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Mechanical Effects of the Non-Uniform Current
Distribution on HTS Coils for Accelerators Wound
with REBCO Roebel Cable

J. S. Murtomiki, J. van Nugteren, G. Kirby, L. Rossi, IEEE fellow, J. Ruuskanen and A. Stenvall

Abstract—Future high-energy accelerators will need very high
magnetic fields in the range of 20 T. The EuCARD-2 WP10
Future Magnets collaboration is aiming at testing HTS-based
Roebel cables in an accelerator magnet. The demonstrator
should produce around 17 T, when inserted into the 100 mm
aperture of Feather-M2 13 T outsert magnet. HTS Roebel
cables are assembled from meander shaped REBCO coated
conductor tapes. In comparison with fair level of uniformity
of current distribution in cables made out of round Nb-Ti or
NbsSn strands, current distribution within the coils wound from
Roebel cables is highly non-homogeneous. It results in non-
uniform electromagnetic force distribution over the cable that
could damage the very thin REBCO superconducting layer. This
paper focuses on the numerical models to describe the effect of
the non-homogenous current distribution on stress distribution
in the demonstrator magnet designed for the EuCARD-2 project.
Preliminary results indicate that the impregnation bonding be-
tween the cable glass fiber insulation and layer-to-layer insulation
plays a significant role in the pressure distribution at the cable
edges. The stress levels are safe for Roebel cables. Assuming fully
bonded connection at the interface, the stresses around the edges
are reduced by a large factor.

Index Terms—Superconducting Magnets, Accelerator dipoles,
HTS magnets, Mechanical engineering

I. INTRODUCTION

HIS paper presents a new type of modelling of the

HTS magnets utilizing Finite Element Analysis (FEA)
and presents the relevant steps in the modelling process of
impregnated coils wound with Roebel cable for accelerator
magnets of the program EuCARD-2 ([11], [2], [3], [4], [5).
Usually, the coils of the LTS magnets have been modelled
as block domain coil pack utilizing anisotropic material prop-
erties for the central cross-section of the coil [6], [7]. The
HTS impregnated coil (Fig.|l) requires a new approach, since
the correct mechanical behavior is difficult to reproduce due
to partially non-impregnated structure of the coil playing an
important role in the stress distribution. Due to low pressure
between turns during the impregnation, the epoxy does not
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enter between the strands (tapes), leaving them non-bonded.
The tape geometries can be seen in Fig. [} Fig. P2l Fig.
More details about impregnation can be found in [8]]. Frictional
contacts between the tapes are shown in Fig. ] Various tapes
forming the cable can slide with respect to each other on the
wide planar strand-to-strand interface.

The foreseen computed non-uniformity of the current distri-
bution on the planar conductor surface of the strand requires
additional modeling details (see Fig. [5). The model needs a
separate conductor geometry to correctly locate the forces
on the planar conductor surface of the strands. It is not
possible to ignore this detail because the primary aim of this
paper is to compute the compression distribution perpendicular
to the wide face of the conductor. A further goal of this
model is to compute the stress distribution in the strands
and the insulation due to cool down and evaluate the shear
stress level between the surface of the strand and impregnated
insulation interface. In addition, the model is used to study
the conductor sensibility to interfacial delamination due to
differential thermal contraction of the insulation and the strand
materials, which is one of the issue considered critical for
the use of REBCO tape in impregnated magnets. ANSYS
Workbench® environment is used for this modelling task.

II. MODELLING DISCUSSION
A. General

This work consists of modelling the Feather-M2 aligned
block coil, the main deliverable of EUCARD-2-WP10 program
(see [2]]). The coil is an 800 mm long race track dipole, where
each pole is composed of a two-layer coil (see Fig. [I). A
detailed 2D FEA [9] model with plane strain assumption
is taken as a modelling basis. This approach is a good 2D
approximation for infinitely long continuous structures in the
3rd dimension [10]. The model is assumed to be symmetric
over y- and x-axis for convenience, even if in reality the
magnet is not fully symmetric. The magnet has a peculiar
support structure compared to usual dipole magnets. The main
author’s work in progress FEA indicates the need to connect
outer and inner shell by a stiff plate in the mid-plane due to
requirement to prevent shell from touching the outsert magnet
during powering at the rightmost point of the outer shell on
the mid-plane (Fig. [T] see also details in [L1]]).

