002210475 001__ 2210475
002210475 003__ SzGeCERN
002210475 005__ 20180924164907.0
002210475 0247_ $$2DOI$$a10.22323/1.276.0207
002210475 0248_ $$aoai:cds.cern.ch:2210475$$pINIS$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN
002210475 037__ $$aCMS-CR-2016-188
002210475 035__ $$9Inspire$$a1589620
002210475 041__ $$aeng
002210475 100__ $$aGao, Xuyang$$iINSPIRE-00534435$$jCCID-783508$$uBeiHang U.
002210475 245__ $$aThe High Level Trigger of the CMS experiment
002210475 260__ $$c2016
002210475 269__ $$aGeneva$$bCERN$$c19 Aug 2016
002210475 300__ $$a5 p
002210475 520__ $$aThe CMS experiment has been designed with a 2-level trigger system the Level 1 Trigger, implemented on custom-designed electronics, and the High Level Trigger, a streamlined version of the CMS offline reconstruction software running on a computer farm. In this poster we will present the performance with the specific algorithms developed to cope with the increasing LHC pile-up and bunch crossing rate using 13 TeV data during 2015, and prospects for improvements brought to both L1T and HLT strategies to meet the new challenges for 2016 scenarios with a peak instantaneous luminosity of $1.2 \times 10^{34} $cm$^{-2}$s$^{-1}$ and 30 pileup events.
002210475 540__ $$3Preprint$$aCC-BY-4.0
002210475 595__ $$aCERN EDS
002210475 65017 $$2SzGeCERN$$aDetectors and Experimental Techniques
002210475 6531_ $$9CMS$$aGeneral
002210475 690C_ $$aINTNOTE
002210475 690C_ $$aCERN
002210475 690C_ $$aPUBLCMS
002210475 693__ $$aCERN LHC$$eCMS
002210475 710__ $$5PH
002210475 710__ $$gCMS Collaboration
002210475 773__ $$c207$$pPoS$$vLHCP2016$$wC16-06-13$$y2016
002210475 8564_ $$81239488$$s647015$$uhttps://cds.cern.ch/record/2210475/files/CR2016_188.pdf
002210475 8564_ $$81335965$$s580195$$uhttps://cds.cern.ch/record/2210475/files/PoS(LHCP2016)207.pdf
002210475 916__ $$sn$$w201635
002210475 963__ $$aPUBLIC
002210475 962__ $$b2010942$$k207$$nlund20160613
002210475 980__ $$aINTNOTECMSPUBL
002210475 980__ $$aConferencePaper
002210475 980__ $$aARTICLE