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Abstract

Models with gauge mediated supersymmetry breaking (GMSB) provide a possible mechanism to
mediate supersymmetry breaking to the electroweak scale. In these models the lightest-supersymmetric
particle is the gravitino, while the next-to-lightest supersymmetric particle is either the lightest neutralino
or a slepton. In the former case final states with large missing transverse energy from the gravitinos,
multiple jets and two hard photons are expected in pp-collisions at the LHC. Depending on the lifetime
of the neutralino the photons might not point back to the interaction vertex, which requires dedicated
search strategies. Additionally, this feature can be used to measure the neutralino lifetime using either the
timing information from the electromagnetic calorimeter or the reconstructed photon direction. Together
with the measurements of kinematic endpoints in invariant mass distributions, the lifetime can be used
as input for fits of the GMSB model and for the determination of the underlying parameters.

The signal selection and the discovery potential for GMSB models with photons in the final state are
discussed using simulated data of the ATLAS detector. In addition, the measurement of supersymmetric
particle masses and of the neutralino lifetime as well as the results of the global GMSB fits are presented.





Zusammenfassung

Supersymmetriebrechung kann durch die Eichwechselwirkungen des Standardmodells zur elektro-
schwachen Skala vermittelt werden. In diesen sogenannten GMSB Modellen ist das Gravitino das leich-
teste supersymmetrische Teilchen, während das zweit leichteste supersymmetrische Teilchen entweder
das leichteste Neutralino oder ein Slepton ist. Im Falle des leichtesten Neutralinos erwartet man in pp-
Kollisionen am LHC Endzustände mit hohen Werten der fehlenden Transversalenergie, Jets mit hoher
Multiplizität und zwei harte Photonen. In Abhängigkeit der Neutralinolebensdauer weisen diese Pho-
tonen möglicherweise nicht zum Primärvertex, was entsprechend optimierte Suchstrategien erfordert.
Außerdem kann diese Eigenschaft der Photonen genutzt werden, um die Neutralinolebensdauer mit Hilfe
der Zeitmessung des elektromagnetischen Kalorimeters oder der rekonstruierten Photonenrichtung zu
bestimmen. Zusammen mit Messungen von Endpunkten in Verteilungen invarianter Massen kann die
gemessene Lebensdauer als Observable für eine Anpassung eines GMSB Modells an die Messungen
verwendet werden, um die zugrundeliegenden Parameter des Modells zu bestimmen.

Die Signalselektion und das Entdeckungspotential von ATLAS für GMSB Modelle mit Photonen im
Endzustand werden unter Verwendung simulierter Daten des ATLAS Detektors diskutiert. Außerdem
werden sowohl die Bestimmung der Massen supersymmetrischer Teilchen und der Neutralinolebens-
dauer als auch die Resultate der Modellanpassung vorgestellt.
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Chapter 1

Introduction

The Standard Model of elementary particle physics is very successful in describing the fundamental
constituents of matter and their interactions. Nevertheless, there are theoretical as well as experimental
difficulties that point towards an extension of the Standard Model to a more general theory. Supersymme-
try has been proven outstandingly interesting for the solution of many problems of the Standard Model
and is among the most favoured and most studied extensions.

Since supersymmetric theories predict a partner particle for every Standard Model particle and since
none of these particles have been observed so far, supersymmetry has to be broken on the electroweak
scale. This breaking usually takes place at a high energy scale, such as the Planck scale, in some kind of
hidden sector and has to be mediated to the electroweak scale via some mechanism. Several models have
been proposed, among them gravity, gauge and anomaly mediation. The resulting collider phenomenol-
ogy is largely determined by these mechanisms, in particular by the nature of the lightest supersymmetric
particle (LSP), which is stable if R-parity is assumed to be conserved, as well as the next-to-lightest su-
persymmetric particle (NLSP).

It is one of the main physics goals of the ATLAS experiment at the CERN Large Hadron Collider
to search for signatures of supersymmetric processes, since the LHC will be able to copiously produce
supersymmetric particles with masses up to several TeV, if they exist. Once found, it is important to
investigate the properties of the produced particles, such as masses, couplings and lifetimes. Mainly,
this has been done in the framework of minimal supergravity (mSUGRA), where the LSP is usually the
lightest neutralino leading to final states characterised by multiple high energetic jets and large missing
transverse energy.

