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1 Introduction

The gauge/gravity duality is a powerful principle which describes many physical systems

holographically. This holographic description relates strongly-coupled quantum field theo-

ries with their classical gravitational counterparts which live in one higher dimension [1–3].

A remarkable implementation of this holographic principle was realized in investigating

strongly coupled systems in condensed matter physics, the so called AdS/CMT correspon-

dence, which made possible the better understanding of numerous exotic but very impor-

tant features of electronic materials, including the high temperature superconductors and

the heavy fermion systems.

To describe these systems holographycally, fermion fields coupled to U(1) gauge field

have to be introduced in the gravity sector. The fermions were treated as a probe and

their backreaction on the background geometry were ignored [4–7]. The properties of the

spectral function showed that a Fermi surface usually emerges, the low energy excitations

of it can exhibit Fermi liquid, marginal Fermi liquid, or non-Fermi liquid behaviors. To

describe better various phases of a metallic state at low temperatures, a dipole coupling

to massless charged fermions was introduced [8, 9]. The presence of the dipole moment

introduced a scale in the system and this enabled in the dual field theory to model a Mott

insulating phase, generate dynamically a gap and spectral weight transfer. This proposal
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has triggered further interest in the study of the dipole coupling effect on the holographic

fermionic systems [10–19]. Then it was found in [20] that there exists a duality between

zeroes and poles in holographic systems with massless fermions and a dipole coupling,

which was also observed in [21].

In many condensed matter materials it was observed that at criticality their scaling

properties go beyond the standard Lorentz scaling. Then there is a need to describe holo-

graphically these systems with anisotropic (Lifshitz) scaling characterized by the dynamic

critical exponent z > 1 [22], or even with hyperscaling violation characterized by a non-zero

hyperscaling violation exponent θ [23–25].

To formulate the duality principle to describe holographically of such systems, it was

proposed [26] that their gravity duals should have a metric of the form

ds2 = r
−2θ
d

(
−r2zdt2 +

dr2

r2
+ r2dx2

i

)
. (1.1)

Under the transformation

t→ λzt , xi → λxi , r → λ−1r , (1.2)

with z 6= 1 indicating an anisotropy between time and space. The metric (1.1) transforms

as ds → λθ/dds which breaks the scale-invariance. A non-zero θ, indicates a hyperscal-

ing violation in the dual field theory. This metric is characterized by dynamical critical

exponent z and hyperscaling violation exponent θ [27] and when θ = 0 and z 6= 1, it is

reduced to the Lifshitz metric [22, 28–30], while it describes the pure AdS metric when

θ = 0 and z = 1.

Thermodynamically in these theories the entropy scales as T (d−θ)/z, while in theories

with gravity duals having the standard AdS metric, the entropy scales as T d. Note that

the hyperscaling violation leads to an effective dimension dθ = d − θ. It was addressed

in [31] that with the critical value d − θ = 1, the entanglement entropy shows up a loga-

rithmic violation [32, 33], and leads to an infrared metric which holographically represents

a compressible state with hidden Fermi surfaces [24].

The introduction of Lifschitz scaling and hyperscaling violation exponents in the met-

ric of the gravity sector has produced interesting results. It was showed that these critical

exponents play important role in the retarded Green’s function in holographic systems with

finite charged density [34–36]. It was found in [37] that for a specific value of the criti-

cal exponent z, the Luttinger’s theorem is violated. In a dual charged bulk theory with

hyperscaling violation, introducing a charge fermion as a probe to the extremal gravity

background, it was showed in [36] that the increase of the Lifshitz factor z and the hy-

perscaling factor θ broadened and smoothed out the sharp spectral function’s peak, which

indicates that the system does not have a Fermi surface.

In this work we will consider a dipole coupling in a charged gravity bulk with hyper-

scaling violation and explore the spectral function of the holographic dual fermion model.

The dual model with minimal coupling between fermionic field and gauge field was dis-

cussed in our previous work [38], in which we showed that as the hyperscaling violation

exponent is varied, the fermionic system possesses Fermi, non-Fermi, marginal-Fermi and
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log-oscillating liquid phases but failed to generate dynamically a gap. In the case of Lif-

shitz geometry, the generation of Mott gap due to the dipole coupling has been observed

in [39–41].

Our aim here is to study in details the behaviour of infrared (IR) and ultra violet (UV)

Green’s functions in an attempt to understand how the hyperscaling exponent modifies the

dipole effect on the formation of Fermi surface, the liquid types of the low energy excitations

and the emergence of the Mott insulating phase in these theories. Finally, we will show

that there is a duality of the zeros and the poles, first observed in [20], in theories with

hyperscaling violation.

The work is organized as follows. In section 2 we review the charged black hole back-

ground with hyperscaling factor and analyze the geometry in the near horizon limit at zero

temperature. We set up the fermionic model and analytically study the Green’s function

in the bulk theory in section 3. In section 4 we numerically investigate the properties of

the UV Green’s function and we discuss the effect of the hyperscaling exponent on the

emergerence of the gap, the formation of Fermi momentum and the excitations due to the

dipole coupling. Finally in section 6 we present our conclusions.

