9
Nf

]
, B(2)

g =
γ

(1)
g

16
+ β0CA ζ2 , (A.8)

where γ
(1)
g is the coefficient of the δ(1−z) term in the NLO gluon splitting function [44, 45],

which reads

γ(1)
g =

(
−64

3
− 24ζ3

)
C2
A +

16

3
CANf + 4CFNf . (A.9)

The coefficient A
(2)
g does not depend on the resummation scheme whereas B

(2)
g in eq. (A.8)

is valid in the hard resummation scheme and both coefficients are process independent.

The general structure of the hard-virtual coefficients HF
c has been established in

ref. [35]. Although HF
c is in principle process dependent, ref. [35] showed it can be di-

rectly related in a universal way to the IR finite part of the all-order virtual amplitude

of the corresponding partonic subprocess cc̄ → F . The relationship between HF
c and the

all-order virtual correction to the partonic subprocess cc̄ → F has been made explicit up
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to NNLO and is based on the definition of universal subtraction operators that cancel the

IR divergences of the two-loop (NNLO) virtual corrections to the Born cross section [47].

These universal second-order operators contain an IR finite term of soft origin (δ
(1)
qT ) that

only depends on the initial-state partons [35].

In the case of Higgs boson production, the hard-virtual factor H
F=H;(2)
g in the large-mt

limit (in the hard resummation scheme) is given by [39]

HH;(2)
g = C2

A

(
3187

288
+

7

8
Lt +

157

72
π2 +

13

144
π4 − 55

18
ζ3

)
+ CACF

(
−145

24
− 11

8
Lt −

3

4
π2

)
+

9

4
C2
F −

5

96
CA −

1

12
CF − CANf

(
287

144
+

5

36
π2 +

4

9
ζ3

)
+ CF Nf

(
−41

24
+

1

2
Lt + ζ3

)
, (A.10)

where Lt = ln(M2/m2
t ). The two-loop scattering amplitude [46] used in the computation

of H
F=H;(2)
g includes corrections to the large-mt approximation.

Due to the large size of the expressions for C
(2)
ab (z), we refrain from explicitly quoting

them here and instead refer to eqs. (37)–(40) of ref. [35] using the full results of refs. [39, 40].

These collinear coefficients C
(2)
ab have been independently computed in refs. [41–43].

At NNLO, in eq. (2.13) the first order G
(1)
ga helicity-flip functions are required which

read [34]

G(1)
g a(z) = Ca

1− z
z

a = q, q̄, g , (A.11)

where Cq;q̄ = CF and Cg = CA. The first-order functions G
(1)
ga are resummation-scheme

independent and do not depend on the final-state system F .

At N3LO, the numerical implementation of eq. (2.10) requires the following ingredients:

A
(3)
g , B

(3)
g , C

(3)
ga , G

(2)
ga (a = q, q̄, g) and H

H;(3)
g . The coefficient A

(3)
g [58] reads

A(3)
g = C3

A

(
245

96
− 67

36
ζ2 +

11

24
ζ3 +

11

20
ζ2

2

)
+ CACFNf

(
−55

96
+

1

2
ζ3

)
− CAN2

f

1

108

+ C2
ANf

(
−209

432
+

5

18
ζ2 −

7

12
ζ3

)
+ β0C

2
A

(
101

27
− 7

2
ζ3

)
− β0CANf

14

27
. (A.12)

The explicit expression of the B
(3)
c (a = q, g) coefficients in the hard scheme can be com-

puted from refs. [55, 56]. In the particular case of the gluon channel then in the hard

resummation scheme, we obtain

B(3)
g = −2133

64
+

3029

576
Nf −

349

1728
N2
f +

109

6
π2 − 283

144
π2Nf +

5

108
π2N2

f −
253

160
π4

+
23

240
π4Nf −

843

8
ζ3 + 2ζ3Nf +

1

6
ζ3N

2
f +

9

4
π2ζ3 +

135

2
ζ5 . (A.13)

B Convolutions at N3LO

The numerical implementation of eq. (2.10) requires the computation of several convolu-

tions between splitting functions, collinear and helicity-flip functions. In principle, taking

– 24 –



J
H
E
P
0
2
(
2
0
1
9
)
0
9
6

(i) γ
(1)
ga ⊗ γ(1)

ab ⊗ γ
(1)
bg (ii) γ

(1)
ga ⊗ γ(1)

ab ⊗ γ
(1)
bq

(iii) γ
(1)
ga ⊗ γ(2)

ag (iv) γ
(1)
ga ⊗ γ(2)

aq

(v) γ
(2)
ga ⊗ γ(1)

ag (vi) γ
(2)
ga ⊗ γ(1)

aq

(vii) C
(1)
ga ⊗ γ(2)

ag (viii) C
(1)
ga ⊗ γ(2)

aq

(ix) C
(2)
ga ⊗ γ(1)

ag (x) C
(2)
ga ⊗ γ(1)

aq

(xi) G
(1)
ga ⊗ γ(1)

ag (xii) G
(1)
ga ⊗ γ(1)

aq

Table 3. Convolutions appearing at the N3LO-only between the collinear C
(n)
ab , the helicity-flip

G
(n)
ab and the splitting functions γ

(n)
ab (n = 1, 2). The repeated subindices a and b imply a sum

over the parton flavors q, q̄, g. The first and last subindices denote the partonic channel in which

they are contributing, i.e. the convolutions in the first column are used in the gg partonic channel

whereas the second (and last) column is for the qg and gq partonic channels.

the N -moments of the functions involved in the calculation, one can avoid the use of con-

volutions, since in N -space they correspond to simple products. However, the numerical

implementation of eq. (2.10) in the Monte Carlo code HN3LO was carried out in the z-space

(e.g. as in the codes HNNLO [1], DYNNLO [79], 2γNNLO [80], etc.), and therefore the new third

order convolutions have to be calculated as well.