However, supersymmetric models exist which predict final states not covered by the generic mSUGRA
search strategies and for which these strategies might not be optimal. New strategies have to be devel-
oped. One example of such models, as studied in this thesis, is the Gauge Mediated Supersymmetry
Breaking (GMSB) model, in which the LSP is the gravitino and the NLSP is the lightest neutralino.
This results in final states containing high energetic photons, which might be produced in the interaction
vertex (prompt photons) or somewhere in the inner detector (non-pointing photons), if the lifetime of the
NLSP is finite. In the latter case a measurement of the lifetime of the neutralino allows one to gain addi-
tional information about the underlying supersymmetric model. Additionally, the final state photons can
be used to determine some of the involved supersymmetric particle masses using kinematic endpoints.

In this thesis the discovery potential of the ATLAS experiment for prompt and non-pointing photon
signatures is investigated. A full detector simulation is used for single benchmark studies as well as a
fast simulation for a parameter scan. In addition, the possibility to measure some of the supersymmetric
particle masses with a few fb−1 of data is studied using kinematic endpoints in invariant mass distribu-
tions, in which several combinations of photons, leptons and jets are used. In comparison to studies in
mSUGRA it turns out that additional information can be gained due to the decaying lightest neutralino.

1



2 1 Introduction

Furthermore, three methods are presented for the measurement of the neutralino lifetime using (i) the
arrival time of the photon cluster in the electromagnetic calorimeter, (ii) the directional information of
the photon cluster measured by the calorimeter and (iii) additional kinematic constraints in events with
additional leptons, which partially incorporate the mass measurements. The measurement of the neu-
tralino lifetime is particularly interesting (as well as challenging), since the initial state in pp-collisions
is unknown and no assumptions on the neutralino boost and decay vertex can be made. Instead only
information provided by the calorimeter can be used, since all particles involved in the decay process are
neutral and no tracks or secondary vertices can be measured.

Once some observables or particle properties have been measured, a model can be fitted to the data.
In this thesis the endpoint and lifetime measurements will be used in the fit to determine at least some of
the underlying parameters or combinations of them. In the case of long-lived neutralinos this offers the
possibility to measure the underlying supersymmetry breaking scale.

The work is organized as follows. After a description of the Standard Model and the idea of super-
symmetry and its gauge mediated breaking in chapter 2, the LHC and the ATLAS detector are described
in chapter 3. The event generation and detector simulation techniques as well as the particle reconstruc-
tion and identification methods are presented in chapter 4 and chapter 5, respectively, followed by the
discussion of the discovery potential of ATLAS for GMSB models in chapter 6. Afterwards, the mea-
surement methods for the determination of supersymmetric particle masses and the neutralino lifetime
are discussed in chapter 7 and the final GMSB fit is presented in chapter 8. A summary and conclusions
are given in chapter 9.



Chapter 2

The Standard Model and supersymmetric
extensions

The current knowledge about the fundamental constituents of matter and their interactions (except grav-
ity) is summarized in the Standard Model of elementary particle physics [1, 2, 3]. This model is very
successful in describing most of the experimental physical data available and has been tested to very
high precision. Nevertheless, there are theoretical and experimental difficulties, such as the existance of
dark matter and neutrino masses, which point to an extension of the model to a more general theory in
which the standard model can be embedded. Such an extension could base on the idea of supersymmetry,
which has the potential of solving all known theoretical problems.

This chapter gives a brief introduction to the Standard Model and describes the main ingredients,
as well as the main problems. The theoretical basis of supersymmetry is discussed and the minimal
supersymmetric extension of the Standard Model is introduced. As a result of the problem of broken
supersymmetry, the possibility of mediating supersymmetry breaking via gauge interactions to the elec-
troweak scale is presented.

2.1 The Standard Model
2.1.1 Main building blocks
The Standard Model of particle physics describes all known elementary particles and their interactions,
except gravity. It is based on a relativistic quantum field theory, which is usually formulated within
the Lagrangian formalism using the Lagrangian density L . The model contains the following main
ingredients:

• Matter is described by fermion fields.

• The interactions are mediated via vector bosons.

• Masses and particle mixings are introduced via the Higgs mechanism.