B. Strand level

The strand (tape) structure is simplified to a Hastelloy or a
stainless steel substrate domain, and an electroplated copper



3LPO2F-03

In the model, cut
of the cable by
X-Y plane

(a)

Stainless steel
outer shell

| |
ron pole Copper spacer

Kapton
Ground

30.000 (mm)

7.500 22.500

Fig. 1. (a) Non-impregnated Roebel cable view without a glass-fiber sleeve.
It is viewed from the wide face direction of tapes showing the location of the
cut of the cable model. The tapes are in frictional contact after impregnation,
as the epoxy does not enter between them. (b) Feather-M2 magnet model
central cross-section. Warp direction of Layer jump support corresponds to
y-axis and warp direction on G-11 layer insulations correspond to x-axis. The
narrow dimension in both corresponds to thickness direction of the fibers.

jacket domain (coating domain) surrounding the substrate
(Fig. P}Fig. [@). Actually, the copper jacket does not have uni-
form thickness and perfect rectangular shape due to imperfect
electroplating, however these imperfections (in particular the
so-called dog-bone shape of the copper jacket) are neglected
in the model. It is thus possible to have a regular mesh on
the straight contact surfaces with nodes located on the same
point on each side of the tape-to-tape contact. The contacts
can therefore reduce the nonlinear computational effort, and
it is also possible to reduce the number of elements. This
approach results in total of 280 contact surface pairs between
the tapes. The pressure distribution of Fig. [5| can be imported
on the nodes on the line that is between the substrate domain
and the coating domain (Fig. [3). These two domains share
nodes on their interface, which implies coupling of all degrees
of freedom in each node. For the turn #1 next to the layer
jump (Fig. [T), the volume of the glass-resin composite next to
the conductor can be locally relatively large. It is therefore
important to investigate the possible conductor layer shear
stress at that location during the cool down. The wide face
of the coating can be modelled with nodes on both domains
and then connected with Multi Point Constraint (MPC)
bonded contact approach.

Glass-fiber sleeve Copper wire
orientation Glass fiber sleeve of wire
fill direction Epoxy

thickness direction

Fig. 2. A 15 strand Roebel cable cross-section. The picture has been magnified
vertically for detail view. REBCO tape substrate is in dark grey, copper in
orange, glass sleeve in dark violet and resin rich zone in light grey. The warp
direction of the GF Sleeve is along the cable axis.

Fig. 3. A magnification of the right zone of Fig. Pressure import on
conductor is represented by the arrows on green nodes, shared by the Cu-

and substrate material domains.
Conductor
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Fig. 4. Cable dimensions and connections. The full cable domain is 12.3 x
1.13 mm, the conductors are 5.5 mm wide.
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Fig. 5. The imported horizontal pressure distribution on the individual
tapes resulting from the non-uniform current distribution (see [4]]). The
superconductor and buffer layers are not explicitly modelled, Radial dimension

of the coil is magnified by factor 6 compared to real dimensions.
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TABLE I
THERMAL CONTRACTION FROM 293 K TO 4 K

Material ~ G-11 G-11 G-11 CTD-101K  Kapton
Dimens. thickness warp fill isotr. isotr.
1073 6.20 2.10 2.10 12.08 44
Ref. [13] [13] [13] [14] [L5]
Material GF Sleeve  GF Sleeve  GF Sleeve ~ OFCH Cu SS304
Dimens. thickness warp fill isotr. isotr.
10—3 5.95 1.95 1.95 3.23 2.97
Ref. [L6]* [L16]* [Lef* [14] [L7]

TABLE I

E-MODULUS [MPA]

Material ~ G-11 G-11 G-11 CTD-101K  Kapton
Dimens. thickness warp fill isotr. isotr.
4K 22000 39400 32900 (6440) 2500
76 K (18650) 37300 31100 (6420) 2500
295K  (14406) 32000 25500 4400 2500
Ref. [18]* [19] [16]* [20]* [21]
Material GF Sleeve  GF Sleeve  GF Sleeve ~ OFCH Cu SS304
Dimens. thickness warp fill isotr. isotr.
4K 19700 39400 32900 117000 210000
76 K 16700 37300 31100 117000 215000
295 K 12900 32000 25500 117000 199500
Ref. [1ef* [19] [16]* [22] [L7]