The convolutions in eqs. (2.20), (2.21), (3.5) and (4.2) between two functions (f(z)

and g(z)) of the variable z are defined through the following integral

(f ⊗ g) (z) ≡
∫ 1

z

dy

y
f

(
z

y

)
g(y) . (B.1)

In the case of processes initiated by gluon fusion, the complete list of third order convolu-

tions to be calculated can be found in table 3. All the remaining convolutions in eq. (2.10)

at N3LO already contributed to the previous orders and they are regarded as known.

The symbol γ
(n)
ab in table 3 denotes the usual splitting functions of n-th order and

they contribute to eq. (2.10)) since the PDFs have to be evolved from the scale b20/b
2 to

the factorization scale µF. The first three rows in eq. (3) were calculated in ref. [82] and

cross-checked with a dedicated computation for the results presented in this paper. The

public Mathematica package MT [81] is used to calculate the necessary convolutions (i)–(vi)

in ref. [82], which can be further expressed in terms of harmonic polylogarithms (HPLs) [85]

using the Mathematica package HPL [84]. The remaining convolutions in eqs. (vii)–(xii)

of table 3 were computed for this work. The MT [81] package is not able to solve all the

convolutions of weight 3 and 4 that are needed in (vii)–(xii). For instance, the MT package

cannot handle convolutions in which their result has to be expressed in terms of multiple

polylogarithms (or Goncharov polylogarithms GPLs) [83, 86, 87] as it is the case when

the collinear functions C
(2)
gj are involved. For those, we have computed the convolutions

(vii)–(xii) with a newly developed code Convo, which is able to provide results in terms of

GPLs and also can handle terms that are individually divergent, but finite after addition.
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(a) G( z
1+z , 0, 0, 1; 1

2) (b) G(1, 0, 0,−z; z) (c) G(0, 1, 0,−1; z)

(d) G(0, 1, 0, z; 1) (e) G(0, 1, z, 0; 1) (f) G(0, z, 1, 0; 1)

(g) G(−z, 0, z, 0; 1) (h) G(0, 1, 0,−z; z) (i) G(0, 1,−z,−z; z)

(j) G(−z, 1, 0, 0; 1) (k) G(−z, 1, 0, 0; z) (l) G(−z, 0, 0, z; 1)

Table 4. Basis for the GPLs used in the numerical implementation of the convolutions listed in

table 3.

The multiple polylogarithms can be defined recursively, for n ≥ 0, via the iterated

integral [83, 86, 87]

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) , (B.2)

with G(z) = G(; z) = 1 (an exception being when z = 0 in which case we put G(0) = 0)

and with ai ∈ C are chosen constants and z is a complex variable. For the convolutions in

table 3 the variable z and the weights a1, . . . , an are all real constants.

From the convolutions in table 3 we quote some examples which appear as building

blocks in the computation of eqs. (vii)–(xii),{
D0[1− y];

1

y
; 1; y; y2

}
⊗
(
f(y)

1 + y

)
, (B.3)

with

f(y) =

{
Li3

(
1

1 + y

)
; Li3(±y);Li2(±y); Li2(1− y); Li2(±y) ln(y);

ln2(1 + y) ln(y); ln(1 + y) ln2(y)

}
, (B.4)

where the plus distribution D0[1− z] is defined as usual∫ 1

0
dz f(z) D0[1− z] =

∫ 1

0
dz

f(z)

(1− z)+
=

∫ 1

0

dz

1− z
(f(z)− f(1)) . (B.5)

After performing all the convolutions listed in table 3, their final expressions (each one of

the convolutions) are finite in the domain z ∈ (0, 1). Even more, convolutions evaluated

in the domain z ∈ (0, 1) produce results in R. It is possible to write the expressions in

table 3 (after simplifying) in terms of twelve GPLs that are not reducible to polylogarithmic

functions of type Lin(z), and cannot be combined (e.g. through the shuffle algebra) with

other GPLs in order to produce simpler results. The list of the irreducible GPLs is presented

in table 4. All remaining GPLs appearing in the convolutions of table 3 can be related to

the set given in table 4 using the results of refs. [84, 88, 89] and performing the customary

shuffle algebra. The numerical implementation of the GPLs in table 4 was made using

the package GiNaC [90, 91]. The basis of GPLs in table 4 is not unique, but sufficient for

numerical evaluation.
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An example of a third order convolution is the following integral(
Li3(y)

1+y
⊗D0[1−y]

)
(z) =

∫ 1

z

dy

y+z
Li3

(
z

y

)
1

(1−y)+
(B.6)

=
1

1+z

(
−ζ3G(0;z)+

iπ3

6
G(0;z)+

π2

3
G(−z;1)G(0;z)−iπG(−z,0;1)G(0;z)

−G(−z,0,0;1)G(0;z)+
iπζ3

4
+
π2

3
G(0,1;z)+iπG(−z;1)G(0,0;z)−π

2

6
G(0,0;z)

−G(−z;1)G(0,0,0;z)+iπG(0,0,1;z)+G(0,0;z)G(−z,0;1)−π
2

3
G(−z,0;1)

+iπG(−z,0,0;1)−G(0,0,0,1;z)−G(0,0,1,z;1)−G(0,0,z,1;1)−G(0,1,0,z;1)

−G(1,0,0,z;z)+G(−z,0,0,0;1)−G(−z,0,0,z;1)+G(−z,0,0,z;z)+
19π4

720

)
.
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