2 The charged black branes with hyperscaling violation from Einstein-

Maxwell-Dilaton theory

In order to study the dipole coupling effects on the charged black brane geometry with

hyperscaling violation, we will consider the (3 + 1)-dimensional Einstein-Maxwell-Dilaton

action [30]

Sg = − 1

16πG

∫
d4x
√
−g
[
R− 1

2
(∂φ)2 + V (φ)− 1

4

(
eλ1φFµνFµν + eλ2φFµνFµν

)]
, (2.1)

which contains two U(1) gauge fields coupled to a neutral scalar field φ. The U(1) field

A with field strength Fµν is necessary to generate a charged black brane solution, while

the other gauge field A with field strength Fµν is required to generalize the geometry from

AdS to the one with the hyperscaling violation. Following [36] and our discussion in [38],

if one considers a potential of the form

V (φ) = V0e
γφ (2.2)

which is necessary to obtain a general Lifshitz form of the metric with hyperscaling viola-

tion, one can find the charged black brane solution with hyperscaling violation [36]

ds2
4 = r−θ

(
−r2zf(r)dt2 +

dr2

r2f(r)
+ r2(dx2 + dy2)

)
, (2.3)

f = 1−
(rh

r

)2+z−θ
+

Q2

r2(z−θ+1)

[
1−

(rh

r

)θ−z]
, (2.4)

At = −/µr2+z−θ
h

[
1−

(
r

rh

)2+z−θ
]
, (2.5)
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At = µrθ−zh

[
1−

(rh

r

)z−θ]
, (2.6)

eφ = eφ0r
√

2(2−θ)(z−1−θ/2), (2.7)

where we have defined

/µ =

√
2(z − 1)(2 + z − θ)

2 + z − θ
e

2−θ/2√
2(2−θ)(z−1−θ/2)

φ0
, (2.8)

µ = Q

√
2(2− θ)
z − θ

e
−
√
z−1+θ/2
2(2−θ) φ0 . (2.9)

Here, rh is the radius of horizon satisfying f(rh) = 0 and Q = 1
16πG

∫
eλ1φFrt is the

total charge of the black brane. All the parameters in the action, dependent on the Lifshitz

scaling exponent z and hyperscaling violation exponents θ, and they can be determined as

λ1 =

√
2(z − 1− θ/2)

2− θ
,

λ2 = − 2(2− θ/2)√
2(2− θ)(z − θ/2− 1)

,

γ =
θ√

2(2− θ)(z − 1− θ/2)
,

V0 = e
−θφ0√

2(2−θ)(z−1−θ/2) (z − θ + 1)(z − θ + 2) . (2.10)

The Hawking temperature of the black hole is

T =
(2 + z − θ)rzh

4π

[
1− (z − θ)Q2

2 + z − θ
r

2(θ−z−1)
h

]
. (2.11)

Note that we have z ≥ 1, θ ≥ 0 and the above solutions are not valid for θ = 2.

Before proceeding, we would like to remark more on the parameters z and θ. First, the

background equations (2.3)–(2.7) are valid only for z ≥ 1 and θ ≥ 0. The case of z = 1

and θ = 0 corresponds to the AdS geometry. Second, the condition z − θ ≥ 0 is required

to make chemical potential well-defined in the dual field theory. Third, it is easy to see

that θ < 2 from equation (2.9). Combining the requirement of the null energy condition

(− θ
2 +1)(− θ

2 +z−1) ≥ 0 [36], one can have θ ≤ 2(z−1). Thus, in this charged background,

the range of the parameters is{
0 ≤ θ ≤ 2(z − 1) for 1 ≤ z < 2 ,

0 ≤ θ < 2 for z ≥ 2 .
(2.12)

For convenience we introduce the following rescaling

r → rhr , t→ t

rzh
, (x, y)→ 1

rh
(x, y) , T → T

rzh
,

Q→ r
(z−θ+1)
h Q , At → rhAt , At → rθ−z−2

h At ,
(2.13)
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and we set rh to be unity. Besides, we will set φ0 = 0 in the following discussion because

it is an integration constant. Then we can rewrite the metric factor f(r) and the gauge

fields At and At as follows

f = 1− 1 +Q2

rz+2−θ +
Q2

r2(z−θ+1)
, (2.14)

At = −/µ
[
1− r2+z−θ

]
, (2.15)

At = µ

[
1−

(
1

r

)z−θ]
, (2.16)

and the dimensionless temperature in the form

T =
(2 + z − θ)

4π

[
1− (z − θ)Q2

2 + z − θ

]
. (2.17)

