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Abstract

We discuss the connection between Weyl2 supergravity and superstrings and further discuss

holography between 4-dimensional, N = 4 superconformal Weyl2 supergravity and N = 8,

higher spin-four theory on AdS5. TheWeyl2 plus Einstein supergravity theory is a special kind of

a bimetric gravity theory and consists of a massless graviton multiplet plus an additional massive

spin-two supermultiplet. Here, we argue that the additional spin-two field and its superpartners

originate from massive excitations in the open string sector; just like the N = 4 super Yang-Mills

gauge fields, they are localized on the world volume of D3-branes. The ghost structure of the

Weyl action should be considered as an artifact of the truncation of the infinitely many higher

derivative terms underlying the massive spin 2 action. In field theory, N = 4 Weyl2 supergravity

exhibits superconformal invariance in the limit of vanishing Planck mass. In string theory

the additional spin-two fields become massless in the tensionless limit. Therefore low string

scale scenarios with large extra dimensions provide (almost) superconformal field theories with

almost massless open string spin-two fields. The full N = 4 scalar potential including the Yang-

Mills matter multiplets is presented and the supersymmetric vacua of Einstein Supergravity are

shown, as expected, to be vacua of massive Weyl supergravity. Other vacua are expected to exist

which are not vacua of Einstein supergravity. Finally, we identify certain spin-four operators

on the 4-dimensional boundary theory that could be the holographic duals of spin-four fields in

the bulk.
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1 Introduction

It is well known that the effective action of string theory is given in terms Einstein gravity, coupled

to matter fields plus in finite series of higher derivative terms, which in particular contain an infinite

series of higher curvature terms, which are suppressed by appropriate powers of the string scale

Ms = (α′)−1. In the so-called field theory limit of sending α′ → 0, all higher string modes decouple

and all higher derivative interactions disappear, and the effective theory is just given by the Einstein-

Yang-Mills-theory. Particular string examples of those theories are brane-world models, where the

Yang-Mills degrees of freedom are localized on the world-volumes of stack of D-branes, and where

the gravitational fields, namely the metric field gµν and its partners, correspond to closed strings,

which propagate within the entire ten-dimensional bulk space. Here will will consider the simplest

case, namely a stack of N D3-branes, i.e. the open string Yang-Mills sector is confined on the 4D

world-volume of the D3-branes.

Now, when considering also higher curvature terms up to four derivatives [1–8], it is again well

known that the R2 action and the so-called Weyl2 action propagate additional degrees of freedom:

for R2 there is an additional scalar mode and for Weyl2 there exist an additional spin two field,

denoted by wµν . In this paper we will discuss the physics connected to the Weyl2 action and to

spin-two field wµν and in particular the question how do they arise in string theory. Since the

theory contains two spin-two metric fields, namely gµν and wµν , it is a particular example of a

bimetric gravity theory [9]. As we will discuss the second spin-two mode wµν is not contained

in standard closed string gravitational sector, but it corresponds to the first massive open string

excitations, namely to the massive excitations of the open string Yang-Mills gauge fields. Therefore

these massive fields wµν are also localized on the world volume of D3-branes, and the effective Weyl2

is an entirely four-dimensional action on the world-volume of the D3-branes. As we will discuss,

performing a particular scaling limit, the closed string gravitational modes decouple, and one is

left with an effective 4D theory of only open string modes, namely massless N = 4 super Yang-

Mills gauge theory plus (almost) massless N = 4 super-Weyl2 theory, whose spectrum was recently

constructed in [10]. Hence in this limit the theory becomes (almost) superconformal invariant. Note

that superconformal Weyl2 gravity [11–14], only exists for numbers of supersymmetries N ≤ 4, just

like superconformal Yang-Mills gauge theories also only exist for N ≤ 4 [15]. This fact confirms our

observation that Weyl2 gravity is not originating entirely from closed strings, but is an effective open

string theory, localized on D3-branes.

These theories are also of phenomenological interest, namely in the context of the low string scale

scenario together with large extra dimensions, which allows for unique predictions for the production

of the massive open string excitations at particle physics collider machines [16]. Namely, following

the discussion of this paper, the low string scale scenario with light, open string spin-two excitations

is a (almost) superconformally invariant field theory.

As we will argue in the last part of the paper, the 4D (almost) super-conformal invariant Weyl

supergravity theory allows for an holographic description in terms of closed string modes in an AdS5
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bulk theory. In contrast to the standard AdS/CFT correspondence between massless open string

Yang-Mills gauge theory in the 4D boundary and supergravity in the 5D bulk, the holographic

description of the (almost) massless spin-two fields on the boundary is given by (almost) massless

spin-four fields in the higher-dimensional bulk.

The structure of the paper is as follows: In section 2 we describe Weyl supergravity coupled to

super Yang-Mills theory. In section 3, we present a string theory realization of the theory and in

section 4 we present some of its holographic aspects. Finally, section 5 contains our conclusions.

2 Field theory: (Super)-Yang-Mills plus (Super)-Weyl gravity

2.1 Bosonic case

The most general formulation of Einstein plus curvature-square gravity is described by an action con-

taining the standard Einstein term plus the following two terms being second order in the curvature

tensor1:

S =

∫

M

d4x
√−g

(
M2

PR + c1WµνρσW
µνρσ + c2R

2
)
. (2.1)

More details can be e.g. found in [17, 18]. The first term with Wµνρσ being the Weyl tensor

Wµνρσ = Rµνρσ + gµ[σRρ]ν + gν[ρRσ]µ +
R

3
gµ[ρgσ]ν (2.2)

is conformally invariant, whereas the R2 term is only scale invariant. Indeed, the conformal trans-

formation

gµν → ĝµν = Ω2gµν , (2.3)

leaves the Weyl tensor inert

Ŵ µ
νρσ =W µ

νρσ, (2.4)

whereas the curvature scalar transforms as

R̂ = Ω−2R− 6Ω−3gµν∇µ∇νΩ. (2.5)

The two couplings ci in (2.1) are dimensionless. As discussed in [17], the R2 action only propagates a

scalar mode in flat four-dimensional space-time R1,3. Since we are in particular interested in spin-two

fields and not to the additional scalar mode in the string spectrum, the R2 action is not relevant

for us, and we will set the coupling c2 = 0. However, the action (2.1) with c2 = 0 is not conformal

invariant since the Einstein-term is not invariant under conformal transformations. Therefore the

1There are two more linear combination of quadratic curvature terms, namely the Gauss-Bonnet and the Hirze-

bruch–Pontryagin action. However in four-dimensions these are total derivatives and hence we neglect them in the

following. Similar considerations exist also in the supersymmetric case [19, 20].
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Einstein-term can be regarded as the mass term in this theory, i.e. a mass deformation, which

explicitly breaks conformal invariance.

The propagator of the Einstein-Weyl2 theory [1] described by

S =

∫

M

d4x
√−g

(
M2

PR +
1

2g2W
WµνρσW

µνρσ
)
, (2.6)

is given by the following expression

∆µνρσ = ∆(k)Pµνρσ, (2.7)

where

∆(k) =
g2W

k2(k2 − g2WM
2
P )
, (2.8)

and

Pµνρσ =
1

2

(
θµρθνσ + θµσθνρ

)
− 1

3
θµνθρσ , (2.9)

with

θµν = ηµν −
kµkν
k2

(2.10)

the usual transverse vector projection operator. Note that the propagator (2.7) for M2
P = 0 (i.e.,

pure Weyl2 theory) exhibits the conformal 1/k4 behaviour. When the Einstein terms is present, we

can equivalently write ∆(k) as

∆(k) = − 1

M2
P

1

k2
+

1

M2
P

1

k2 − g2WM
2
P

, (2.11)

where the massless helicity-±2 graviton is easily identified in the first term of (2.53). Moreover,

we see that there is also a massive spin-2 state (the second term in (2.53)) with mass given by the

pole at k2 = g2WM
2
P which however has opposite residue to the usual massles graviton, and therefore

describes a ghost spin-2 state. This shows that the theory contains as propagating degrees the

standard, massless spin-two graviton gµν plus an additional massive spin-two field wµν .

Actually, an alternative way to see this is to write down a particular bimetric gravity theory with

two spin-two fields gµν and wµν with the following two-derivative action [21]:

S =

∫

M

d4x
√−g

(
M2

PR(g) + 2MPGµν(g)w
µν −M2

W (wµνwµν − aw2)
)
. (2.12)

Here Gµν = Rµν−1/2Rgµν is the Einstein-tensor constructed from the metric gµν and the last term is

a mass term for the second metric wµν . In general the action propagates also a massive scalar mode.