Fermions

Fermions are particles that carry half-integer spin. In the Standard Model all fermions have spin 1
2 and

they can be divided into two groups: the quarks and leptons. Leptons, which can be subdivided into
electrically charged leptons and uncharged neutrinos, only participate in electroweak interactions, while
the quarks additionally interact strongly. All fermions appear in three families: each familiy consists of

3



4 2 The Standard Model and supersymmetric extensions

Leptons Quarks
mass [MeV] charge [e] mass [MeV] charge [e]

νe < 5 ·10−6 0 up 1.5-3 +2/3
electron 0.511 -1 down 3-7 -1/3

νµ < 0.27 0 charm 1270 +2/3
muon 105.7 -1 strange 104 -1/3

ντ < 31 0 top 171200 +2/3
tauon 1777 -1 bottom 4200 -1/3

Table 2.1: Mass and electric charge of the fundamental fermions. The quark masses are given in the
MS-scheme [4], except of the top-mass, which can be measured directly.

a lepton and the corresponding neutrino, as well as an up- and a down-type quark. The masses of the
particles range from a few eV or less of the electron-neutrino up to more than 170 GeV of the top-quark.
They cannot be calculated within the Standard Model and have to be determined from experiments. Since
fermions are spinorial objects, they appear in a left-handed and a right-handed version, except neutrinos,
which in the Standard Model are assumed to exist as left-handed particles only. The current knowledge
of the fermion masses and electrical charges is summarized in Tab. 2.1.

Interactions

The interactions between the particles can be derived mathematically from the principle of local gauge
invariance. The underlying symmetry group is

SU(3)C ⊗SU(2)L ⊗U(1)Y. (2.1)

This group describes two different parts of the Standard Model interactions:

• SU(3)C describes the strong interactions by coupling the quarks (with color charge C) to the mass-
less SU(3)C-octett gluons in the framework of quantum chromodynamics (QCD).

• SU(2)L ⊗U(1)Y is the symmetry group of electroweak interactions. The corresponding gauge
bosons mix to form the massless photon and the massive W ± and Z0. They couple via the weak
isospin T3 and the weak hypercharge Y to all fermions.

The electric charge of a particle is then given by the relation

Q = T3 +
Y
2 . (2.2)

From the electroweak symmetry a gauge boson SU(2)L triplet and a U(1) singlet arise. These are denoted
W 1,2,3

µ and Bµ , respectively, and are massless fields. After electroweak symmetry breaking the mass
eigenstates, which represent the physically observable fields, are rotations of the weak eigenstates:

(
W+

µ
W−

µ

)
=

1√
2

(
1 −1
1 1

)(
W 1

µ
W 2

µ

)
(2.3)

(
Z0

µ
Aµ

)
=

(
cosθW −sinθW
sinθW cosθW

)(
W 3

µ
Bµ

)
, (2.4)

where the angle θW parametrizes the mixing of the fields and its value sin2 θW ≈ 0.231 is obtained from
experiments. Aµ represents the massless photon field known from quantum electrodynamics, while the
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T3 Y Q(
νe
e

)

L

(
νµ
µ

)

L

(
ντ
τ

)

L

(
+1/2
−1/2

) (
−1
−1

) (
−1
0

)

(
u
d′

)

L

(
c
s′
)

L

(
t
b′
)

L

(
+1/2
−1/2

) (
+1/3
+1/3

) (
+2/3
−1/3

)

eR µR τR 0 -2 -1
νe,R νµ ,R ντ ,R 0 0 0
uR cR tR 0 +4/3 +2/3
d′

R s′R b′R 0 -2/3 -1/3

Table 2.2: SU(2)L doublets and singlets and electroweak quantum numbers with resulting electromag-
netic charge.

other fields couple to the Higgs field and aquire mass terms. The SU(2)L ⊗U(1)Y theory includes two
coupling constants, which parametrize the strength of the interactions and are denoted g and g ′. They are
connected to the electric charge via the mixing angle by

e = gsin θW = g′ sinθW . (2.5)

The fermions that couple to the gauge bosons are grouped into multiplets of the Standard Model gauge
group. The left-handed fermions of each family are weak-isospin doublets, while the right-handed ones
are singlets and thus do not couple to the W ± bosons. Table 2.2 summarizes the electroweak fermion
multiplets and the corresponding quantum numbers.

