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Abstract.
During the LHC Run-1 data taking, all experiments collected large data volumes from

proton-proton and heavy-ion collisions. The collisions data, together with massive volumes
of simulated data, were replicated in multiple copies, transferred among various Tier levels,
transformed/slimmed in format/content. These data were then accessed (both locally and
remotely) by large groups of distributed analysis communities exploiting the WorldWide LHC
Computing Grid infrastructure and services. While efficient data placement strategies - together
with optimal data redistribution and deletions on demand - have become the core of static versus
dynamic data management projects, little effort has so far been invested in understanding the
detailed data-access patterns which surfaced in Run-1. These patterns, if understood, can be
used as input to simulation of computing models at the LHC, to optimise existing systems
by tuning their behaviour, and to explore next-generation CPU/storage/network co-scheduling
solutions. This is of great importance, given that the scale of the computing problem will
increase far faster than the resources available to the experiments, for Run-2 and beyond.
Studying data-access patterns involves the validation of the quality of the monitoring data
collected on the “popularity of each dataset, the analysis of the frequency and pattern of
accesses to different datasets by analysis end-users, the exploration of different views of the
popularity data (by physics activity, by region, by data type), the study of the evolution of
Run-1 data exploitation over time, the evaluation of the impact of different data placement
and distribution choices on the available network and storage resources and their impact on the
computing operations. This work presents some insights from studies on the popularity data
from the CMS experiment. We present the properties of a range of physics analysis activities as
seen by the data popularity, and make recommendations for how to tune the initial distribution
of data in anticipation of how it will be used in Run-2 and beyond.

1. Introduction
The CMS experiment [1] at the LHC accelerator is concluding the first Long Shutdown (LS1)
after a successful first run of data taking (Run-1), and Run-2 is currently expected to start
in Summer 2015. Plenty of data have distributed world-wide using a CMS-specific data
management system that runs on top of Grid transfer tools, called PhEDEx [2, 3] (more than
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150 PB moved during Run-1, currently moving about 2.5 PB per week among about 60 Grid
sites). The distributed community of physicists is accessing Run-1 data and simulated data using
the CRAB system [4, 5], currently at version 3. Since few years, CMS is collecting data on the
most frequently datasets being accessed at all Grid sites of the Worldwide LHC Computing Grid
(WLCG) [6, 7], thus enabling CMS to study the so-called “popularity” of each sample (more
details in [8]). This information is collected in quite some details: when one of the replicas of each
CMS dataset is accessed via CRAB analysis jobs at a certain computing sites, the timestamp of
the access, the site hosting the data, the number of existing replicas, the location of such replicas
on the computing infrastructure, the amount of CPU time used to access such dataset, etc. are
collected and saved in a central DB for further aggregation and consumption. One of the first
impact of such effort on the CMS Computing operations is that the CMS data placement is
evolving towards a less static model, i.e. replicas are added (removed) for datasets that appear
to be most (least) popular. This activity is already in production for CMS and documented in
this same conference [9]. In this paper we discuss a complementary, forward-looking approach.
The basic idea is to profit from the experience that can be gained from studying the access
pattern to the data in the present to perform prediction for the data accesses in the near future,
namely predict which datasets will become popular once they will be available on the Grid for
distributed analysis.

2. The CMS Analytics approach
The CMS experiment recently launched a project focussed on Data Analytics techniques. By
”data” here we refer to any (meta-)data produced by any Computing Operations activity since
the start of Run-1. The project has different goals depending on the timeline. As a long-
term goal (2-3 years), the project aims to build an adaptive data-driven model of the CMS
Data Management (DM) and Workload Management (WM) activities [10], with the target of
being able to predict future behaviours of the CMS computing systems in operations from the
measurements of their past performances. A medium-term goal (e.g. within or soon after Run-
2), the project aims to use the information coming from analytics studies to improve the use
of CMS computing resources (e.g. optimise only the disk occupancy, minimise the number of
datasets’ replicas, etc); this is a remarkable goal in itself, but smaller in scope with respect to
the previous one. As a short-term goal (within Run-2) instead, the project aims to just provide
a concrete support the CMS Computing Operations team through a deeper understanding and
analysis of the data that describe the way CMS Computing operations were performed in Run-I
and LS1, at least in some sectors, with priorities driven by Computing Operations needs. The
rationale behind this modelling to be adaptive is that models that were elaborated in the past
are not going to apply to the future for long, thus only really adaptive modelling would equip
CMS with predictive power in the long term.

The CMS Analytics project is subdivided in a number of sub-projects. We proceed by adding
all possible ideas in a pool of potentially interesting projects which are brainstormed and studied
for feasibility and in terms of potential impact; all of them are thought to be self-contained and
well-defined in scope and timeline. In order to protect the limited manpower we have, only once
a sub-project is found to be promising and useful for CMS Computing Operations as a whole,
the sub-project is actually started and pursued until completion. In the following, the data
treatment is discussed in general, and first observations from the application of this approach
on the particular case of the “data popularity” are presented.