However setting the parameter a = 1, the scalar mode disappears and the action contains a massless

spin-two field gµν plus a massive spin-two field wµν . Note that the two-derivative kinetic term for

wµν is hidden in the coupling Gµν(g)w
µν, which can be seen by performing two partial integrations
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on this term. However after the partial integrations the kinetic term for wµν has the wrong sign, i.e.

wµν is a ghost-like field. Now using the equation of motion

δS

δwµν
⇒ wµν =

MP

M2
W

(
Rµν(g)−

1

6
gµνR

)
, (2.13)

and plugging the solution for wµν back into the action (2.12), one can show [22] that the resulting

action is (classically) equivalent to the four-derivative W 2 action in eq.(2.6) by using the fact that

WµνρσW
µνρσ = GB + 2(RµνR

µν − 1

3
R2), (2.14)

where GB = RµνρσR
µνρσ − 4RµνR

µν + R2 is the Gauss-Bonnet term. The bimetric gravity action

(2.12) for wµν can be made ghost-free by adding an infinite number of terms with a finite number of

parameters to it. As shown [22], this procedure is equivalent to adding to the W 2 action an infinite

number of higher derivative terms, which resemble to additional parameters of the ghost-free bimetric

gravity theory. In other words, the ghost nature of the massive spin-2 excitation is an artifact of the

higher derivative truncation to fourth order. En passant, let us mention theat for a 6= 1, the action

(2.12) is (classically) equivalent to the action (2.1) with

c1 =
1

2g2W
, c2 =

a− 1

4a− 1

1

3g2W
. (2.15)

Therefore, only for a = 1 the scalar mode associated to the R2 term is absent.

2.2 Supersymmetric case

The above method can also be implemented in a supersymmetric setup [19]. For this, we need to

recall that the graviton hµν sits in a real vector superfield Φµ with expansion (in Wess-Zumino gauge)

Φµ = θσνθ(hµν + Aµν) +
1

2
θ
2
θ2Aµ + · · · , (2.16)

where Aµν and Aµ are the antisymmetric two-form and one-form fields of new-minimal supergravity,

respectively. We can then define the real linear superfield Eµ as

Eµ =
1

2
ǫµνρσDσνD∂ρΦσ, (2.17)

which contains the Einstein term

Eµ = θσνθ(G
µν + ∂λF

λνµ +
1

2
ǫνµρσFρσ) + · · · , (2.18)

with Fµνρ = ∂µAνρ+ ∂ρAµν + ∂νAρµ and Fµν = ∂µAν − ∂νAµ the field strengths of the auxiliaries Aµν

and Aµ, respectively. We need also to define the Riemann multiplet Rµν with components expansion

Rµν =
1

2
ψµν +

i

2
θ2σρ∂ρψµν −

i

2
θFµν −

i

4
σκλθ(Rκλµν + ∂νFµκλ − ∂µFνκλ). (2.19)

The Weyl tensor Wµνρσ is contained then in the Weyl multiplet Wµν defined as

Wµν =
1

8

(
σκλσµν +

1

3
σµνσ

κλ

)
Rκλ, (2.20)
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as can be seen from its components expansion

Wµν =
1

16

(
σκλσµν +

1

3
σµνσ

κλ

)
ψκλ − iσκλθWκλµν + · · · . (2.21)

In terms of the real vector superfield Φµ, the Riemann and Weyl multiplets can be written (in spinor

notation),

Rµνα = −1

8
D

2
Dα (∂µΦν − ∂νΦµ) , Wαβγ =

1

16
D

2
D(α∂

α̇
βΦγ)α̇. (2.22)

The action (2.1) (with c2 = 0) is contained in the bosonic part of the supersymmetric Lagrangian

(with MP = 1 here)

L =

∫
d4θΦµE

µ + 8c1Re

∫
d2θWµνW

µν . (2.23)

The first term contains the Einstein term and the second the Weyl2. A supersymmetric generalization

of (2.14) exists and it is written as

WµνW
µν = SGB − 1

8
D

2
(EµE

µ) +
1

3
W 2, (2.24)

where

W =
1

2
σµDEµ (2.25)

and SBG is the supersymmetric counterpart of the usual Gauss-Bonnet term and it is such that

in the real and imaginary parts of its highest θ2 component are the Hirzebruch-Pontryagin and

Gauss-Bonnet terms, respectively. We may then write (2.24) as

L =

∫
d4θ (ΦµE

µ − 4c1EµE
µ) +

8

3
c1Re

∫
d2θW 2. (2.26)

We may linearize in Eµ and W the above Lagrangian by introducing a real vector superfield Vµ and

a superfield H so that

L =

∫
d4θ

(
ΦµE

µ + 2VµE
µ +

1

4c1
VµV

µ

)
− Re

∫
d2θ

(
2WD

2
H +

3

8c1
(D

2
H)2

)
. (2.27)

Then, after performing first the shift Φµ → Φµ − Vµ and after the conformal transformation Φµ →
Φµ +DσµH +DσµH, we get that the supersymmetric action (2.26) is classically equivalent to

L =

∫
d4θΦµE

µ −
∫
d2θ

(
VµE

µ − 1

4c1
VµV

µ +
3

8
L2

)

−Re

∫
d2θ

(
2WD

2
H +

3

8c1
(D

2
H)2

)
, (2.28)

where L = DD
2
H − DD2H [19]. From the above Lagrangian we see that the first term in the

first line describes a physical massless (2, 3
2
) graviton multiplet (Φµ), whereas the second term in

the first line describes a massive (2, 3
2
, 3
2
, 1) multiplet (Vµ) with mass square m2 = 1/4c1 [23]. The

latter multiplet is not physical as its Lagrangian term opposite sign from the massless multiplet and

therefore it is a ghost massive spin-2 multiplet.
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2.3 Including Gauge Fields

Now, we will also include a four-dimensional bosonic Yang-Mills U(N) gauge theory, which is coupled

to Einstein gravity. Then the action up to four orders in derivatives has the following form:

S =

∫
d4x

√−g
(
− 1

4g2YM
F a
µνF

aµν +
1

2g2W
WµνρσW

µνρσ +M2
PR

)
. (2.29)

F a
µν is the standard Yang-Mills field strength and g2W and g2YM are dimensionless couplings. The

Yang-Mills term and the Weyl2-term in the action possess (classical) conformal invariance, whereas

again the Einstein-term can be regarded as the mass term in this theory.

Let us recall the propagating modes corresponding to this action. Specifically, there are three

kinds of propagating modes [1, 23–25]:

(i) A massless helicity-±2 graviton gµν . This is the standard massless spin-two graviton.

(ii) Massless U(N) gauge bosons Aaµ.

(iii) A massive spin-two particle wµν with mass

MW = gWMP . (2.30)

It is related to the Weyl2 term in the action. In fact as mentioned, this massive spin two particle is

a ghost, destroying unitarity, but we will neglect this problem in the following and we will comment

on it only in the conclusions. We will call this part of the spectrum the non-standard sector of the

theory.

The Einstein plus (Weyl)2 gravity theory contains seven propagating degrees of freedom. As already

explained, this part of the theory can be considered as a bimetric theory of gravity with two spin-two

fields, namely one the standard massless graviton gµν plus the non-standard massive spin-two field

wµν . As we will discuss in the following, in string theory the graviton gµν originates from the closed

string sector and lives in the bulk space, whereas the spin-two field wµν as well as the Yang-Mills

gauge bosons Aaµ come from the open string sector and will be localized on the world-volume of a

stack of D3-branes.

In the following we will consider the following three limits. Later we will see how these limits are

realized in string theory.

(A) Decoupling of gravity, i.e. Yang-Mills limit

First we consider the infinite mass limit

MP → ∞ . (2.31)

In this limit gravity becomes non-dynamical and decouples from the theory. In fact, for non-zero

coupling gW , both spin-two particles completely decouple, since the spin-two particle wµν becomes

infinitely heavy. Alternatively one can keep MW finite, which implies that gW → 0, i.e. the spin-two

Weyl modes are very weakly coupled.
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(B) Massless bigravity limit

Second we consider the massless limit, namely the limit of vanishing Planck mass2:

MP → 0 . (2.32)

The propagator ∆(k) now becomes

∆(k) → g2W
k4

. (2.33)

In this limit the second spin-two field wµν will become massless and we deal with massless Weyl

gravity. Therefore, for finite MP there is a Higgs effect with respect to wµν , and in the massless limit

the degrees of freedom of wµν will arrange themselves into proper massless fields (see below). In this

limit we deal with Yang-Mills gauge theory plus Weyl2 theory with action

S =

∫
d4x

√−g
(
− 1

4g2YM
F a
µνF

aµν +
1

2g2W
WµνρσW

µνρσ
)
. (2.34)

This theory possesses conformal invariance and it propagates the following degrees of freedom:

(i) The standard massless, closed string spin-two graviton gµν , corresponding to a planar wave in

Einstein gravity.

(ii) Massless open string U(N) gauge bosons Aaµ.

(iii) In the non-standard sector there is massless open string spin-two ghost particle wµν , which

corresponds to a non-planar wave. In addition there is a massless open string vector wµ, which

originates from the ±1 helicities of the massive wµν particle. However note that the helicity zero

component of wµν does not correspond to a physical, propagating mode in the massless limit, since

it can be gauged away by the conformal transformations (2.3).

