Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

002060017 001__ 2060017
002060017 003__ SzGeCERN
002060017 005__ 20210503222923.0
002060017 0247_ $$2DOI$$a10.1103/PhysRevLett.116.115001
002060017 037__ $$aarXiv:1510.04505
002060017 035__ $$9arXiv$$aoai:arXiv.org:1510.04505$$d2016-03-23$$h2016-03-24T06:29:18Z$$marXiv$$ttrue$$uhttp://export.arxiv.org/oai2
002060017 041__ $$aeng
002060017 100__ $$aYi, Longqing$$uHeinrich Heine U., Dusseldorf
002060017 245__ $$aBright X-ray source from a laser-driven micro-plasma-waveguide
002060017 269__ $$c15 Oct 2015
002060017 260__ $$c2016
002060017 300__ $$a8 p
002060017 500__ $$9arXiv$$aComments: 5 pages, 4 figures
002060017 520__ $$aBright tunable x-ray sources have a number of applications in basic science, medicine and industry. The most powerful sources are synchrotrons, where relativistic electrons are circling in giant storage rings. In parallel, compact laser-plasma x-ray sources are being developed. Owing to the rapid progress in laser technology, very high-contrast femtosecond laser pulses of relativistic intensities become available. These pulses allow for interaction with micro-structured solid-density plasma without destroying the structure by parasitic pre-pulses. The high-contrast laser pulses as well as the manufacturing of materials at micro- and nano-scales open a new realm of possibilities for laser interaction with photonic materials at the relativistic intensities. Here we demonstrate, via numerical simulations, that when coupling with a readily available 1.8 Joule laser, a micro-plasma-waveguide (MPW) may serve as a novel compact x-ray source. Electrons are extracted from the walls by the laser field and form a dense self-organized helical bunch inside the channel. The electrons are efficiently accelerated along the channel axis while rotated around it by the optical waveguide modes in the MPW. This helical motion of relativistic electrons results in a bright, well-collimated emission of hard x-rays in the range of 1~100 keV.
002060017 540__ $$aarXiv nonexclusive-distrib. 1.0$$barXiv$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002060017 595__ $$aLANL EDS
002060017 595__ $$aCDS
002060017 65017 $$2arXiv$$aOther Fields of Physics
002060017 65017 $$2EuCARD2$$a13: Novel Acceleration Techniques (ANAC2)$$bWP
002060017 65017 $$2EuCARD2$$a13.2: Achievement of high brightness electron beam with laser plasma accelerators$$bTask
002060017 690C_ $$aARTICLE
002060017 690C_ $$aEuCARD2
002060017 690C_ $$aEuCARD2PUB
002060017 695__ $$9LANL EDS$$aphysics.plasm-ph
002060017 700__ $$aPukhov, Alexander$$uHeinrich Heine U., Dusseldorf
002060017 700__ $$aThanh, Phuc Luu$$uHeinrich Heine U., Dusseldorf
002060017 700__ $$aShen, Baifei$$uCICIFS, Shanghai$$uShanghai, Inst. Optics, Fine Mech.
002060017 773__ $$c115001$$oPhys. Rev. Lett. 116, 115001 (2016)$$pPhys. Rev. Lett.$$v116$$y2016
002060017 8564_ $$uhttp://arxiv.org/pdf/1510.04505.pdf$$yPreprint
002060017 916__ $$sn$$w201541
002060017 960__ $$a13
002060017 980__ $$aARTICLE$$bEuCARD2