The zero-temperature limit can reached when Q =
√

2+z−θ
z−θ and µ =

√
2(2−θ)(2+z−θ)

z−θ . Thus

at zero temperature and in the r → rh = 1 limit, we can reduce

f(r)|T=0,r→1 ' (z − θ + 1)(z − θ + 2)(r − 1)2 ≡ 1

L2
2

(r − 1)2. (2.18)

Therefore, at the zero temperature, we obtain the near horizon geometry AdS2 × R2 with

the curvature radius L2 ≡ 1/
√

(z − θ + 1)(z − θ + 2) of AdS2 which depends explicitly on

the Lifshitz scaling exponent z and hyperscaling violation exponent θ. So, near the horizon,

under the transformation r − 1 = ε
L2

2
ς and t = ε−1τ the metric and the gauge fields are

derived in the limit ε→ 0 with finite ς and τ ,

ds2 =
L2

2

ς2
(−dτ2 + dς2) + dx2 + dy2 ,

Aτ =
/e

ς
, Aτ =

e

ς
,

(2.19)

where /e = /µ(2 + z − θ)L2
2 and e = µ(z − θ)L2

2.

Before proceeding to the study of holographic fermionic, we would like to give some

comments on the geometry. We rewrite the Einstein-Maxwell-Dilaton action (2.1) as

Sg = − 1

16πG

∫
d4x
√
−g
[
R− 1

4
Z(φ)FµνFµν −

1

2
(∂φ)2 + Veff(φ)

]
, (2.20)

where

Z(φ) = eλ1φ and Veff(φ) = V (φ)− 1

4
eλ2φFµνFµν = V0e

γφ + VAe
γAφ (2.21)

with

VA =
1

2
(z − 1)(z + 2− θ) and γA =

θ√
2(2− θ)(z − 1− θ/2)

. (2.22)
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It is easy to check that θ = 0 and z = 1, leading to Z(φ) = 1 and Veff(φ) = 6, give

us the RN-AdS black hole solution. When Veff(φ) = V0 + VAe
γAφ, it was addressed in [30]

that the action admits a Lifshitz black hole solution with θ = 0. Therefore, the effective

potential Veff(φ) controls the UV geometry, which can be changed from AdS to Lifshitz,

even to the geometry with hyperscaling violation accompanying the parameters λ1 and γA.

The effective potential (2.21) is very different from that shown in [23, 26], in which the

authors constructed an effective holographic theory with a scalar field φ and only one gauge

field Aµ. In their work, the parameters λ1 in the gauge coupling function Z(φ) = eλ1φ and

γ in the potential V (φ) = V0e
γφ control the IR behavior. While for the UV limit, the

potential V (φ) is required to vanish so that it usually leads to asymptotically AdS. When

the gauge field in [23, 26] plays the role of Fµν but not that of Fµν in the action (2.1), one can

obtain UV geometry with asymptotically Lifshitz-AdS but uncharged as discussed in [28].

3 The holographic fermionic model

3.1 The Dirac equation

To probe the geometry with hyperscaling violation, we consider the following Dirac action

including a dipole moment coupling between the fermion and the gauge field1

SD = i

∫
dd+1x

√
−g ζ

(
ΓaDa −m− ip /F

)
ζ, (3.1)

where Da = ∂a + 1
4(ωµν)aΓ

µν − iqAa and /F = 1
2Γµν(eµ)a(eν)bFab with Γµν = 1

2 [Γµ,Γν ]

and the spin connection (ωµν)a = (eµ)b∇a(eν)b. Here, it is worthwhile to point out that

as a “bottom-up” approach, one can also add an additional dipole coupling term between

the Dirac field and the other gauge field A, i.e., p̃ζ /Fζ with /F = 1
2Γµν(eµ)a(eν)bFab, into

the Dirac action (3.1) and then explore its effects on the spectral function as well as

the enhance/competition between p and p̃. However, p̃ζ /Fζ will be divergent in the UV

boundary. Therefore, a new boundary counterterm is usually needed to obtain a finite

on-shell action. Ref. [49] can shed a light on how to understand the divergences from the

point of view of the field theory and the boundary counterterms. We shall further explore

this subject in the future. In this work, we will only investigate the case with p̃ = 0.

Now, we shall derive the Dirac equation. From the above action, with the redefinition

ζ = (−ggrr)−
1
4F and a Fourier transformation F = Fe−iωt+ikix

i
, we can write the Dirac

equation in the Fourier space

(
√
grrΓr∂r −m)F − i(ω + qAt)

√
gttΓtF + i(k

√
gxx − p

√
gttgrr∂rAt)Γ

xF = 0 . (3.2)

1The Dirac action (3.1) depends on the effective chemical potential µeff ≡ µq and the product of

the dipole coupling p and µ. That is to say, the Dirac action depends on the combination of gF q with

gF = 2√
Z(φ)