In addition to the weak gauge boson mixing the mass eigenstates of the quarks are not identical to
their weak eigenstates. This can be modelled by introducing two complex 3× 3 matrices Y u,d , which
arise in the Yukawa couplings of the quarks:

LY = −Y d
i j Q̄L,iφdR, j −Y u

i jQ̄L,iεφ ∗uR, j +h.c., (2.6)

where φ is the Higgs field, i, j are generation labels and ε is the anti-symmetric 2×2 tensor. QL are left-
handed quark doublets and dR and uR are the right-handed down- and up-type quark singlets, respectively.
The quark mass eigenstates can be obtained by diagonalising Y u,d by four unitary matrices V u,d

L,R . The
generation mixing leads to flavor conserving and flavor changing charged current (W ±) interactions with
couplings given by the Cabbibo-Kobayashi-Maskawa (CKM) matrix

VCKM ≡V u
L V d†

L =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (2.7)

On the other hand, flavor changing neutral currents are supressed. This matrix can be parametrized by
three angles and a complex phase, which is the only source of CP violation in the Standard Model [5].
Generation mixing is in principal also possible in the lepton sector and recent results from neutrino
experiments show that neutrino mixing in fact occurs [6]. Although in the standard formulation of the
Standard Model neutrinos are massless, this shows that they are in fact massive and the investigation of
this phenomenon is an active research field.

The Higgs mechanism

An important difficulty in the Standard Model is that simple mass terms for the weak gauge bosons
and the fermions break local gauge invariance. For the weak gauge bosons the necessity for a mass
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term already follows from considerations about the range of the forces that has to be small enough to
fit with the experimental observations. Furthermore, the masses of the gauge bosons, as well as of the
fermions, have been measured in experiments, showing that mass terms are needed. The solution to this
problem is to generate masses in a gauge invariant dynamical way by the interaction of the particles with
a scalar field. This is known as the Higgs mechanism, which is based on the idea of spontaneous SU(2)L
symmetry breaking:

SU(3)C ⊗SU(2)L ⊗U(1)Y → SU(3)C ⊗U(1)em. (2.8)

The Higgs field is a complex scalar isospin doublet

φ =
1√
2

(
φ1 + iφ2
φ3 + iφ4

)
=

(
φ+

φ 0

)
(2.9)

with four degrees of freedom. The (Klein-Gordon) Lagrangian density reads as

L =
1
2
(
∂µφ

)
(∂ µ φ)−V (φ) (2.10)

with the SU(2)L symmetric potential

V (φ) = µ2φ †φ +λ (φ †φ)2. (2.11)

The real parameter λ has to be positive to ensure that V → ∞ when φ → ±∞. As can be seen from
Eq. (2.11), the minimum of the potential is no longer at φ = 0, if µ 2 is chosen to be negative. Instead,
the minimum lies at

|φ0| =
√

−µ2

λ
= v. (2.12)

With this parameter setting the potential V itself is still SU(2)L symmetric, while every possible ground
state breaks the SU(2)L symmetry. This is known as spontaneous symmetry breaking. Now one choses
a specific ground state with φ1 = φ2 = φ4 = 0 and expands the field around the minimum:

φ =
1√
2

(
ξ1(x)+ iξ2(x)

v+h(x)+ iξ3(x)

)
, (2.13)

with h(x) and ξ1,2,3(x) being real scalar fields. In the resulting Lagrangian density a mass term for h
appears with mh =

√
2µ , while the other fields remain massless due to the vanishing derivatives in the

tangential directions of the potential. The corresponding field quanta are called Goldstone bosons. If one
requires local gauge invariance, the ξ1,2,3(x) fields couple to the gauge bosons and create mass terms.
The kinetic terms of the ξ1,2,3(x) fields vanish in the unitarity gauge showing that they do not appear as
independent physical particles. The ground state is chosen such that the photon remains massless and
the masses are given by:

mW =
1
2gv (2.14)

mZ =
1
2v
√

g2 +g′2 (2.15)

mγ = 0. (2.16)

Due to the gauge boson mixing, the masses of the W and Z are not independent and are given by

mW = mZ cosθW . (2.17)
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Figure 2.1: ∆χ2 as a function of mH for (a) the standard and for (b) the complete fit of the electroweak
observables. The solid (dashed) line gives the results when including (ignoring) theoretical errors. The
minimum χ2 of the fit including theoretical errors is used for both curves to obtain the offset-corrected
∆χ2 [10].