(C) Light spin-two plus massless Yang-Mills limit

Now we consider the double scaling limit

MP → ∞ and gW → 0 with MW << MP . (2.35)

Therefore the coupling gW must vanish faster thanM−1
P . In this limit the massless graviton decouples

from theory, i.e. the standard gravitational sector gets decoupled from the massless non-standard

spin-two sector. So one is left which an action that contains the massless Yang-Mills gauge fields

Aµ as well as the (almost) massless spin-two fields wµν . The propagator has the leading behaviour

(2.33) and the dynamics is described again by the action (2.34).

2.4 N = 4 Super-Yang-Mills plus Super-Weyl theory

2.4.1 Massive theory

Now let us come to the N = 4 supersymmetric version of the Einstein, Yang-Mills plus Weyl2

theory. The spectrum of the N = 4 Super-Yang-Mills plus massive N = 4 Super-Weyl theory has

2The massless limit was also discussed in the context of bimetric theories in [22, 26].
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the following form [10, 27]:

(i) A standard massless spin-two super graviton multiplet gN=4 with nB+nF = 32 degrees of freedom

and with the following helicities and SU(4) representations:

(+2, 1) + (+
3

2
, 4) + (1, 6) + (+

1

2
, 4) + (0, 1) , (2.36)

together with its CPT conjugate

(0, 1) + (−1

2
, 4) + (−1, 6) + (−3

2
, 4) + (−2, 1). (2.37)

The complex scalar corresponds to the complex complex constant τ of the N = 4 field theory, i.e.

to the massless marginal operator in the superconformal field theory.

(ii) A standard massless spin-one, N = 4 super Yang-Mills multiplet W a (a = 1, . . . , N2) of the

U(N) gauge group with each nB + nF = 16 degrees of freedom and with the following helicities and

SU(4) representations:

(+1, 1) + (+
1

2
, 4) + (0, 6) + (−1

2
, 4) + (−1, 1) . (2.38)

Here the 6 × N scalars from the Cartan subalgebra superfields are additional marginal operators,

which parametrize the Coulomb branch of the N = 4 super Yang-Mills gauge theory. Giving them

generic vev’s breaks the U(N) gauge symmetry to its maximal Abelian subgroup U(1)N . Together

with the axion-dilaton field τ of the supergravity multiplet which couples to the quadratic YM action,

these massless scalars parametrize the moduli space M of the theory which is given by the following

coset space:

M =
SU(1, 1)

U(1)
⊗ R6N . (2.39)

Note that the 6N scalars Φij = −Φji, (i, j = 1, · · · , 4), of the N vector multiplets are coupled to the

curvature scalar in confrormal supergravity as

L = · · · − 1

12
Tr

(
ΦijΦ

ij
)(
R + · · ·

)
, (2.40)

Therefore, the conditions

Tr
(
ΦijΦ

ij
)
= −6, Tr

(
Φijψ

j
)
= 0, (2.41)

where ψj ate the gauginos, break superconformal dilatations and S-supersymmetry, lead to Poincaré

supergravity and in this case the scalars parametrize the coset [28–31]

SU(1, 1)

U(1)
⊗ SO(6, N)

SO(6)× SO(N)
. (2.42)

In fact, the conditions (2.41) are weaker than the constraints

Tr
(
ΦijΦ

kl
)
= −1

2
δk[iδ

l
j], Tr

(
Φijψ

k
)
= 0, (2.43)
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imposed by the equations of motion of the scalarsDij
kl and the fermion χijk, which we describe in sec-

tion 2.4.3. These constraints allow to remove six vector multiplets in massless Einstein supergravity.

Notice that in rigid supersymmetry, the Yang-Mills scalar manifold is flat R6N whereas in Poincaré

supergravity the coset is SO(6, N)/SO(6)× SO(N). It looks that in massive Weyl supergravity the

scalar manifold is SO(6, N)/SO(N) because 15 scalars have not been Higgsed. In other words the

constraints (2.41) and (2.43) remove the 1 and 20 from 6×6 = 1+20+15 but do not remove the 15.

The first constraint in (2.43) coming from the D scalars which appear linearly in Einstein supergrav-

ity, is just a contribution to the scalar potential in massive Weyl supergravity because the D scalars

appear now quadratically in the Lagrangian. Hence, the deformation of (2.39) to (2.42) is only true

if the Weyl term is absent so that the 15 gauge fields of the superconformal multiplet are auxiliary

and their equations of motion produce the deformation from R6N to SO(6, N)/SO(6) × SO(N).

However if the Weyl action term is added, the 15 vectors are massive and propagating and the above

coset is not reproduced. Poincaré supergravity is the limit Mp → ∞ while Weyl supergravity is the

limit Mp = 0. What happen in between is a new theory we are describing. The potential of this

new theory is different from Poincaré supergravity and is strictly quartic in all scalar fields before

imposing the constraints as we will see below.

(iii) In the non-standard sector we have the spin-two massive Weyl multiplet of N = 4, which is

irreducible with nB + nF = 28 = 256 states in USp(8) representations [27]:

wN=4 : Spin(2) + 8× Spin(3/2) + 27× Spin(1) + 48× Spin(1/2) + 42× Spin(0) . (2.44)

Hence in summary, the N = 4 massive super-(Weyl)2 gravity theory contains nB + nF = 288 + 16N

degrees of freedom, where N is the number of physical vector multiplets. General massive multiplets

in extended supersymmetry were discussed in [32]

Also note that in Einstein supergravity constraints (2.41) and (2.43) are field constraints while in

massive Weyl supergravity they are VEV constraints (Higgs phase) since the six vector multiplets,

which appear in the massless limit (see next section) are in this case physical degrees of freedom.

As we will now see, in massless Weyl supergravity these multiplets become unphysical gauge degrees

of freedom since the massless Weyl action does not depend on compensators being superconformal

invariant. So in massless Weyl supergravity coupled to Yang-Mills the moduli space is that in

eq.(2.39). The massive phase is obtained when six extra singlet compensating vector multiplets are

introduced.

2.4.2 Massless theory

Now we can consider the N = 4 supersymmetric version of the Higgs effect for the spin-two Weyl

superfield wN=4. In the limit MP → 0 the bosonic and fermionic degrees of freedom of wN=4 will

arrange themselves into proper massless supermultiplets, when taking into account the additional

local superconformal and gauge symmetries, which arise in the massless limit. In order to perform

the massless limit we need the branching rules of the massive USp(8) R-symmetry group into the
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R-symmetry group SU(4) of the massless states. The specific decomposition of USp(8) → SU(4) for

the relevant representations is as follows:

8 = 4⊕ 4 ,

27 = 6⊕ 6⊕ 15 ,

42 = 1⊕ 1⊕ 10 + 10⊕ 20′ ,

48 = 20⊕ 20⊕ 4⊕ 4 (2.45)

Then forMP = 0, the spectrum of the massless N = 4 Super-Weyl theory has the following form [10]:

(i) A standard massless spin-two supergravity multiplet with nB + nF = 32 degrees of freedom as

given in eqs.(2.36) and (2.37).

(ii) In the non-standard sector, we get first from the massive Weyl multiplet wN=4 a massless ghost-

like spin-two supermultiplet with nB +nF = 32 and with the helicites and SU(4) quantum numbers,

again as given eqs.(2.36) and (2.37).

Second we get from wN=4 four massless spin-3/2 supermultiplets (in total nB + nF = 128) with

the following helicities and SU(4) representations, namely

4̄× [(
3

2
, 1) + (1, 4) + (

1

2
, 6) + (0, 4̄) + (−1

2
, 1)] , (2.46)

together with the CPT conjugate states

4× [(
1

2
, 1) + (0, 4) + (−1

2
, 6) + (−1, 4̄) + (−3

2
, 1)] . (2.47)

They contain the 15 gauge bosons of the local SU(4)R gauge symmetry.

In addition, the massive Weyl multiplet wN=4 contains six N = 4 vector multiplets of the form:

6 (spin− one) : 6× [(+1, 1) + (+
1

2
, 4) + (0, 6) + (−1

2
, 4) + (−1, 1).] (2.48)

However these multiplets are unphysical since they can be gauged away by the superconformal

transformations together with the local SU(4)R transformations. Specifically, one of the 36 scalars

in these vector multiplets is a Weyl mode. Other 15 scalars are the helicity zero component of the

massive vectors inside wN=4, which are gauged away by the local SU(4)R transformations. Hence all

six vector-multiplets are unphysical, do not propagate and get removed from the spectrum.

We should note that the dipole ghost graviton and the tripole ghost spin-3/2 sector are accom-

panied by a dipole ghost complex scalar since the action is a higher-derivative action. Indeed, the

equations of motion are fourth-order for the spin-2 and third order for the spin-3/2 states. This fact is

also discussed in [33] at the Lagrangian level. This is not the case for the SU(4) gauge bosons which

have standard Yang Mills action. The sugra higher derivative action also contains a singlet vector

mode which, together with the gauge bosons, is part of the higher derivative gravitino action (which

as pointed out above obeys third order equations of motion). In other words, the cubic gravitino
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action simultaneously describes the gravitino, the partner of the graviton, as well as the gravitini of

the gravitino multiplet.