. For the case of z = 1 and θ = 0, gF q = 2 because of Z(φ) = 1. It is different from

refs. [5, 8, 9], in which the authors set gF = 1. Therefore, we remind readers to note that the charge q and

the bulk dipole coupling p for z = 1 and θ = 0 here will correspond to q/2 and p/2 in refs. [5, 8, 9].
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Due to the rotational symmetry in x− y plane, we have set kx = k and ky = 0. With the

choice of the usual gamma matrices

Γr =

(
−σ3 0

0 −σ3

)
, Γt =

(
iσ1 0

0 iσ1

)
, Γx =

(
−σ2 0

0 σ2

)
, . . . (3.3)

The Dirac equation takes the form[
(∂r +m

√
grrσ

3)−
√
grr
gtt

(ω + qAt)iσ
2 −

(
(−1)Ik

√
grr
gxx
− p
√
gtt∂rAt

)
σ1

]
FI = 0 (3.4)

with I = 1, 2. Decomposing FI into FI = (AI ,BI)T , we can get the equation of motion for

all the component as

(∂r +m
√
grr)AI −

√
grr
gtt

(ω + qAt)BI −
(

(−1)Ik

√
grr
gxx
− p
√
gtt∂rAt

)
BI = 0 , (3.5)

(∂r −m
√
grr)BI +

√
grr
gtt

(ω + qAt)AI −
(

(−1)Ik

√
grr
gxx
− p
√
gtt∂rAt

)
AI = 0 . (3.6)

Then defining ξI ≡ AIBI , we can obtain the flow equation

(∂r + 2m
√
grr)ξI −

[
v− + (−1)Ik

√
grr
gxx

]
−
[
v+ − (−1)Ik

√
grr
gxx

]
ξ2
I = 0 , (3.7)

where we have defined v± =
√

grr
gtt

(ω+qAt)±p
√
gtt∂rAt. For the convenience of numerical

calculation later, we make a transformation r = 1/u, so that the flow equation (3.7) can

be rewritten as(√
f∂u − 2mu

θ
2
−1
)
ξI +

[
ṽ−
u

+ (−1)Ik

]
+

[
ṽ+

u
− (−1)Ik

]
ξ2
I = 0 (3.8)

with

ṽ± =
uz√
f

(ω + qAt)∓ puz−θ/2+1∂uAt. (3.9)

3.2 Green’s function

3.2.1 UV limit

We first consider the UV limit of the Dirac equation. Equation (1.1) with hyperscaling

violation gives grr = r−θ−2, gtt = r2z−θ and gxx = gyy = r2−θ in the UV limit. Therefore,

the Dirac equation (3.4) becomes[
∂r +mr−

θ
2
−1σ3 − r−1−z(ω + qµ)iσ2 − ((−1)Ikr−2 − pµ(z − θ)r

3
2
θ−2z−1)σ1

]
FI = 0 .

(3.10)

Considering the allowed range of values of θ and z in equation (2.12), we can reduce

equation (3.10) in the limit of r →∞ to(
∂r +

m

r
θ
2

+1
σ3

)
FI ≈ 0 . (3.11)
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For θ = 0, equation (3.11) give the following solution

FI
r→∞
≈ bIr

m

(
0

1

)
+ aIr

−m

(
1

0

)
, (3.12)

which agrees well with the results in AdS or Lifshitz-AdS geometry. While for θ 6= 0, the

asymptotical behavior of FI becomes subtle. Firstly, equation (3.11) for θ 6= 0 satisfies the

solutions

AI =aIe
2m
θ
r−

θ
2 'aI

(
1 +

2m

θ
r−

θ
2 + . . .

)
, BI =bIe

− 2m
θ
r−

θ
2 'bI

(
1− 2m

θ
r−

θ
2 + . . .

)
.

(3.13)

Due to 2m
θ r
− θ

2 → 0 for θ > 0 in the limit of r → ∞, we can deduce that at the leading

order, the behavior of FI is

FI
r→∞
≈ bI

(
0

1

)
+ aI

(
1

0

)
(3.14)

which is the same asymptotical behavior as the case of zero mass in AdS (Lifshitz-AdS)

geometry. According to the discussion in [7], it applies that we can choose either aI or

bI as the source when we quantize Fermi field with different boundary conditions. In this

work, we will choose bI as the source and aI as the response. Thus, in the regime of linear

response, the boundary Green’s functions can be extracted by GI = aI
bI

. If we define

ξI ≡
AI
BI

. (3.15)

So the boundary Green’s functions can be expressed in terms of ξI

G(ω, k) =

(
G1 0

0 G2

)
=


lim
r→∞

r2m

(
ξ1 0

0 ξ2

)
, θ = 0 ,

lim
r→∞

(
ξ1 0

0 ξ2

)
, θ > 0 .