3. Data treatment
The operations model built by CMS before Run-1 worked successfully and met all requirements.
Despite it was a success and well served the CMS physics program according to all possible
metrics, in preparation for Run-2 (and beyond) most systems underwent a review to assess
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Figure 1. Different sources of structured and unstructured data to be fed to the CMS Analytics
project.

their readiness for the next data taking round. In general, a lesson learned was that despite a
given system worked, but it ended up in not being completely understood in the way it actually
operated over several years. As an example, the data traffic with Tier-2 sites as destinations
exceeded the expectations as from the MONARC model [11], and we found no way to reasonably
shape this transfers. As another example, the disk storage at the Tier-2 level was filled with
AOD/AODSIM data tiers, but plenty of it was not accessed by distributed analysis jobs over
long periods of time, thus accounting for not efficient resource utilisation.

In the CMS Computing operations in Run-1 and LS1, all computing systems collected large
amounts of data about operations themselves, namely monitoring data, accounting information,
machine logs, etc. This data refers to transfers, job submissions, site efficiencies, release details,
infrastructure performance, analysis throughput, and much more. All this data is archived, but
never really accessed and analysed a-posteriori by anyone - as we mainly monitor our systems
in near-time for debugging purposed only, rather than analyse a large bunch of such data to
study in depth the behaviour of a complex system. Additionally, the data as such is neither
complete nor validated, thus resulting in a data set that needs to go under a data preparation and
validation step before being suitable for any further analysis. Once this cleaning and validation
is performed, this data stands as a precious input for a Big Data analytics project. In terms
of the four big V’s that define Big Data, some apply to this context more than others. The
Volume (scale of the data) is not negligible in itself, but definitely manageable with respect to
the total volume of the LHC collisions data we deal with, or the large amounts of simulated
data. The Velocity (analysis of streaming data) is partially relevant, in the sense that we may
aim to a quick availability of analytics results, but having a real-time system is not actually
a requirement. The Variety (different forms of data) is very relevant, as we deal with a very
irregular data set, consisting of structured, semi-structure and unstructured data (as explained
in the following). The Veracity (uncertainty of data) is also delicate, as the integrity of the
data and the ability to trust the outcome of the data analysis to make informed decision is very
critical.
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Figure 2. Description of the DCAFPilot, in terms of workflow and components.

3.1. Structured and unstructured data
Many CMS Computing activities in their execution produce data which are stored across multiple
data services and are available via CMS data service APIs: all these information are “structured”
in type (see Fig. 1, blue color). Some examples can be listed: the DBS system (the CMS source
for physics meta-data); the PhEDEx transfer management database (central database for CMS
data transfer tasks, with data replica catalog functionalities); the Popularity Database (it collects
dataset user access information); SiteDB (it collects authoritative information about pledges at
WLCG sites, deployed resources, as well as manpower onsite); the CERN Dashboard (a large
repository of details e.g. on Grid jobs, etc).

In addition to structured data, much data in the CMS Computing ecosystem is partially or
completely unstructured (see Fig. 1, red color). With respect to the former kind, the latter is
much harder to collect and process, but potentially extremely rich in content. Some examples
of unstructured data are listed in the following, and some more details about what they may
offer can be found in [12]. The CMS HyperNews system hosts more than 400 different fora for
CMS today, and it represent de-facto a reference on several years of user activities, covering e.g.
announcements, hot topics, migration of interests in the user communities, etc. The ticketing
systems (Savannah, GGUS, but also discussions on activity-based ELOGs or topical e-groups)
give an overview of infrastructure issues and sites status over large windows of time. The
CMS portion of the CERN-based twiki system contains plenty of information on various CMS
software/computing topics, a sort of knowledge graph that could be mapped to user activities
and physics interests and may be used to model their evolution over the years. The CMS calendar
(including the list of major conferences and workshops that hosted CMS speakers) could be used
to track hot periods in CMS physics analysis, and may be used to identify seasonal cycles in each
physics community (also Vidyo logs could be helpful to pursue this goal). Even semi-structured
data like the cmsweb cluster front-end logs could be valuable to extract information on user
activities.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 032003 doi:10.1088/1742-6596/664/3/032003

4



Figure 3. The global CMS Tier-2 storage volume hosting AOD/AODSIM accessed in 2014, as
a function of the number of complete accesses per stored data (note the bi-logarithmic scale).

4. A use-case: CMS data popularity
The data described in the previous section, if properly handled and mined, has the potential to
act as a data vault on which predictions for specific observables may be tried. In this section
we describe how the “data popularity” can be of interest in this task, a the details of a pilot
project to demonstrate it.