Hence, the massless N = 4 super-(Weyl)2 gravity theory contains nB + nF = 192 physical, prop-

agating degrees of freedom. The same spectrum was also obtained in [34] using the string twistor

formalism for the construction of N = 4 super-(Weyl)2 gravity. The spin 1/2 have three sources,

from the spin 3/2 cubic gravitino kinetic term, the spin 1/2 cubic kinetic term and the spin 1/2

standard Majorana kinetic term.

At the end of this section, we can summarize the spectrum of Weyl supergravity in the following

way. In pure Weyl supergravity without any additional massless Yang-Mills multiplets, the six vector

multiplets with 36=1+15+20 helicity zero components play the role of super-goldstone bosons. In the

massless conformal Weyl phase (MP → 0) the six compensators are not there and the spectrum goes

from 256 massive + 32 massless states to 160+32=192 massless states. The 160=32+128 massless

states correspond to the second graviton multiplet plus four gravitini multiplets. On the contrary

if we delete the Weyl square part and we keep the six compensator vector multiplets we have the

constraints (2.41) and (2.43), and we get back massless spin-two Einstein supergravity.

2.4.3 Scalar potential

In this section we will consider some couplings between the Yang-Mills sector and the Weyl sector of

the theory. In particular we will discuss the potential of the scalar fields that appear in the N = 4

Yang-Mill and Weyl supermultiplets. The scalar fields of the Weyl and the Yang-Mills multiplet of the

N = 4 conformal supergravity3 coupled to super Yang-Mills transform under specific representations

of SU(4) which are tabulated in table 1, where also their Weyl weights and chiral U(1) weights w and

c, respectively are given [27,29–31]. The indices i, j, . . . and a, b, . . . are SU(4) and SU(1, 1) indices,

respectively. In particular, φα represent two-degrees of freedom associated to the SU(1, 1)/U(1) coset

Scalars SU(4) rep. w c

φα 1 0 1

Eij 10 1 -1

Dij
kl 20 2 0

Φij 6 1 0

Table 1: Scalars of the Weyl multiplet (φ,E,D) and the Yang-Mills multiplet (Φ), together with

their SU(4) assignments, Weyl (w) and chiral (c) weights.

of the spin-two dipole ghost multiplet, Eij is symmetric, Dij
kl is pseudoreal and Φij is antisymmetric,

3We use freely the terms Weyl and conformal supergravity in an interchangable way, and similalry for the terms

Einstein and Poincaré supergravity.
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and in the adjoint representation of the gauge group G. They satisfy the relations

φαφα = 1, Eij = Eji, Dij
kl =

1

4
ǫijmnǫkl

pqDmn
pq, Dij

kj = 0, Φij = −Φji, (2.49)

whereas their complex conjugate fields are

φ1 = (φ1)∗, φ2 = −(φ2)∗, Eij = (Eij)
∗,

Dij
kl = (Dij

kl)
∗ = Dij

kl, Φij = (Φij)
∗ = −1

2
ǫijklΦkl. (2.50)

Notice that in Eq.(2.44) we have seen that the spin-two massive Weyl multiplet of N = 4 in the

non-standard sector has nB +nF = 28 = 256 states which are arranged in USp(8) representations as

follows

Spin(2) + 8× Spin(3/2) + 27× Spin(1) + 48× Spin(1/2) + 42× Spin(0) . (2.51)

Therefore the scalars in the massive multiplet are in the 42 representation of USp(8). The latter is

decomposed under SU(4) ⊂ USp(8) as

42 = 20 + 10 + 10 + 1 + 1, (2.52)

and it is associated to the pseudoreal Dij
kl (20), the complex Eij (10+10) and the complex φα (1+1)

of table 1. The six scalars Φij(= −Φji) in the 6 of SU(4) and in the adjoint of the gauge group are

just the scalars of the Yang-Mills multiplet. Note that the fields Dij
kl (20), which appear in the

unphysical vector multiplets in eq.(2.48), are unphysical in the massless limit. Moreover the scalars

in the 6 + 6 representations of the spin-3/2 multiplets (see eqs.(2.46) and (2.47)) are not part of the

scalar potential, because they originate from the graviphoton fields.

The most general Lagrangian for the N = 4 conformal supergravity has been constructed in [31].

It turns out that it is completely specified by a single holomorphic and homogeneous of zeroth degree

function H(φα) of the coset variables φα. The structure of the scalar potential for N = 4 super

Yang-Mills is coupled to N = 4 conformal supergravity can be read off from refs [29–31] and it turns

out to be (in the notation of [31])

V = H
(
1

8
Dij

klD
kl
ij −

1

16
EijE

jkEklE
li +

1

48

(
EijE

ij
)2
)

+
1

16
DHDij

klEimEjnǫ
klmn +

1

384
D2HEijEklEmnEpqǫikmpǫjlnq −

1

48
EijE

ijTr
(
ΦklΦ

kl
)

+
1

8
Dij

klTr
(
ΦijΦ

kl
)
+

1

3
f(φ)EijTr

(
Φkl[Φik,Φjl]

)

+
1

4
|f(φ)|2Tr

(
[Φik,Φ

kj][Φjl,Φ
li]
)
+ h.c., (2.53)

where D is the operator

D = −φαǫαβ
∂

∂φβ
, and f(φ) = φ1 + φ2. (2.54)

In rigid supersymmetry, only the last term of the potential (2.53) exists. All the other terms arise

from the Weyl multiplet (terms proportional to H and its derivatives) and the gauge-matter coupling.
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Note also that with the U(1) charge c assignment c(H) = 0, c(DH) = 2 and c(DH) = 4, the potential

(2.53) is U(1) invariant (c(V ) = 0) since c(E) = −1, c(D) = c(Φ) = 0 and c(φα) = 1. Therefore the

potential in eq.(2.53) is what we would call “massless Weyl supergravity coupled to matter” whose

massive Poincaré supergravity deformation is obtained by adding six compensator vector multiplets

with constraints given as in eq.(2.41).

The scalars Dij
kl are auxiliaries and can be integrated out leading to

V = H
(
− 1

16
EijE

jkEklE
li +

1

48

(
EijE

ij
)2
)
− 1

128H
(
DHEimEjnǫklmn + 2Tr

(
Φklij

))2

+
1

384
D2HEijEklEmnEpqǫikmpǫjlnq −

1

48
EijE

ijTr
(
ΦklΦ

kl
)

+
1

3
f(φ)EijTr

(
Φkl[Φik,Φjl]

)
+

1

4
|f(φ)|2Tr

(
[Φik,Φ

kj][Φjl,Φ
li]
)
+ h.c. , (2.55)

where

Φijkl = ΦijΦkl − 2δ
[j
[lΦ

i]mΦk]m +
1

3
δi[kδ

j
l]Φ

pqΦpq. (2.56)

Note that a non-constant H function gives extra terms to the scalar potential (2.55). This will be

the case in twistor string theory where H is an exponential in the holomorphic variable [34]. For

constant H, the terms proportional to DH and D2H in the potential drop and it is easy to see that

E = 0 and Φ in the Cartan subalgebra of the gauge group is an extremum of the potential. This is

the breaking of superconformal to Poincare supergravity if 6 auxiliary vector multiplets are added

with wrong sign so that a correct Einstein term and the solution D = 0 is possible. Indeed, let

us recall that the fermions of the theory are the gravitini ψiµ (in the 4 of SU(4)) associated with

Q-supersymmetry, the composite φµi (in the 4) associated with S-supesymmetry and the two spinor

fields Λi and χ
ij
k in the 4 and 20 of SU(4), respectively. The fermionic shifts of the spinors fields

contain among others, the terms [27]

δΛi = · · ·+ Eijǫ
j ,

δχijk = · · ·+Dij
klǫ

l − 1

2
ǫijlmEklηm, (2.57)

where ǫi and ηi are the Q- and S-supersymmetry parameters. Therefore, E = 0 and D = 0 are

the necessary conditions for unbroken supersymmetry. In addition, for Poincaré supersymmetry,

breaking of Weyl symmetry is required. This is achieved by imposing the condition (2.41) while still

E = D = 0. If there are non-trivial extrema of the scalar potential beyond the supersymmetric

Poincaré one is an interesting open problem. Such vacua will further break Poincaré supersymmetry,

which will happen if the E and D scalars have non-vanishing vev.

We note that pure massive Weyl supergravity is obtained by adding to the Weyl multiplet 6

vector multiplets of wrong sign. In this case the spectrum is the standard massless N = 4 Poincaré

supergravity coupled to a massive N = 4 spin-2 ghost multiplet. The massive scalars are then 20

from the six compensatos, the 10 + 10 E scalars and 1 + 1 from the dilation dipole massive ghost.