(3.16)

Also, from equation (3.8), we can see that the Green function has the following sym-

metry

G1(ω, k;m, p) = G2(ω,−k;m, p) . (3.17)

3.2.2 IR limit

We then turn to the IR limit of the equations of motion. Since the near horizon geometry

is AdS2 × R2, we will use the metric (2.19). In the low energy frequency limit ω → 0, the

Dirac equation takes the form

ς∂ςFI −
[
mL2σ

3 + ((z − θ)pµ− (−1)Ik)L2σ
1 − iσ2q(z − θ)µL2

2

]
FI = 0 . (3.18)

Note that we also choose the same Gamma matrices (3.3) but change Γς = −Γr to reflect

the orientation between the coordinates r and ς. As it was discussed in [7], equation (3.18)

coincides with the equation of motion for spinor fields in AdS2 background with masses

[m, m̃I = (z − θ)pµ− (−1)Ik] , (3.19)
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Figure 1. The oscillatory regions for z = 1.2; θ = 0 (left), z = 1.2; θ = 0.1 (middle) and z = 1.2;

θ = 0.4 (right). The orange region denotes the oscillatory region I2 for G22(ω, k) while the blue

region corresponds to oscillatory region I1 for G11(ω, k).

where m̃I(I = 1, 2) are time-reversal violating mass terms. Then F
(0)
I (ς) is dual to the

spinor operators OI in the IR CFT1 and the conformal dimensions of the operators are

δI = νI(k) + 1
2 with

νI(k) =

√
(m2 + m̃2

I)L
2
2 −

[
(z − θ)qµL2

2

]2
(I = 1, 2) . (3.20)

In (3.20) the Lifshitz and hyperscaling violation exponents as well as the coupling param-

eters like the dipole moment appear explicitly and they imprint their scalings in the IR

limit.

There exists a range of momentum

k ∈ II =
[
(−1)I(z − θ)pµ− (z − θ)qµL2, (−1)I(z − θ)pµ+ (z − θ)qµL2

]
(3.21)

in which ν(k) becomes pure imaginary. This region of momentum space is considered as

the oscillatory region. If the Fermi momentum falls in this region, the peak will lose its

meaning as a Fermi surface [7]. From the expression (3.21), it is obvious that for fixed z

and θ, the oscillatory regions for the two-dimensional dual operator are coincident with

I1 = I2 = [−(z − θ)qµL2, (z − θ)qµL2] for minimal coupling p = 0, but they will separate

when we turn on the dipole coupling. And when the dipole coupling satisfies |p| > qL2,

they will have no intersection. The separation behavior of the regimes I1 and I2 versus p

for various exponents can be seen in figure 1. It is obvious that the symmetry eq. (3.17) is

well embodied in the figure, i.e., I1 = −I2 for fixed dipole coupling. Another property we

can see from eq. (3.21) and the figure 1 is that I1 at p coincides with I2 at −p. The figure

also shows that for larger hyperscaling exponent, the boundary of the oscillatory region is

more smooth. We will see later that this behaviour will reflect a phase transition which

occurs at a critical dipole coupling with the variation of the exponents.

Also following the matching method proposed in [7], we can match the inner and outer

solutions in the matching region (ς → 0 and ω/ς → 0). We express the coefficients aI and

bI in (3.14) as

aI = [a
(0)
I + ωa

(1)
I + · · · ] + [ã

(0)
I + ωã

(1)
I + · · · ]GI(k, ω) ,

bI = [b
(0)
I + ωb

(1)
I + · · · ] + [b̃

(0)
I + ωb̃

(1)
I + · · · ]GI(k, ω) , (3.22)
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where coefficients a
(n)
I , ã

(n)
I , b

(n)
I and b̃

(n)
I are to be determined and

GI(k, ω) ={
e−iπνI(k)

Γ(−2νI(k))Γ(1 + νI(k)− i(z − θ)qµL2
2)[(m+ im̃I)L2 − i(z − θ)qµL2

2 − νI(k)]

Γ(2νI(k))Γ(1− νI(k)− i(z − θ)qµL2
2)[(m+ im̃I)L2 − i(z − θ)qµL2

2 + νI(k)]

}
ω2νI(k)

(3.23)

is the retarded Green functions of the dual operators OI . We see that the hyperscaling

violation exponent and dipole coupling explicitly modify the boundary Green’s function.

More discussions on the above Green’s function can be seen in [7] where it was found

that (3.23) is only valid when 2νI(k) is not an integer. In the case when it is an integer,

terms like ωn log(ω) should be added.

Since the IR geometry of the charged geometry with hyperscaling violation is also

AdS2 × R2 as that in RN-AdS black brane and Lifshitz AdS black brane, we can easily

derive the boundary conditions of ξ at the horizon rh = 1 for ω 6= 0 and ω = 0 as
ξI

r→1
= i for ω 6= 0 ,

ξI
r→1
=

mL2 − νI(k)

(z − θ)qµL2
2 + m̃IL2

for ω = 0 .
(3.24)

4 The effect of dipole coupling on the spectral function in the Fermionic

system

We numerically solve the flow equation (3.8) and read off the asymptotic values to extract

the retarded Green functions. By studying the spectral function, we will explore the

generation of a gap phase due to large enough dipole coupling in the bulk with different

hyperscaling violation strength. Then, we also go to small dipole coupling to find out the

Fermi momentum and the type of excitations near the Fermi surface. Our study will focus

on taking m = 0 and q = 0.5.