From this and from Eq. (2.5) follows that all effects of W and Z exchange processes can be described by
the three parameters e, θW and mZ . Since mW , mZ and sinθW have already been measured in experiments,
the vaccum expectation value v can be calculated to be

v ≈ 246GeV. (2.18)

The Higgs mechanism also allows for mass terms for all fermions. These are given by Yukawa coupling
terms in the Lagrangian, while the coupling constants λ f are free parameters of the model:

m f = λ f
v√
2
. (2.19)

Important to note is that there is no fundamental reason why all fermions should couple to the same
Higgs field. For instance, in supersymmetric theories one needs at least two Higgs doublets to assign a
mass to every fermion.

The Higgs particle itself has not been discovered yet and its mass is a free parameter of the model.
Direct searches from the LEP experiments [7] have set a lower limit of mH = 114.4 GeV on the Higgs
mass, while the direct searches from the TeVatron [8] exclude the region mH = [160,170] GeV at 95%
CL. Since the radiative correction of the self energy of the weak gauge bosons depends only logarithmi-
cally on the Higgs mass, no precise measurement of mH could be done.1) Nevertheless, its most probable
value can be determined in a global fit of the electroweak observables [10, 11]. Figure 2.1(a) shows the
∆χ2 = χ2 −χ2

min as a function of the Higgs mass of the standard fit, defined as the fit to the electroweak
precision observables, excluding the direct Higgs searches. The resulting estimate of the Higgs mass is
then mH = 83+30

−23 GeV, while the 2σ and 3σ intervals are [42,158] GeV and [28,211] GeV, respectively.
When the direct search results are included in the fit (complete fit), the best estimate of the Higgs mass
is mH = 116.3+15.6

−1.3 GeV, while the 2σ interval is reduced to [114,145] GeV. The corresponding ∆χ 2

distribution is shown in Fig. 2.1(b).

1)This is in contrast to the top mass, which has been predicted from the LEP experiments [9], since the radiative correction
of the self energy of the weak gauge bosons depends quadratically on the top mass.
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Renormalization

Another important issue for a successful and consistent model for particle physics arises from a calcula-
tional point of view. Calculations in quantum field theories are often performed by Taylor expanding the
Lagrangian into a power series of the coupling constants. Every term can be represented by Feynman
diagrams. Diagrams that contain particle loops tend to be divergent and hence the scattering amplitude
is also divergent. To make sense of the results of the computations one has to cope with these infinities
and a procedure has been developed to do so [12, 13], which is called renormalization. Every divergent
diagram can be corrected by a counterterm, if a theory is renormalizable. This is the case for the Standard
Model, but e.g. the naive quantization of general relativity fails to be renormalizable.

Quantum Chromodynamics

The quantum field theory of the strong interactions is called Quantum Chromodynamics [14] (QCD). It
is based on the gauge group SU(3)C and describes the interactions between gluons and quarks. As in the
case of the electroweak theory, the gluons are the gauge bosons and enter the theory after localization of
the gauge group. They are massless and are not affected by the breaking of SU(2)L. The charge of QCD
is called color and due to the non-abelian character of SU(3)C not only the quarks, but also the gluons
are colored. The gluons carry a color and an anti-color each and of the nine possible combinations only
the SU(3)C octet is realized in nature. Leptons are color singlets and therefore do not participate in the
strong interaction.

The value of the strong coupling constant αS depends on the momentum transfer Q2, as do the
coupling constants of SU(2)L ⊗U(1)Y. Due to the non-abelian gauge group αS is large at low values of
Q2 and approaches zero for very large Q2. This leads to the phenomenon of asymptotic freedom [15, 16]
and the confinement of colored objects. Quarks are confined to hadronic bound states and can appear as
baryons or mesons consisting of three quarks or a quark and an anti-quark, respectively.

The proton is the most important baryon and in the most simple picture it is made of two up-quarks
and one down- quark (valence quarks) such that the electric charge is 1. A better description is that
the proton is made of partons, namely quarks and gluons. It turns out experimentally, that in addition
to the valence quarks sea quarks and gluons are present. The sea quarks arise from gluons splitting up
into a quark-antiquark pair. All quarks and gluons together carry the total momentum of the proton.
The momentum fraction of each parton can be investigated experimentally by deep inelastic scattering
(DIS) of electrons and protons. This has been done with the experiments built at the HERA electron-
proton accelerator, which have precisely measured the so-called Parton Density Functions (PDFs). Two
main variables are used to describe the PDFs: the parton momentum x as the fraction of the total proton
momentum and the momentum transfer Q2 from the electron to the interacting parton. As an example,
Fig. 2.2 shows the combined results from the ZEUS and H1 experiments for the valence quarks (xuv and
xdv), the gluons (xg) and sea quarks (xS) at a momentum transfer Q2 = 10 GeV2.