All together they make the 42 (of USp(8)) as it should. Indeed, the constraint (2.43) is needed in
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Poincare supergravity because the D scalars appear linearly in the action [29, 30]. However, this is

not true in Weyl massive supergravity where they appear quadratically [31] so that they lead to a

new potential term after integrate them out rather than to a constraint and the 20 D scalars becomes

dynamical. In the higgsed phase, the 15 scalars go away and this explains 42 = 1+ 1+ 20+ 10+ 10.

3 String realization

Now we want to discuss how to obtain Weyl2 gravity plus Yang-Mills gauge theory from IIB super-

string theory. As already mentioned, in string theory the graviton gµν originates from the closed

string sector and lives in the bulk space, whereas the spin-two field wµν as well as the Yang-Mills

gauge bosons Aaµ come from the open string sector and will be localized on the world-volume of a

stack of D3-branes. In the following we will first discuss the closed and open string spectrum and

then, how the various limits can be realized in string theory.

Here we will discuss the case of maximal supersymmetry. This means that in four-dimensional

the closed string bulk theory possesses N = 8 supersymmetry (i.e. 32 supercharges), whereas the

open string sector localized on the D-brane worldvolume will preserve N = 4 supersymmetry (i.e. 16

supercharges). Specifically, we will consider the type IIB superstring on R1,3×T 6, with an additional

stack of N D3-branes with world-volumes on R1,3. Possible other D-branes and/or orientifold planes

do not play an important role for the discussion, and we also do not address the question of tadpole

cancellation. In fact, when taking the decoupling limit of infinite T 6 volume later on, i.e. considering

a non-compact six-dimensional extra space, we just deal with N D3-branes in flat ten-dimensional

space-time.

The spectrum of this string theory is now as follows:

3.1 Open string sector

3.1.1 Massless open string Yang-Mills sector

Now we come to the massless open string spectrum of the D3-branes on the background R1,3 × T 6.

For maximally supersymmetric, toroidal compactifications of D = 10 superstring, its excitations

form supermultiplets of N = 4 supersymmetry. Before discussing the first excited level, we recall

the vertices of massless particles, which arise from the zero modes and include, in the NS sector,

the gauge bosons Aa and six real scalars φI , I = 1, . . . , 6. In the R sector, we have four gauginos

λA, I = A, . . . , 4. All in all, these zero mode form one N = 4 gauge supermultiplet. The NS sector

vertices, in the (−1)-ghost picture, read:

V
(−1)
Aa (z, ǫ, k) = gA T

a e−φ ǫµ ψµ e
ikX ,

V
(−1)

φa,I
(z, k) = gA T

a e−φ ΨI eikX . (3.1)

Here, X,ψ, Z,Ψ are the fields of N = 1 worldsheet SCFT, with the Greek indices associated to

D = 4 spacetime fields Xµ, ψν and the Latin upper case labeling internal D = 6 (e.g. ZI ,ΨI). φ is

the scalar bosonizing the superghost system.
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The R sector vertices, in the (−1/2)-ghost picture, read:

V
(−1/2)

λa,A
(z, u, k) = gλ T

a e−φ/2 uσSσ ΣA eikX ,

V
(−1/2)

λ̄a,A
(z, ū, k) = gλ T

a e−φ/2 ūσ̇S̄
σ̇ Σ

A
eikX . (3.2)

Here, S and S̄ are the left and right-handed SU(2) spin fields, respectively, while ΣA and Σ
A
are the

internal Ramond spin fields. The couplings are

gA = (2α′)1/2 gYM , gλ = (2α′)1/2α′1/4 gYM , (3.3)

where gYM is the gauge coupling. In the above definitions, T a are the Chan-Paton factors accounting

for the gauge degrees of freedom of the two open string ends, meaning that all these massless states

are in the adjoint representation of the U(N) gauge group.

We can also write these states in terms of the fermionic oscillators in the transversal space-time

directions, denoted by bir (i = 1, 2), and the internal oscillators bIr (I = 1, . . . , 6). Then the eight

bosons bosonic states in he adjoint representation look like

Aai ∼ T abi−1/2|0〉 , Φa,I ∼ T abI−1/2|0〉 (3.4)

For the eight fermions in the adjoint representation one simply has

λa,A ∼ T a|α̇, A〉 , (3.5)

where |α̇, A〉 is the Ramond ground state with four-dimensional spinor-helicity index α̇ = 1, 2 and

internal spinor index A = 1, . . . , 4. These states indeed built massless N = 4 vector multiplets in the

adjoint representation of the gauge group U(N), which are displayed in eq.(2.38). They are localized

at the world-volume of the N D3-branes.

3.1.2 Massive open string spin-two sector

We will now determine the first excited, massive open string states, which are also localized at

the world-volume of the N D3-branes. For maximally supersymmetric, toroidal compactifications

of D = 10 superstring, NS and R sectors form one spin-two massive supermultiplet of N = 4

supersymmetry. The bosons form one symmetric tensor field Bmn and one completely antisymmetric

tensor field Emnp. Here, the indices (m,n, p) label D = 10. All these particles are in the adjoint

representation of the gauge group. The corresponding vertices, in the (−1)-ghost picture, read [35]:

V
(−1)
NS,a (z, k) =

gA√
2α′

T a e−φ(Emnp ψ
mψnψp + Bmn i∂X

mψn + Hm∂ψ
m ) eikX , (3.6)

where Hm is an auxiliary vector field. Note that again the open string gauge coupling gA =

(2α′)1/2 gYM appears in this vertex operator. At this level, the on-shell condition is k2 = − 1
α′
.

The constraints due to the requirement of BRS invariance are:

kmEmnp = 0 ,

2α′kmBmn +Hn = 0 , (3.7)

Bm
m + kmHm = 0 .
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In D = 10 all 128 bosonic degrees of freedom can be accounted for by setting H = 0, i.e. with a

traceless, transverse B and transverse E.

Also for the fermions, we begin with the first massive level in D = 10. In the R sector, the fermion

vertex operator [in its canonical (−1/2)-ghost picture] is parametrized by two vectors, Majorana-Weyl

spinors vAm and ρ̄n
Ḃ
of opposite chirality [35]:

V
(−1/2)
R,a (z, v, ρ̄, k) = CΛ T

a
[
vAm i∂Xm + 2α′ ρ̄m

Ḃ
ψm ψ

n ΓḂAn
]
ΘA e

−φ/2 eikX . (3.8)

Here, A denotes a left-handed spinor index while Ḃ is its right handed counterpart. Γn are 16× 16

Weyl blocks of the D = 10 gamma matrices and ΘA are the conformal weight h = 5
8
chiral spin fields.

Requiring BRST invariance imposes two on-shell constraints on vAm and ρ̄m
Ḃ
which determine ρ̄ in

terms of v and leave 144 independent components in the latter. Furthermore, a set of 16 spurious

states exists which allows to take ρ̄ and v as transverse and Γ-traceless:

km vAm = vAm Γm
AḂ

= km ρ̄
m
Ḃ

= ρ̄m
Ḃ
ΓḂAm = 0 . (3.9)

These 128 = 144− 16 physical degrees of freedom match the counting for bosons.

As for the massless states, we can also write the massive states, that are created by these vertex

operators, in terms of the bosonic and fermionic oscillators αn and br. Now we split the indices

into uncompactified and internal indices. Furthermore we will omit the gauge index, i.e. we drop

the Chan-Paton factor T a, which means that we consider the neutral, excited states of the Abelian

U(1) vector-multiplet. This U(1) gauge group is just the Abelian part of the full gauge group

U(N) = SU(N) × U(1). Alternatively we could consider the case of a single D3-brane, i.e. N = 1,

where the excited states are also neutral. Then one obtains at the first massive level the following

massive open string states (see for example [36]):

bi−1/2b
j
−1/2b

I
−1/2|0〉 , bi−1/2b

I
−1/2b

J
−1/2|0〉 , bI−1/2b

J
−1/2b

K
−1/2|0〉 ,

bi−3/2|0〉 , bI−3/2|0〉
αi−1b

j
−1/2|0〉 , αi−1b

I
−1/2|0〉 , αI−1b

i
−1/2|0〉 , αI−1b

J
−1/2|0〉 . (3.10)

(Here the b’s and the α’s are the oscillators of the world-sheet fermions and bosons.) Collecting

all states and putting them into proper massive representations of the four-dimensional little group

SO(3) as well as in proper representations of the N = 4 SU(4) R-symmetry, one obtains the following

massive spectrum:

1× Spin(2) + (6 + 6 + 15)× Spin(1) + (2× 1 + 10 + 1̄0 + 20′)× Spin(0) . (3.11)

For massive states in N = 4 supersymmetry the R-symmetry group is enhanced from U(4) to

17



USp(8) ⊃ U(4) with the following branching rules:

8 = 4 + 4̄ ,

27 = 6 + 6 + 15 ,

36 = 1 + 10 + 1̄0 + 15 ,

42 = 2× 1 + 10 + 1̄0 + 20′ ,

48 = 4 + 4̄ + 20 + 2̄0 (3.12)

Then the massive bosons transform under USp(8) as

1× Spin(2) + (27)× Spin(1) + (42)× Spin(0) . (3.13)

In ten dimensions, the 128 massive fermions are given by the following string states:

(8)c + (56)c : bA−1|a〉 , (8)s + (56)s : αA−1|ȧ〉 . (3.14)

In terms of four-dimensional massive spinors this leads to:

(4 + 4̄)× Spin(3/2) + (4 + 4̄ + 20 + 2̄0)× Spin(1/2) , (3.15)

where in this decomposition each spin 3/2 Rarita Schwinger field in four dimensions contains 4

degrees of freedom and each spin 1/2 Dirac fermion possess 2 degrees of freedom. Under USp(8) the

massive fermions transform as

(8)× Spin(3/2) + (48)× Spin(1/2) , (3.16)

The bosons in eq.(3.11) together with the fermions in eq.(3.16) build one long, massive N = 4

spin 2 supermultiplet. It precisely agrees with the super Weyl multiplet wN=4, which is displayed in

eq.(2.44).