4.1 The emergence of the Mott gap

We will calculate the density of states A(ω) by doing the integration of the Fermi spectral

function A(ω; k) = Tr[Im G(ω; k)] over k. The effects of the dynamical Lifshitz exponent

on the holographic fermionic systems and the emergence of the Mott gap were discussed

in [39–41]. It was found that the gap opens easier for the larger Lifshitz exponent. Here

we will mainly focus on the effects of the hyperscaling exponent.

For comparison, we first show the results of the gap emergence due to the dipole

coupling in a RN-AdS black hole background, i.e., with z = 1 and θ = 0. In figure 2,

we show the results of ImG22 for p = 0 and p = 6. The left plot is for p = 0, where

the quasi-particle-like peak at ω = 0 indicates a Fermi surface near which the low energy

excitation is non-Fermi liquid type [5]. The right plot is for taking p = 6 where an explicit

gap is around ω = 0. This is the dipole coupling effect first studied in [8, 9].

Then we turn on hyperscaling violation θ to consider its effect on the dual field theory.

The Green functions with fixed z = 1.2 for different θ are shown in figure 3. Comparing

– 10 –



J
H
E
P
0
4
(
2
0
1
5
)
1
3
7

Figure 2. Im[G22(ω, k)] for p = 0 (left plane) and p = 6 (right plane) in RN-AdS background.

Figure 3. The density plots of Im[G22(ω, k)] for p = 0 (left plane) and p = 6 (right plane).

The exponents for the up plane are z = 1.2 and θ = 0.1 while the bottom plane are for z = 1.2

and θ = 0.4.

the plots in figure 3, we find that for a fixed value of the dipole coupling, the larger

hyperscaling violation exponent introduces smaller gap, which implies that in the theory

with hyperscaling violation the Mott gap phase is hard to be formed. This feature is

explicitly shown in figure 4, where we present the density of states near the chemical

potential with p by changing the hyperscaling violation exponent. Each plot shows that

as the dipole coupling is strengthened, the spectral function will be suppressed near the

zero frequency, then a gap will open at some critical value, accompanying spectral weight

transfer from positive frequency band to negative band.

It is important to note that in figure 3 an explicit band is shown to be generated

which disperses as k increases. This band is very important because it contributes to the

spectral function, especially the spectral weight transfer at negative enough frequency. The

mechanism of the generation of this band is still called for.
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Figure 4. The behaviour of spectral function A(ω) with ω for z = 1.2. We set θ = 0.1 (left plane)

and θ = 0.4 (right plane) respectively.
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Figure 5. The dependence of pc for the gap opening on the effective dimension dθ = d − θ with

z = 1.2. Here in our case we have d = 2 .

Carrying out some exact calculations to define the gap when the spectral function is

below ∼ 0.0001, we determine that the gap opens at pc ' 1.94 for z = 1.2 and θ = 0,

pc ' 2.05 for z = 1.2 and θ = 0.1, and pc ' 2.51 for z = 1.2 and θ = 0.4. These results

show that as θ increases, pc becomes larger, which means that the gap is more difficult to

be generated dynamically.

This is a very interesting result. While the anisotropic Lifshitz scaling tends to decrease

the critical value of the dipole moment pc, the increase of Lifshitz exponent can make the

Mott gap open up more easily [39–41]. However, the increase of the hyperscaling violation

factor plays the opposite role, which makes it harder for the Mott insulating phase to

appear. This behaviour can be understood as follows. As we discussed in the introduction,

the hyperscaling violation factor introduces an effective dimension dθ = d−θ into the theory

with d = 2 in our holographic model. So larger hyperscaling violation factor corresponds

to lower effective dimension. Then if one looks at the flow equation, the critical p is larger

for lower dimension, because the spacetime dimension compensates the effect of p. This

behaviour was observed for the first time in [13]. Furthermore, we get the dependence of

pc for the gap opening on the effective dimension dθ with z = 1.2 in figure 5. It seems that

in systems with lower effective dimension the Mott gap phase is harder to emerge.