As stated in the introduction, the CMS Dynamic Data Placement team relies on historical
information on the popularity of CMS datasets to add (remove) replicas of existing datasets that
are most (least) desired by end-users. This approach, demonstrated to be useful in production,
has one flaw though: it reacts to spikes in the dataset popularity only after the fact. It is
desirable to predict which datasets will become popular even before such datasets are available
on Grids.

The data popularity, despite relatively simple in definition, is a complex observable once it
is deeply investigated in all its aspects and if it is studies in its evolution over time for a large
set of data like all the data available on WLCG sites to CMS analysis users. In Figure 3, the
accessed storage volume to AOD/AODSIM data format on all CMS Tier-2 centers in the entire
2014 is displayed as a function of the number of complete accesses per stored data. As the plot
shows, the bulk of the accesses is not on a single peak, but actually quite dispersed. But one
bin is the most striking, i.e. the first one ‘artificially’ added in correspondence to 0 accesses (it
will be called “bin-0” in the following). This bin quantifies an important observation: in CMS
Computing operations in 2014, 16% ( 29%) of the total storage at Tier-2 sites occupied by AOD
(AODSIM) has been accessed not even once in the entire 2014. This information is completely
lost in case a blind average is done to compute the mean number of complete accesses per stored
byte. E.g. studying this in January 2015 and looking at different time windows in the past (1
month, 3 months, 6 months, etc), it could be easily extracted for example that in 2014 each
bit written on Tier-2’s was accessed on average about 10 times: a decent and reassuring figure,
which on the other hand averages on accessed and not accessed data though, so it actually fails
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Figure 4. A. Example of a heat-map showing dataset-level correlation in “bin-0” (see text for
explanation). B. Monthly increase (green) and decrease (red) in the number of non-accessed
datasets at Tier-2 centers in second half of 2014 (see text for explanation).

to tell us more on what really is in the “bin-0”. Deeper investigations on such bin-0 are possible,
though. One option is to seek for correlation with specific classes of datasets, trying to identify
those datasets who cause a Tier-2 disk occupancy that do not result in any data access for long
time (e.g. parked datasets, see e.g. Figure 4A). Another option is to investigate more complex
correlation, e.g. if the incremental increase/decrease of the number of non accessed datasets
in the bin-0 (see e.g. Figure 4B) can be connected to the number of CMS contributions to
conferences, thus quantitatively showing e.g. the recurrent changes in the data access patterns
just before important conferences (preliminary studies on a partial data sample shows a tepid
anti-correlation, about 30%, between the number of unpopular datasets and the number of CMS
talks to conferences).

In a nutshell, the population of the bin-0 is one good example of an area that may benefit of
deeper investigations aimed at seeking correlations with other observables: there is a chance to
‘model’ the dataset accesses from past data, in a way that allows to predict the access patterns
in the near future.

5. A pilot framework for CMS analytics
A pilot project to understand the metrics, the analysis workflow and necessary tools (with
possible technology choices) needed to attack such problems was desgined and implemented, and
it is called DCAFPilot (Data and Computing Analysis Framework Pilot) [13]. The framework
has been recently exploited to investigate the feasibility of this analytics approach for the use-
case of the CMS data popularity described in the previous section.

The pilot architecture is graphically shown in Figure 2. First of all, data is collected from
CMS data services by a DCAF core that relies on MongoDB for its internal cache. At the
moment, structured data are collected from DBS, PhEDEx, PopDB, SiteDB, Dashboard (see
[14] for more details on these CMS systems). In some more details: all datasets from DBS are
collected into the internal cache; popular datasets are queried from the Popularity Database
with a weekly granularity; for all of these datasets more information is also extracted from DBS,
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PhEDEx, SiteDB and the Dashboard. This information is then complemented with random set
of unpopular datasets (to avoid bias in machine learning algorithms used in a later stage).

Secondly, a data-frame generator toolkit collects and transforms data from these CMS data
services and extract necessary bits for a subset of popular and un-popular datasets. This data-
frame is then fed to machine learning algorithms for data analysis (both python and R code is
used). Finally, a quantitative estimate of the popularity is given for specific types of datasets:
this may eventually be fed back to the CMS computing infrastructure as a useful input to the
CMS daily operations, as well as strategical choices.

At the current status, all data from 2013 and 2014 years have already been pre-processed
and are available for analysis. And a prediction of which dataset(s) may become popular can
be given, in the form of their probability versus each dataset name.