3.2 Closed string sector

In the following we will also provide the closed string spectrum of the theory, both in the bulk and

also on the stack of the D3-branes. The vertex operators are similar to one of the open strings and

obtained by the tensor product of left- and right-moving open string states at each mass level, taking

into account the level matching constraint hL = hR.

3.2.1 Massless gravity sector

Let us us first recall the closed string type II B spectrum of the bulk theory on the background

space R1,3 × T 6. As it is well known, the massless closed string states originate from the (NS,NS),

(R,R), (R,NS) and (NS,R) sectors of the theory. Altogether they built the standard massless N = 8

supergravity multiplet with nB + nF = 256 propagating massless degrees of freedom. However on

the world volume of the stack of N D3-branes supersymmetry is broken by half from N = 8 to

18



N = 4, where 16 supersymmetries are linearly realized and the other half of 16 supersymmetries

are non-linearly realized on the D3-branes. Therefore the massless closed string spectrum on the

D3-branes is precisely the one of N = 4 supergravity. The corresponding massless states precisely

build the standard massless spin-two super graviton multiplet gN=4, which is displayed in eqs.(2.36)

and (2.37).

3.2.2 Massive closed string spin-four sector

As discussed in [37], the first excited closed string states are obtained by performing the tensor

product of two super-Weyl supermultiplets. This leads to a massive supermultiplet with a highest

spin-four tensor field Φ4 in the closed string sector, whereas the massive spin-two sector, i.e. the

massive Weyl supermultiplets, correspond to open string excitations.

For the case under consideration with background space R1,3 × T 6, the bulk spectrum is then

given in terms of massive spin-four N = 8 supermultiplet Φ4
N=8:

Φ4
N=8 = wN=4 ⊗ wN=4 . (3.17)

It contains nB+nF = 256×256 = 1016 = 65.536 degrees of freedom. When restricting it to the world

volume of the N D3-branes, it gets truncated and becomes massive spin-four N = 4 supermultiplet

Φ4
N=4 with nB + nF = 1280. Its exact multiplet structure is as follows:

1× Spin(4) + 8× Spin(7/2) + (1 + 27)× Spin(3) + (8 + 48)× Spin(5/2)

+(1 + 27 + 42)× Spin(2) + (8 + 48)× Spin(3/2) + (1 + 27)× Spin(1)

+8× Spin(1/2) + 1× Spin(0) . (3.18)

3.3 Effective field theory and limits

Now we will discuss the four-dimensional effective field theory on the stack N D3 branes. From the

closed strings we will restrict ourselves to the massless gravitational sector, and the closed string

spin-four in the bulk will be mentioned later in the next section on holography. For the open strings,

we will on the massless spin-one Yang-Mills sector as well as on the massive spin-two Weyl sector.

Since both types of fields belong to open string with ends lying on the D3-branes, the Yang-Mills

field as well as the Weyl fields are confined to the world-volumes of the D3-branes.

3.3.1 Ten-dimensional picture, non-compact space

Here we consider a stack of N D3-branes in a non-compact space R1,9. The ten-dimensional action

can be schematically written as

S = Sbulk + Sbrane + Sint , (3.19)

where Sbulk is the effective action of the massless gravitons and their superpartners from the closed

strings, Sbrane is the four-dimensional effective action of the massless Yang-Mills fields and the massive
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spin-two field wµν on the D3-branes,

Sbrane = SYM + SW , (3.20)

and Sint describes the interactions between the open and closed string modes.

Let us now determine the effective couplings in terms of the basic string parameters, which are

(i) gs = eφ, the string coupling constant, which is determined by the vev of the dilaton and

(ii) Ms = 1/
√
α′, namely the string scale.

In the string frame, the effective ten-dimensional Planck mass is given as

κ(10) =
(
M

(10)
P

)−4

=
1

M4
s

gs . (3.21)

The masses Mn of the string excitations in the string frame directly follow from the fundamental

string tension and are given by M2
n = nM2

s . Namely in the string scale the mass MW of the first

open string excitations is simply given as

MW =Ms . (3.22)

In order to go to the Einstein frame, one has to perform a Weyl rescaling of the metric, which in

D dimensions takes the form

g → exp(φ/2)g ,
√
|g|D → exp(Dφ/4)

√
|g|D ,

R→ exp(−φ/2)R . (3.23)

(Hence for D = 4 the Weyl action W 2
√
|g| is indeed invariant under this rescaling.)

Therefore the ten-dimensional Einstein-Hilbert term transforms from the string frame into the

Einstein frame as

√
|g|10e−2φR →

√
|g|10R (3.24)

and in the Einstein frame the Planck mass is therefore independent of gs:

κ(10) =
(
M

(10)
P

)−4

=
1

M4
s

. (3.25)

Second, the gauge kinetic term of a Dp-brane transforms from the string frame into the Einstein

frame as

√
|g|p+1e

−φF µνFµν → e((p−7)/4φ)
√
|g|p+1F

µνFµν (3.26)

Hence, for D3-branes (p = 3) the effective gauge coupling in the Einstein frame is given as

gYM =
√
gs . (3.27)
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Finally for the fundamental string tension one obtains that

√
|g|1+1 → eφ/2

√
|g|1+1 (3.28)

Therefore the masses of the excited strings in the Einstein frame scale as

M2
n ∼ n

√
gsM

2
s , (3.29)

and hence the ratio between these masses and the 10d Planck scale remains invariant. In D dimen-

sions, a mass, when measured in the Einstein metric, is related to gs as

M2
n ∼ ngs

4

D−2M2
s . (3.30)

In the limit α′ = M−2
s → 0, while keeping gs, N and all other physical length scales, such as

curvature scales fixed, all massive string excitations decouple and the higher derivative interactions

can be neglected. Furthermore, open and closed string modes decouple and gravity becomes free,

i.e. we arrive at a theory of free gravitons and its supersymmetry partners. This decoupling limit

is also referred to the Maldacena limit: free type IIB supergravity in the bulk and four-dimensional

SYM theory with 16 supercharges on the world-volume of the branes. To see the more precise form

of the decoupling limit, which zooms into the near horizon region of the D3-brane SUGRA solution,

we recall that it is defined as follows:

LMs → ∞ with L4 =
gsN

M4
s

. (3.31)

On the gauge theory side this limit corresponds to the limit of infinite ’t Hooft coupling

λ → ∞ with λ = g2YMN . (3.32)

In this the near-horizon limit the type IIB background of the N D3 branes is given by the well-known

AdS5 × S5 geometry. Note that this limit can be obtained by sending L to infinity while keeping

Ms fixed, which means that the near horizon limit can be obtained for finite masses of the string

excitations.

3.3.2 Four-dimensional picture, compact internal space

Now we switch to four dimensions and consider the theory compactified on R1,3 × T 6. As we have

discussed in section 3.1.2 the massive open string excitations precisely agree with the N = 4 spin-

two Weyl supermultiplet. The question is now, which is the correct effective action for these massive

states. Since these states appear at the first mass level, the corresponding effective action must

contain four derivatives. Hence a priori, it could be either the R2-action or the W 2-action. Since

the R2 propagates a scalar degree of freedom, whereas the W 2-action propagates precisely the spin-

two degrees of freedom of the Weyl-supermultiplet, we can safely conclude that the W 2-action is

the correct effective action for the massive open string fields. Therefore the four-dimensional string
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effective active action for closed string gravity plus open string Yang-Mills plus open string massive

spin-two fields has the following form:

Seff =

∫
d4x

√−g
(
− 1

4g2YM
F a
µνF

aµν +
1

2g2W
WµνρσW

µνρσ +M2
PR

)
. (3.33)

In addition to the ten-dimensional string parameters gs and Ms we now gain a third parameter,

namely:

(iii) R: the radius of the internal space, i.e. the volume of the T 6 is given by R6. In units of the

string length Ls the size of the internal scape is given by the dimensionless parameter r = R/Ls =

RMs.