4.2 The formation of the Fermi surface and the type of low energy excitations

In this subsection, we will turn to discuss the case with p < pc. We intend to see the

effect of the dipole coupling on the Fermi surface as well as its type, and investigate how

– 12 –
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Figure 6. The momentum of Fermi surface corresponding to G2 for small dipole coupling. The

orange band denote the oscillatory region of G2. The parameters from left to right are z = 1.2 and

θ = 0, z = 1.2 and θ = 0.1, z = 1.2 and θ = 0.4 respectively.

p −1.5 −1 −0.5 0 0.02 0.05 0.1

z = 1.2, θ = 0 −1.0141 −0.6262 −0.1279 0.6812 — — —

z = 1.2, θ = 0.1 −1.0942 −0.6713 −0.1383 0.6883 0.7274 — —

z = 1.2, θ = 0.4 -1.4334 −0.8601 −0.1853 0.7084 0.7490 0.8120 —

Table 1. The Fermi momentum with different p for the various parameters. Here “—” denote the

Fermi momentum can not represent the Fermi surface.

the Fermi surface enters into the oscillating region, losing its meaning in the background

with hyperscaling violation. To study the solutions explicitly, we will numerically solve the

Dirac equations to determine where the system possesses a Fermi surface and the type of

excitations.

Figure 6 displays our findings for the momentum of Fermi surface as well as its be-

haviour entering into the oscillatory regions with various exponents. In the figure we can

see that as the hyperscaling violation exponent increases, the critical dipole coupling poc
which makes the Fermi momentum to enter the oscillatory region becomes larger due to

the smoother oscillating boundary. This behavior is expected the same as that of pc to

open the Mott gap. The values of the critical dipole couplings are poc ' 0.010 for z = 1.2

and θ = 0, poc ' 0.038 for z = 1.2 and θ = 0.1 while poc ' 0.078 for z = 1.2 and θ ' 0.4.

In all cases, when p > poc, the Fermi momentum will lose its meaning of Fermi surface.

When p is smaller than poc, the Fermi momentum increases as the dipole coupling becomes

large and then enters into the oscillatory region, which is consistent with the observation

in [9]. In addition, we show the samples of Fermi momentum with different p for various

parameters in table 1. For p deviates away from poc, we see that the Fermi momentum

is smaller for larger hyperscaling exponents. While near the oscillating boundary and for

the minimal coupling, the Fermi momentum is larger for bigger exponents due to the lower

effective dimension as we discussed in [38]. This behavior near the oscillatory region can

be attributed to the smooth boundary of the region with larger hyperscaling exponent.

Having the Fermi momentum, we can calculate the dimensionless scaling ν2(k) in

terms of the expression (3.20). As discussed in [5], imaginary νI(k = kF ) corresponds to

– 13 –
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Figure 7. ν2(k) changing with the dipole coupling for various parameter. We mark the marginal

Fermi type with dashed line.

“log oscillatory” solutions as we emphasized before. When νI(k = kF ) < 1/2, the pole

of GR corresponds to an unstable quasi-particle which is identified as a non-Fermi fluid.

With the value νI(k = kF ) = 1/2, the excitations are of marginal Fermi fluid type. For

νI(k = kF ) > 1/2 the dispersion relation is linear denoting the Fermi fluid.

The results of ν2(k) changing with the dipole coupling are shown in figure 7. With all

choices of exponents, there is a phase transition from Fermi liquid to marginal Fermi liquid

then to non-Fermi liquid as the dipole coupling becomes stronger. Combining figure 7

and figure 6, we can cconclude that the system can not show a Fermi surface unless p <

0.010, thereafter the types of excitations near the Fermi surface are non-Fermi liquid for

−0.425 < p < 0.010, marginal Fermi liquid for p ' −0.425 and Fermi liquid for p < −0.425

when z = 1.2 and θ = 0. Taking the same z, for example z = 1.2, we find that different

hyperscaling values θ = 0.1 and θ = 0.4 lead to the values of marginal Fermi liquid

p ' −0.441 and p ' −0.496, respectively. This tells us that smaller dipole coupling

corresponds to Fermi Liquid while larger one corresponds to non-Fermi liquid ending by

the critical value poc.

With z = 1.2, for larger hyperscaling exponent, the phase transition happens at more

negative dipole coupling. We can understand the phenomenon as follow. As we mentioned

earlier that larger hyperscaling violation recedes the effective dimension dθ = 2− θ, which

always appears in the form p(z + dθ − 2) in the flow equation and compensate the effect

of p [13]. So it is reasonable that lower effective dimension corresponds to more negative

dipole coupling for the phase transition. Combining the phenomena that larger θ needs

more negative p for the phase transition, we observed that the generation of gap with

larger θ calls for stronger positive pc in the last subsection. It would be interesting to check

the duality under the transformation p→ −p proposed in [20] for the hyperscaling model

which will be carried out in the next section.

5 The zeros-poles duality of the holographic system

In this section we will study the behaviour of detGR in different dipole couplings with the

aim to see if in holographic theories with hyperscaling violation the duality between zeros
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and poles under p→ −p found in [20] still holds. Following [20] we define

ζI =
1

ξI
(5.1)

which satisfies the following equation(√
f∂u + 2mu

θ
2
−1
)
ζI −

[
ṽ−
u

+ (−1)Ik

]
ζ2
I −

[
ṽ+

u
− (−1)Ik

]
= 0 . (5.2)

Comparing the above equation with equation (3.8), we find that the equation of ζI coincides

with the equation of ξI under the transformation of (m, k, p) → (−m,−k,−p). Then

considering the symmetry of the Green function (3.17), we can get the relation

detGR(ω = 0, k;m, p) = detGR(ω = 0,−k;m, p) =
1

detGR(ω = 0, k;−m,−p)
. (5.3)

The formula with m = 0 coincides with the expression (30) in [20] and its value is one

for p = 0 [7].