TABLE III

POISSON’S RATIO

Material ~ G-11 G-11 G-11 CTD-101K  Kapton
Dimens. th-warp warp-fill th-warp isotr. isotr.
4K (0.12) 0.212 0.22 0.30 0.34
76 K (0.13) 0.22 0.21 0.30 0.34
295 K 0.09 0.16 0.15 0.30 0.34
Ref. [23]]* [19] [19] [24]* [21]
Material GF Sleeve  GF Sleeve  GF Sleeve ~ OFCH Cu SS304
Dimens. th-warp warp-fill th-warp isotr. isotr.
4K (0.12) 0.21 0.22 0.34 0.30
76 K (0.13) 0.22 0.21 0.34 0.30
295 K 0.09 0.16 0.15 0.34 0.30
Ref. [23])* [19] [19] [25]* [25])*

TABLE IV

SHEAR MODULUS [MPA]

Material ~ G-11 G-11 G-11 CTD-101K  Kapton
Dimens. th-warp warp-fill th-warp isotr. isotr.
4K (4917) 9000 9000 2403 933
76 K (4169) (7629) (7629) 2396 933
295 K 3220 (5893) (5893) 1642 933
Ref. [23])* [L8]* [L8]* o wE
Material GF Sleeve  GF Sleeve  GF Sleeve  OFCH Cu SS304
Dimens. th-warp warp-fill th-warp isotr. isotr.
4K (4917) 9000 9000 43657 80769
76 K (4169) (7629) (7629) 43657 82692
295K 3220 (5893) (5893) 43657 76731
Ref. [23])* [L18]* [L18]* o wE

Due to lack of material property data, some material properties are replaced
by similar materials. These references are marked by *. Some values
are in brackets to indicate that the value has been extrapolated. For the
shear modulus of isotropic materials, marking by ** at the reference
column means that the values are computed using Poisson’s ratio and
E-modulus. In this analysis SS304 represents all stainless steel structures
and substrate domains in the computation. The GF sleeve is S-2 493 33
[26] impregnated with CTD-101K.

C. Cable level

With respect to the actual 3D cable geometry, in the 2D
model an ideal position of each tape is assumed, i.e. without

longitudinal slippage of tapes due to winding effect. The
cable model includes a domain for the central filler wire, see
Fig.[2] It was introduced to reduce resin volume, limiting stress
concentration due to thermal contraction, and for constraining
the movement of the tapes towards the cable central gap. [27]]
Frictional contacts between the tapes inside each cable are as-
sumed. The coefficient of friction (CF) is iteratively increased
to test the sensitivity of the sliding with respect to the CF.
It is assumed that the tapes do not slide very easily, and a
CF=0.2 is chosen at the limit of tapes not moving due to part
of the e.m. forces acting parallel to the strand surface. With a
higher CF value, shear stresses between the tapes are higher,
which implies that the coil experiences less deformation in the
vertical direction. We believe that CF=0.2 is a conservative
value, but this point needs to be more deeply investigated.
Cable insulation, i.e. impregnated glass fiber (GF) sleeve
with resin impregnation, is modelled as a separate domain
(Fig. 2}Fig. @) composed of four rectangular sub-domains that
allow anisotropic material properties along the two axis. All
mechanical properties are summarized in the Table[I} Table
The connection between the insulation and the tape is intri-
cate. The GF and epoxy have very different E-moduli and
coefficient of thermal expansion. An intermediate epoxy layer
is assumed around the GF domain. Due to this the shear stress
build-up due to cool down is reduced and more realistic. Thus
the tapes are all assumed to be connected to composite through
thin epoxy layer by coupling as shown in Fig. 4 It is assumed
that the epoxy does not delaminate on the narrow faces of the
tapes due to cool down. An important modelling assumption
is taken in order to reduce computational time: the narrow
face of the copper jacket shown in the Fig. 4|is coupled with
the epoxy domain (that is coupled with the GF domain). In
the model, nodes on two different domains, and located at the
same point are merged into one single node, thus coupling all
degrees of freedom between the domains.

D. Magnet assembly level

Thanks to the use of mould release agent during winding
on the former surfaces, the impregnated coil pack can sep-
arate from the vertical surfaces. The horizontal surfaces of
the former and lower surface of the top copper loop allow
horizontal movement of the coil turns towards the stainless
steel shell. These surfaces are modelled as frictional contact
surfaces, having CF=0.2. During the impregnation, the epoxy
resin enters in between the parts of the assembly cross-section,
bonding the various surfaces together. However, due to very
low E-modulus of the epoxy, we assume that the iron pole,
top copper loop and former (Fig. [I) can move easily relative
to interfacing domains. The coil pole is impregnated before
inserting it into the stainless steel shell, so the surfaces of
the former are not coupled to the ground insulation. The
copper loops at the coil level may move easily relative to
all interfacing parts, except Kapton ground insulation, where
it is bonded. Frictional contacts are used in all these above
mentioned interfaces. This approach avoids coupling interfaces
between materials with high E-modulus, and thus making the
assembly unrealistically stiff.
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E. Elements and load steps