The three string parameters gs, Ms and r are identified with the three four-dimensional coupling

constants of the effective theory in the following way:

(i) The four-dimensional gravitational closed string coupling MP in the Einstein frame:

MP =Msr
3 . (3.34)

(ii) The open string Yang-Mills coupling gYM for the gauge fields on the D3-branes:

gYM =
√
gs . (3.35)

(iii) The bimetric Weyl coupling gW :

The effective 4D coupling gW can be determined by the requirement that the mass of the massive

open string spin-two fields wµν is given in the Einstein frame as (see eq.3.30))

MW = gsMs . (3.36)

It then follows from eq.(2.30) that

gW = gs/r
3 . (3.37)

Observe that in the four-dimensional Einstein frame, the Weyl coupling gW is scaling with respect

to gs as the gravitational coupling, because it corresponds to a coupling between closed and open

strings. Moreover is proportional to the inverse of the internal volume.

Now we can consider the following four decoupling limits in the four-dimensional effective string

theory, which we already mentioned before in section two:

(A) Decoupling of gravity

The decoupling of the closed string modes namely the decoupling of standard gravity is achieved

sending the Planck mass to infinity:

MP → ∞ . (3.38)

In this limit either the string scale Ms is very large, i.e. α′ → 0 with r kept fixed. Alternatively one

can keep Ms finite, but sending r → ∞, implying that R >> Ls and the internal space becomes

very large. Then the near horizon geometry close to the N D3-branes becomes AdS5 × S5. In this
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sense the size R of the internal space corresponds to the length parameter L in the non-compact

case. Both, for finite r and large Ms and also for large r and finite Ms the massive spin-two open

string fields wµν decouple, because these fields become either very heavy (Ms large) or their coupling

constant gW becomes very small (r large).

(B) Massless bigravity limit

Second, we consider the massless limit, namely the limit of vanishing Planck mass:

MP → 0 . (3.39)

It can be realized in string theory by sending the string scale Ms to zero: Ms → 0 or equivalently

α′ → ∞. In this limit, the open string spin-two fields become massless and the bimetric gravity

theory becomes conformal. However in string theory this is the tensionless limit, where an infinite

tower of string states becomes massless in this limit. Therefore the massless bimetric gravity theory

only exists as an enormous truncation of higher spin theory with an infinite number of massless

higher spin fields. Alternatively, for fixed string scale Ms, a vanishing Planck mass is obtained by

sending r → 0. Here the size of the internal space becomes much smaller than the string length.

Furthermore gW becomes large and the open string spin-two fields wmuν become strongly coupled.

(C) Light spin-two plus massless Yang-Mills limit

Now let us consider the case where the string scale is very small compared to the Planck mass. This

is the socalled low string scale scenario, which implies large extra dimensions:

Ms << MP . (3.40)

This limit can be achieved by sending r → ∞, andMW becomes very light compared toMP . In this

limit the closed string states (almost) decouple, and the background geometry is well approximated

by the AdS5 × S5 geometry. The spin-two open string fields wµν become very light, i.e. almost

massless, and they are very weakly coupled: gW → 0. Therefore this limit describes an (almost)

conformal field theory on the N D3-branes, with two kinds of open strings: U(N) Yang-Mills gauge

fields and (almost) free spin-two fields wµν . Hence, all fields can be made weakly coupled, and hence

this limit is well-defined and feasible. Note thatMW << MP can be alternatively obtained by keeping

r finite, but sending gs → 0. Then the string theory is weakly coupled and again gW → 0. Small

gs in fact implies that the string scale Ms in string units is small compared to the ten-dimensional

Planck mass.

4 Holographic aspects between spin-two on the boundary and spin-four

in the bulk

All open string degrees of freedom/excitations on a D3-brane have a holographic description on AdS5.

Moreover, the AdS/CFT correspondence is not only true for the massless states, but rather for the
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entire string modes. We will discuss in this section some aspects of the holography between the

first excited open strings, namely the N = 4 Weyl multiplet, and the first excited N = 8 spin-four

supermultiplets of the closed superstring.

The AdS/CFT correspondence is a duality between open strings on a d-dimensional bound-

ary space and closed strings in a (d+1)-dimensional bulk space. The most famous example is 4-

dimensional N = 4 super-Yang-Mills gauge theory located on a stack of N D3-branes, which is

holographically dual to N = 8 supergravity on AdS5 ×S5. Hence for holography to work in general,

it is important to consider a limit in string theory, where all closed string modes decouple from

the boundary theory. Furthermore we need an (almost) superconformal field theory on the bound-

ary, which possesses the same symmetries as the bulk AdS5 background geometry. More precisely,

on the boundary we deal with a superconformal field theory, with superconformal symmetry group

SU(2, 2/4)×SU(N ), where SU(4) is the R-symmetry group. This agrees with the symmetry group

of N = 8 supergravity on AdS5.

Here we want to describe a possible way, how to include also the open string Weyl-supermultiplet

wµν into the N = 4 ↔ N = 8 boundary-bulk holography. Limit A also not suitable for holography,

since closed strings are not decoupled on the brane. Limit A corresponds to the standard AdS/CFT

correspondence, namely to the hologrographic duality between the massless spin-one gauge fields on

the 4-dimensional boundary and the massless spin-two gravitons in the 5-dimensional bulk. Instead

we will focus on the limit B and in particular on the limit C, where closed string gravity on the

boundary is decoupled viaMP → ∞, whereas the string scaleMs =MW is kept very small compared

to the Planck mass, which means that we are considering a large extra volume scenario in string

theory. Then the 4-dimensional, non-standard spin-two sector on the boundary possesses an (almost)

superconformal symmetry and is supposed to be holographically dual to closed strings in the 5-

dimensional AdS5 bulk space.

Generally in holography, each field φ(x) propagating on AdS space is in a one to one correspon-

dence with an operator O(x) in the field theory, which are coupled together by a term
∫
d4xφ(x)O(x).

For a rank s symmetric traceless tensor, there is the following relation between the corresponding

mass of the field in the (d + 1)-dimensional bulk and the scaling dimension ∆ and the spin s of the

operator in the conformal field theory on the d-dimensional boundary:

m2α′ = (∆ + s− 2)(∆− s+ 2− d) . (4.1)

This formula is consistent with the unitarity bound, which is given as

∆ ≥ s− 2 + d . (4.2)

According to the standard holographic dictionary, the most relevant operator is the conserved

boundary energy momentum tensor T νµ , which has conformal dimension ∆ = 4 and spin s = 2 and

hence it saturates the unitarity bound in four dimensions. T νµ is is coupled to a symmetric tensor

gµν , which becomes the massless spin-two graviton field in the higher-dimensional bulk theory.4 In

4In case the energy momentum tensor is non-conserved and has dimension ∆ > 2 + s, the corresponding bulk
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our concrete case of four-dimensional super Yang-Mills theory plus Weyl2 gravity given in eq.(2.34),

we can derive the energy momentum tensor from the Yang-Mills action plus the linearized gravity

action

S =

∫
d4x

√−g
(
− 1

4g2YM
F a
µνF

aµν +
2

gW
Gµνw

µν − (wµνw
µν − w2)

)
. (4.3)

However, let us mention that although the original (2.34) theory is invariant under conformal

transformations, it seems that (4.3) fails as the Einstein tensor transforms non-homogeneously.

Therefore, in order to restore conformal invariance of (4.3), we have to assign a non-homogeneous

transformation for the field wµν . In fact, it can be verified that under an infinitesimal conformal

transformation

δgµν = 2λ(x)gµν , (4.4)

the Einstein tensor transforms as

δGµν = −2∇µ∇νλ+ 2�λgµν . (4.5)

Then, it can be verified [38] that the action (4.3) is invariant if wµν transforms as

δwµν = − 2

gW
∇µ∇νλ = ∇µξν +∇νξµ (4.6)

where

ξµ = − 1

gW
∇µλ. (4.7)

In other words, under a conformal transformation, the field wµν transforms as it would transform

under a diffeomorphism generated by the gradient of the conformal factor.

It is straightforward to calculate the energy-momentum tensor for the theory (4.3) which turns

out to be

T νµ = T µνF + T µνw , (4.8)

where

T µνF =
1

g2YM

(
F aµ

ρF
a νρ − 1

4
gµνF a

ρσF
a ρσ

)
, (4.9)

T µνw =
2

gW

{
�wµν −∇σ∇νwµσ −∇σ∇µwνσ +Rµνw − Rwµν +∇µ∇νw + 2

(
wµρwνρ − wwµν

)

−2
(
Gµ

ρω
νρ +Gν

ρω
µρ
)
+ gµν

(
Gρσw

ρσ − gW
2
(wρσw

ρσ − w2) +∇σ∇ρw
ρσ −�w

)}
(4.10)

The equation of motion for wµν is

wµν =
2

gW
Sµν , (4.11)

spin-two field becomes massive [39].
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where Sµν is the Schouten tensor

Sµν =
1

2

(
Rµν −

1

6
Rgµν

)
, (4.12)

and it turns out that T µνF on-shell is

T µνF =
16

gW
Bµν , (4.13)

where

Bµν = ∇ρ∇σWµρνσ +
1

2
RρσWµρνσ (4.14)

is the Bach tensor. The latter is symmetric, traceless and divergence-free

Bµ
ν = 0, ∇µBµν = 0, (4.15)

and therefore, T µνF is also traceless (due to conformal invariance) and divergence-free (due to diff

invariance). In addition Bµν transforms under a conformal transformation gµν → Ω2gµν as

Bµ
ν → Ω−4Bµ

ν (4.16)

and therefore it has dimension ∆B = 4 (as the energy-momentu tensor).