The detailed knowledge of the proton structure is essential for the analysis of LHC data. Especially
the search strategies for physics beyond the Standard Model are optimized using simulated Monte Carlo
events, where a precise prediction of the proton interactions is necessary. At the LHC processes will
be investigated, which differ in their cross sections over more than 10 orders of magnitude, as shown in
Fig. 2.3. For comparison, the total production cross section of a typical supersymmetric scenario studied
with ATLAS is of the order of 10−2 nb [18]. It should be noted that due to the partonic structure of
the proton the effective center of mass energy at the LHC is much below 14 TeV and lies around 2 TeV,
depending on the scattering process and the involved partons.
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Figure 2.2: Parton density functions of the valence quarks uv, dv, the gluons g and sea quarks S as
obtained from the combined results of the ZEUS and H1 collaborations [17].

2.1.2 Problems of the Standard Model
Although the Standard Model describes the fundamental particles and their interactions with great suc-
cess, there are some unsolved problems that point towards an extension of the model. Some of them
are intrinsic problems, some arise from cosmological measurements and some have a pure theoretical
nature:

• General: There is no explanation for the observed multiplet structure and mass hierarchy.

• Unification: The quark-to-lepton charge relation is puzzling and there is no unification of the
coupling constants at a high scale.

• Astrophysical: There is an unexplained matter-antimatter-asymmetry in the universe and the mat-
ter is mainly made of unknown dark matter.

• Intrinsic: The stability of the Higgs mass cannot be understood in a natural way.

• Theoretical: Gravity is not included in the Standard Model.

The first item expresses part of the fact that the Standard Model includes many ad-hoc assumptions and
free parameters that cannot be justified or calculated within the model itself. This leads to the hope that
there is a more fundamental underlying theory that overcomes this problem. Attempts have been made
by defining Grand Unified Theories (GUTs) [20], which have a simpler gauge group (such as SU(5) or
SO(10)) and thus have fewer coupling constants and a simpler multiplet structure. Within such models
also the quark-to-lepton charge relation can be calculated, but other problems, such as the instability
of the proton, require new ideas. Another problem related to GUTs is the unification of the coupling
constants, which cannot be achieved within the Standard Model. This can be solved by the formulation
of supersymmetric theories [21, 22, 23], where the running couplings converge in one point at the GUT
scale, as depicted in Fig. 2.4. Also the proton is stable enough in supersymmetric GUTs.
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Figure 2.5: Loop corrections to m2

H from (a) a fermion f with mass m f and (b) of a heavy complex scalar
with mass mS [23].

The third item touches the problem of CP violation. The complex phase of the CKM matrix is the
only source of CP violation in the Standard Model, but it is not sufficient to explain the cosmologically
observed matter-antimatter-asymmetry in the universe [24, 25, 26]. Supersymmetric extensions of the
Standard Model contain the possibility to have up to 43 additional complex phases [27]. Another impor-
tant cosmological observation is the fact that the matter described by the Standard Model accounts for
only 4% of the content of the universe. Around 76% is made of dark energy, which is responsible for
the accelerated expansion of the universe, while around 20% is made of dark matter [28]. If dark matter
is made of particles that can be described by particle physics, then these particles must only interact via
the weak interactions and/or gravitational interactions. The only candidate in the Standard Model is the
neutrino, which is excluded to be the only source of the observed gravitational effects of dark matter due
to its very small mass. Again, supersymmetric theories provide good possibilities to solve this problem.
Depending on the model they have a variety of candidate particles that could account for the observed
amount of dark matter, such as the lightest neutralinos or the gravitinos.