The material domains of model are based on Plane183 element
that includes all the necessary degrees of freedom [28]]. The
element mid-nodes are turned on. Additional features include
non-linearity of the stiffness matrix and temperature dependent
material properties (see Table [ Table [[V). There is no account
taken for plastic deformation in this initial analysis phase.
Roughly 600.000 nodes form sufficient mesh. At the thin
copper coating domains, there are at minimum two elements
for the thickness direction of the coating, but the aspect ratio
of the elements is large. However, the almost unidirectional
pressure distribution can be computed with this initial mesh
geometry.

The first load step is the cool down from room temperature
(293K) to 4.2K. In the second step, powering at 17T (at-
tained in insert mode with 13T background), the non-uniform
force distribution in the modelling plane is imported from the
electromagnetic model that computes forces in 3D [4]. The
downwards pulling force of the iron pole 58 N/mm (mm along
z-axis) was computed using ANSOFT Maxwell in 3D and
added on the low boundary of the iron to approximate the
load on this domain.

III. RESULTS DISCUSSION

In the Fig.[6] the stress field is shown at maximum field (17 T)
in the case of simplified model, where the coils can slide
against an infinitely rigid radial support. Compression level
occuring inside one element thickness at the edge reaches up
to 400 MPa (Fig. |§| (a)). Outside the singularities, 220 MPa is
maximum. For comparison, a case where forces are averaged
over the full coil is shown (Fig. [6| (b)). In the full-scale model
(Fig. [T), the cool down generates 10 — 30 MPa shear on the
epoxy at the surfaces of the tapes. According to [29], this level
of shear likely leads to epoxy delamination from the coating

(b) Uniform
force distribution

(a) Non-uniform
force distribution

Fig. 6. The case of the coil without external structures to show the natural
horizontal pressure distribution of the coil at 17 T field due to (a) non-uniform
and (b) uniform force distribution. In the latter, the forces concentrate in the
middle of the cable.
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Fig. 7. The horizontal pressure distribution [MPa] in the coil due to non-
uniform force distribution after cool down and powering at 17 T.

surface as the maximum shear stress of 8 — 10 MPa is ex-
ceeded. Due to the likely delamination at low shear level, HTS
conductors are protected from fracturing due to cool down.
The G-11 layer insulation located in the middle of the coil
has smaller thermal contraction in the horizontal direction than
the composite coil domains in the same direction. After cool
down we can observe 80 MPa shear stress between the cable
GF insulation and G-11 layer insulation bonded by the epoxy.
Shear strenght of epoxy at 76 K is 85 MPa, [16]. However, this
model is limited for evaluation of shear stress, as the conductor
narrow face is not allowed to delaminate and relieve portion of
shear stress. If the full delamination occurs between the coil
and layer insulation, the coil stress distribution will resemble
more Fig. [6] than Fig. [} The distribution of the e.m. forces
concentrates on the edges of the conductor, and it can be seen
that the copper would plastically deform in any case, as the
elastic limit (35 MPa [30]) of annealed copper is exceeded
in coating and copper loops. If full coupling between the G-
11 and the coil insulation is assumed in the powering of the
coil, the stress concentrations from the edges of the tapes are
supported by the G-11. This lowers the peak stress of the tapes
of the most loaded turns to —150 MPa, (Fig. [7), and the stress
distribution on conductor is more uniform.

IV. CONCLUSION

The non-uniform stress distribution was computed for the
Feather-M2 magnet. Due to impregnation we may experience
delamination of the epoxy at the tape surface due to cool down.
This is beneficial, since the delamination likely occurs at very
low shear stress levels, protecting the HTS conductor. A mea-
surement was recently performed at The University of Twente
for a cable under uniform transverse pressure. No degradation
of Ic was seen at 450 MPa, [31]]. If mould release agent is
applied on the G-11 layer insulation before impregnation, the
layer insulation deliberately delaminates from the coils due to
cool down. This makes the coil mechanically more predictable,
and is a viable option. According to the computations, even
in the case of Fig. [f] the stress level —220 MPa due to the
non-uniform current distribution is reasonable.
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