Before going into the results, some statistics from a dry run of the machinery are reported
. Five data services were queried (for DBS, 4 instances were used) via 10 different APIs. The
internal MongoDB-based cache was fed with about 220k datasets, 900+ release names, 500+
SiteDB entries, 5k people’s DNs. About 800k queries were placed in total. Anonymization
of potentially sensible information in these queries is done via the internal cache. The final
data-frame coming out of this stage is constructed out of 78 variables, it is made out of 52
data-frame files, for a total of roughly 600k rows. Each file is worth about 1 week of CMS
meta-data (in terms of size, it is approximately 600kB gzipped), and it corresponds to about 1k
popular datasets with a roughly 1:10 ratio of popular vs unpopular samples randomly mixed.
The data-frame can also be visualised real-time in terms of live data, correlations, as well as
exploring different data popularity metrics (for example, number of users accessing a dataset
versus total CPU used while accessing it).

The actual analysis can start only once the data collection is over. A data transformation
step happens, and transforms the data into a suitable format for machine learning techniques.
A specific machine learning approach must be chosen at this stage, e.g. either classification
(allowing only a classification into categories, namely popular or unpopular) or regression
(allowing to predict values for the metrics of choice, which may for example be the number
of accesses) or online learning techniques. Currently, only a classification approach has been
attempted. Then, the following step is to train and validate the machine learning model
itself, which in this case has been done by splitting the data into train and validation sets
(the 600K rows of the 2014 dataset have been organised to use the Jan-Nov sample as a
train set, and the Dec sample as the validation set, i.e. the predictive power of the model
is estimated on the validation set). At this moment several machine learning algorithms are
adopted within DCAFPilot project: a regular set of scikit-learn classifiers [15], e.g. Random
Forest, SGDClassifier, SVC, etc., the online learning algorhtm, Vowpal Wabbit [16], by Yahoo,
and gradient boosting tree solution (xgboost, the eXtreme Gradient Boosting) [17]. Next stage
is that new data are collected (e.g. early 2015) and they are transformed exactly as the 2014
dataset. The model chosen as the best one is finally applied to the new data to perform
predictions, and such predictions must be regularly verified with fresh data from the Popularity
Database once the metrics become available.

A major milestone within the DCAFPilot project has been completed, in terms of building
up the machinery, which means collect data at regular intervals, transform them into a machine
learning data-format, run various machine learning algorithms, yield predictions and compare
them.

All the results have to be taken as preliminary, but they are encouraging. We are able to
predict with reasonable accuracy a portion of the 2014 data set (see Table 1). None of the
classifiers were especially tuned during this exercise: instead, we concentrated on the general
approach and built all necessary tools to automate the procedure and build and maintain a
stable pilot.
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Once these results will be considered solid they will offer valuable information to tune CMS
computing operations. For example, a few false-positive popularity predictions would imply
some wasted bandwidth and disk space for a while, but not much at the end. On the other
hand, a false-negative can mean a delay of a few days in a specific analysis. In one considers
the experience of the Higgs announcement - in which data taken up to two weeks earlier was
included in the analysis, with plots produced on that same morning - is teaching us that in hot
periods a delay of few days could be important.

Classifier naccess > 10
accu prec reca F1

Random Forest [15] 0.98 0.86 0.98 0.92
SGDClassifier [15] 0.96 0.98 0.62 0.76
Linear SVC [15] 0.95 0.68 1.00 0.81
Vowpal Wabbit [16] 0.96 0.98 0.69 0.74
xgboost [17] 0.98 0.82 0.98 0.90

Table 1. Preliminary results from DCAFPilot. These predictions are performed by using
nine months of 2014 for training, and predicting October data using different machine learning
algorithms. The training set was split 66%/33% among training/validation and four statistics
metrics were calculated, namely accuracy (accu), precision (prec), recall (reca) and F1-score.

6. Conclusions and next steps
Over years of operation in Run-1 and LS1 we collected large volumes of data that can be used for
a better understanding of our Computing Model and for tuning our operations at the maximum
efficiency. This data includes structured data sources (such as CMS data-services which hold
information in relational databases) as well as unstructured data available via HyperNews,
twikies, calendars, etc.

We launched a CMS Analytics project, with the ultimate goal to build adaptive models of
CMS Computing. It is subdivided in sub-projects, each focussing on a specific use-case. In this
paper, we showed a proof-of-concept based on the single use case of the CMS dataset popularity,
and discussed its current status.

The DCAFPilot project has been used so far to build a working pilot to identify necessary
data sources, machinery and tools. It has demonstrated to be capable of collecting the data,
transforming them into a suitable format for machine learning, running various machine learning
algorithms and making reasonable predictions. The final predictions can be verified a-posteriori
by comparison with ‘real’ popularity data collected in the Popularity Database.

With such machinery now in place we are ready to start a full analysis. Our approach
will be the following: collect historical data on a weekly basis, run them through all needed
transformation and modelling steps, compare different classifiers and build the best predictive
model and, finally, apply such model to a new set of data we expect to have.

Aside for the specifics of the data popularity use-case, this pilot gives us confidence that we
can apply the same approach to other use-cases, thus adding more bricks towards the goal of
achieving adaptive models of CMS computing.
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