Next we proceed to the massive spin-four operators on the boundary in dimension d = 4, which

are coupled to massive spin-four, closed string fields in the bulk. In order to be massive their scaling

dimension ∆ should be larger than 6. These fields will become massless in the limit α′ → ∞, i.e.

Ms → 0. In our concrete case, the relevant spin-four operator Jµνρσ could be for example

Jµνρσ = ST[BµνBρσ] = BµνBρσ +BρνBµσ +BσνBρµ

−1

2
(gµρBανBρ

α + gµσBανBσ
α + gνρBαµBρ

α + gνσBαµBσ
α) , (4.17)

where ST[] denotes symmetric traceless. Other spin-four operators are

Jµνρσ = ST[T µναβT
ρσαβ ], (4.18)

or products of the Weyl tensor, as for example

Jµνρσ = ST[W µαγκW ρ
αδκW

ν
βγλW

σβδλ], (4.19)

where

Tµνρσ =
1

4

(
W λ κ

νµ Wλσρκ +
1

2
ǫλντξǫ

χψ
λσ W τξ κ

µ Wχψρκ

)

=
1

4

(
W λ κ

νµ Wλσρκ +W λ κ
σµ Wλνρκ − 1

2
gνσW

λτ κ
µ Wλτσκ

)
. (4.20)

is the Bel-Robinson tensor [40]. The dimension of the latter is ∆T = 4 as under conformal transfor-

mations, it transforms as

T µνρσ → T̂ µνρσ = Ω−4T µνρσ. (4.21)
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The operators Jµσνρ above have spin s = 4, they transform under conformal transformations as

Jµσνρ → Ω−8Jµσνρ, (4.22)

and their dimension is therefore ∆J = 8. Hence these operators are then holographically coupled to

massive spin-four fields in the bulk, such that we are dealing with a higher spin-four theory in the

bulk. In string theory, Jµνρσ can be viewed as massive composite field with mass square m2 = 20/α′,

corresponding to the product of two closed string graviton vertex operators. Note that this mass

is the mass on AdS5, which is not the same as the mass of the corresponding string state on a

flat Minkowski background. In the supersymmetric case, the field content and the supermultiplet

structure is precisely as the one given in section 3.2.2, which is obtained by the tensor product of two

N = 4 super-Weyl multiplets. Since in the decoupling limit, the spin-two fields wµν are free fields

on the 4D boundary, also the spin-four field in the AdS5 bulk space should be a free field, with the

following free field equation:

(
∇2 +

3

10
R−m2

)
ΦMNKΛ = 0,

∇MΦMNKΛ = ΦMNKΛ = 0, M,N, · · · = 0, 1, · · ·4, (4.23)

where R is the scalar curvature of the AdS5 space.5

So in summary, the Yang-Mills energy momentum tensor Tµν couples to a spin-two field in the

bulk, the standard graviton on AdS5 × S5, whereas Jµνρσ couples to a spin-four field in the bulk.

It means in particular when considering just the N -extended (Weyl)2 supergravity theory in four

dimensions without the Yang-Mills part that this theory is the holographically dual boundary theory

of an AdS5 bulk theory, which is a higher spin theory with a spin-four multiplet of the 2N -extended

supersymmetry algebra in five dimensions. These kind of theories, denoted by W-supergravities,

were recently constructed [37] in flat four-dimensional space-time using a double copy construction.

Therefore, the (almost) massless spin-two fields wµν are conjectured to be dual to N = 8 spin-four

fields on AdS5 × S5. To support this conjecture it would be important to compute some correlation

functions of Jµνρσ on the boundary and compare them with the corresponding spin-four correlation

functions in the bulk.

5 Conclusions

In this paper we have discussed a special version of N = 4 supersymmetric bimetric gravity coupled

to N = 4 super Yang-Mills gauge theory. We have argued that, just like the open string Yang-Mills

5In general, a spin-s field in (A)dSd is described by a totally symmetric, traceless and divergentless tensor ΦM1···Ms

and obeys the equation [41, 42]

[
(∇2 + (s2 + s(d− 6) + 6− 2d)

R

d(d − 1)
−m2

]
ΦM1···Ms

= 0, ∇M1ΦM1···Ms
= ΦM1

M1···Ms

= 0, Mi · · · = 0, 1, · · · d− 1.

.
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gauge fields, the massive spin-two graviton supermultiplet originates from open string excitations on

D3-branes and hence is localized in four space-time dimensions, whereas the standard massless spin-

two graviton supermultiplet is coming from the closed string sector. We then argued that effective

action of this bimetric theory is given by the four-derivative, N = 4 supersymmetric Weyl2 action,

whose Weyl-supermultiplet precisely embraces the same number of degrees of freedom as the first

massive open string excitations on the D3-branes. In the massless limit, where the mass of the open

string ”gravitons” and their superpartners go to zero, the theory becomes N = 4 superconformal.

We discussed that the holographic description of this quadratic spin-two superconformal gravity on

the four-dimensional boundary is given in terms of a higher N = 8 spin-four theory in the AdS5

bulk space. We have constructed the corresponding N = 8 spin-four supermultiplet in terms of

massive closed string excitations in four space-time dimensions, which then can be lifted to the

five-dimensional AdS5 space. In addition we have identified certain spin-four operators on the four-

dimensional boundary space, which, following the holographic dictionary, can couple to the spin-four

fields in the five-dimensional bulk.

At the end of the paper, we like to close with the following additional remarks:

• It is clear from string theory that the massive open string spin-two state cannot be a ghost

state. So eventually one has to write down an effective action for this spin-two state, which is

ghost-free. But here we are truncating the spectrum to the first excited level and neglecting all

the higher open string excitations. In the same way we are restricting the effective action to be

just with four derivatives, but we neglect all the higher derivative interactions [43]. It is now still

a conjecture that the full effective action action of this open string spin-two state can be written

as an infinite power series expansion of the Weyl-tensor. In fact it was recently argued in [22]

that adding an infinite series of curvature tensors should provide an action which propagated a

ghost-free open string spin-two particle. Truncating this series to Weyl2, the spin-two particle

becomes a ghost.

• In case we are dealing with a stack of N D3-branes, the massive N = 4 Weyl supermultiplet is

colored, just like the U(N) gauge fields. Therefore one is dealing with N2 copies of interacting

spin-two Weyl supermuliplets. In this paper we have considered the simpler case of just one

single, neutral Weyl supermuliplet, which belongs to the U(1) part of the U(N) symmetry

group, or simply is the relevant open string excitation for the case N = 1.

• It would be interesting to compute the string scattering amplitudes between the massless and

massive string fields using techniques already applied in [35] in order to confirm the effective

Weyl2 action and the couplings between the Yang-Mills and the Weyl sectors, proposed in this

paper.

• The massive closed string spin-four field can be viewed as a kind of a bound state of two

massive open string spin-two states, in analogy to the massless closed string graviton, which

can be regarded as the bound state of two massless open string gauge bosons. This observation

relies in the structure of the string vertex operators and is also the basis of the double copy
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constructions, which was recently also worked out four the spin-four case [37].

• It should be possible to perform a socalled S-fold projection, getting completely get rid off the

massless Yang-Mills sector. In this case one would entirely deal with strongly coupled, massive

Weyl2 supergravity on the boundary and with massive spin-four supergravity in the bulk, a

theory denoted by W-supergravity, recently constructed in [37]. In the massless, superconformal

limit, the spin-four W-supergravity on AdS5 also becomes massless.

• The scalar potential should capture also the solutions which are not the one of Einstein super-

gravity. In the bosonic case these are the solutions where the Bach tensor vanishes but not

the Ricci tensor. While the first break conformal to Poincare supergravity, the others may also

break supersymmetry even partially, which still has to be discovered yet. It is likely that any

conformally flat space is a solution with vanishing Bach tensor so it is conceivable that AdS or

even dS space are solutions of massless Weyl supergravity, as it is true in the simplest bosonic

case.

• Finally, we would like to stress that the superconformal symmetry of the supersymmetric Weyl2

theory is a classical symmetry 6. Althought such theories are power-counting renormalizable,

their one-loop beta-functions are be non-vanishing [45] and therefore they suffer from a con-

formal anomaly. The latter leads to serious problems since conformal symmetry is gauged in

Weyl gravity and therefore leads to inconsistencies [46–48]. The same conclusion can be drawn

by considering the chiral gauge anomalies of the SU(4) R-symmetry [49] and recalling that all

anomalies are accommodated in the same multiplet of the N = 4 superconformal symmetry.
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