Note that a pole of GI at ω = 0 is not necessarily a pole of the determinant detGR =

G1G2. It is known [42] that in the conventional case, p = 0, detGR(ω = 0, k; p = 0) = −1,

therefore it possesses neither poles nor zeroes. This is because poles (zeroes) of G1 are

cancelled by zeroes (poles) of G2 at the same momentum. It was showed in [20] that this

coincidence of poles and zeroes is lifted when the dipole coupling is turned on, resulting in

poles and zeroes of detGR.

We firstly turn off the hyperscaling violation factor. The result is showed in the left

panel of figure 8 with p = 2.5, which we reproduce the corresponding result of [20] with

p = 5. The behaviour of detG with non-zero hyperscaling violation is also presented in the

middle and right panel of figure 8. For θ = 0.1, the zero for the real part of detG is around

k ' 1.78 with p = 2.5, corresponding to a pole at the same momentum with p = −2.5.

While for θ = 0.4, the momentum related to the zero-pole duality is k ' 2.42. We see that

the hyperscaling violation does not break the zero-pole duality under the transformation

p→ −p. This is expected because the zeros-poles duality is a reflection of the symmetries

of the Green’s function and it should not be related to the dimensionality of these theories.

6 Conclusions and discussion

We have studied the behaviour of a holographic fermionic system with a charged black

brane with hyperscaling violation in the bulk in the presence of dipole interaction between

a massless fermion and a gauge field. We found that the holographic system possesses a

robust phase diagram including Fermi and non-Fermi liquids, marginal Fermi liquid, log

oscillatory phase and an insulating Mott phase. These various phases are controlled by

the strength of the dipole coupling and the hyperscaling violation exponent which play the

role of the order parameters in the holographic system [8, 9].

These phases can be identified by studying the behaviour of the Green’s function.

Considering the IR and the UV limits of the Green’s function, we used the matching
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Figure 8. The real and imaginary parts of detG depending on the momentum for p = 2.5 with

hyperscaling violation.

method [43] in the near horizon geometry to obtain the analytical expressions of the UV

Green’s function and the dispersion relation.

We found that as the hyperscaling violation exponent is increased the critical value

of the dipole moment pc for a Mott gap to be generated is also increased, which makes

it harder for the insulating phase to be formed. This is attributed to the fact that a

larger hyperscaling violation exponent corresponds to a lower effective dimensionality of

the system and this change compensates the increase in critical dipole coupling pc. Then,

we investigated the existence of the Fermi surface and the disperse relation near the Fermi

surface. We found that as p increases, the liquid changes from Fermi type, marginal Fermi

type to non-Fermi type, then the Fermi surface disappears in the Log-oscillatory region.

The phase transition between the types of liquid happens at negative dipole coupling and

the larger hyperscaling violation will result in more negative dipole coupling.

A pole is indicative of a (non-) Fermi fluid while a zero is responsible for an insulating

phase. It is the coexistence of both that underlies the various phases of the liquid. We

showed that the duality found in [20] relating systems of opposite dipole coupling strength

p also persists in holographic phase with hyperscaling violation exponent.

It would be interesting to consider a Lorentz violating boundary term into the bulk

action instead of the standard boundary condition. It was discussed in [44] that with the

Lorentz violating boundary term, the dual field theory has a holographic non-relativistic

fixed point, possessing a flat band of gapless excitation. With the minimal coupling, we have

also observed a flat band in the boundary theory dual to hyperscaling violation background

in [38]. So it is important to see how the hyperscaling violation will influence the dipole

effect in the dual non-relativistic fermionic system. This study is underway.

Another possible direction is to calculate the holographic entanglement entropy in our

theory. The entanglement entropy [45, 46] was proved to be a powerful tool in counting the

degrees of freedom available in a holographic system. In [47] it was found that the holo-

graphic entanglement entropy in the superconducting phase is less than that in the normal

phase due to the fact that Cooper pairs had been formed so that fewer degrees of freedom
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are aleft(see also [48]). Near the contact interface of the superconductor to normal metal,

the entanglement entropy could have higher value in the superconducting phase due to the

proximity effect: the leakage of Cooper pairs to the normal phase results in more freedom

in the superconductor side near the interface. It would be interesting to generalize previous

study and discuss the holographic entanglement entropy in a holographic fermionic system

with a dipole coupling and hyperscaling violation. This can give important information on

the various phases of the system. To carry out such a study, we need a fully back-reacted

solution of the Einsten-Maxwell-Dirac system. We will report results on this topic in the

future.
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