The fourth item has to do with the Higgs mechanism, that has been invented to solve the problem of
symmetry breaking in the Standard Model, but causes new problems itself [29, 30, 31, 32]. The Higgs
mass squared m2

H receives enormous quantum corrections from loop effects of every particle coupling to
the Higgs. Figure 2.5 shows a corrections to m2

H from a fermion f with mass m f . If the coupling reads
as −λ f H f̄ f , then the contribution to the Higgs mass is

∆m2
H = −|λ f |2

16π2
[
2Λ2

UV −6m f ln(ΛUV/m f )+ . . .
]
, (2.20)
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where ΛUV is an ultraviolet momentum cutoff. If this cutoff is chosen to be at the Planck scale, then
∆m2

H is about 30 orders of magnitudes larger than the true value of around (100 GeV)2. This results in a
finetuning of the cutoff in every order of perturbation theory and the possible interpretation of the cutoff
as a natural scale for new physics. This is known as the hierarchy problem. As an example for a solution
to this problem, Fig. 2.5 shows the contribution of a heavy complex scalar with mass mS and a coupling
−λS|H|2|S|2. The contribution of s scalars to the Higgs mass is then

∆m2
H =

λS
16π2

[
Λ2

UV − sm2
S ln(ΛUV/mS)+ . . .

]
, (2.21)

which can cancel a fermion contribution due to the minus sign. Supersymmetric theories provide a
variety of heavy charged scalar particles to cancel the fermion contributions from the Standard Model,
in particular in the MSSM there is one partner scalar particle to each Standard Model particle cancelling
its contribution to the Higgs mass.

Finally, the Standard Model cannot be the final description of nature, since it does not incorporate
gravitational interactions. The gravitational force is weak enough to be neglected in elementary particle
interactions at the electroweak scale, but at energies up to the Planck scale gravity becomes as strong as
the Standard Model forces. The extension of the Standard Model to a theory of gravity poses large theo-
retical difficulties (renormalizability), but again supersymmetry is a popular candidate for an elegant so-
lution. If supersymmetry is treated as a local gauge symmetry, as is done with SU(3)C⊗SU(2)L⊗U(1)Y
in the Standard Model, it becomes automatically a theory of gravity, since a supersymmetric transfor-
mation also includes a space-time transformation. This is utilized in supergravity theories. The question
is then, if it is possible to formulate a perturbatively finite theory of gravity and the hope is that addi-
tional symmetries (such as supersymmetry) impose enough constraints to cancel all divergencies. It turns
out, that not only supersymmetric string theories are finite, but also in four dimensional supersymmet-
ric quantum field theories it might be possible to cancel all divergencies in every order of perturbation
theory [33].

2.2 Supersymmetry

As discussed in section 2.1.2, supersymmetric theories provide elegant solutions to a variety of problems
of the Standard Model. In the following, the basic principles and physical consequences of supersym-
metry will be discussed briefly. The minimal supersymmetric extension of the Standard Model (MSSM)
will be introduced and its particle content and other properties will be summarized. Since supersymme-
try has to be broken at the electroweak scale, some of the breaking mechanisms will be introduced and
the special case of gauge mediated supersymmetry breaking (GMSB) will be discussed in some detail.

2.2.1 Introduction and theoretical basis

Every relativistic quantum field theory is invariant under the Poincaré group P and most often also under
an internal symmetry group G , i.e. under P ⊗G . The generators of the corresponding Lie-algebra are
Pµ , Mµν and Ta, such that [Pµ ,Ta] = [Mµν ,Ta] = 0. An interesting question is, if a group exists that
contains P and G as subgroups, i.e. if a group exists with [M µν ,Ta] 6= 0. Due to the no-go theorem
of COLEMAN and MANDULA [34] such a group cannot be generated by Lorentz-tensors. A possible
way out is a symmetry with spinorial charges rather than tensorial charges. The corresponding algebra
is called a Lie-superalgebra and the corresponding theorem for supersymmetric theories is the HAAG-
LOPUSZANSKI-SOHNIUS theorem [35].
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Due to the Spin-Statistic-Theorem [36] the proposed set of spinorial charges2) Qα , with α = 1, . . . ,4
is closed through anti-commutators. Qα can be expressed in terms of a Weyl spinor QA, with A = 1,2:
Qα = (QA, Q̄Ȧ) with Q̄Ȧ = (QA)∗. Together with the generators of the Poincaré group they form the
following algebra [22]:

[Mµν ,Qα ] =
1
2(Σµν)

β
α Qβ (2.22)

[Qα ,Pµ ] = 0 (2.23)
{Qα , Q̄β} = 2(γ µ)αβ Pµ , (2.24)

where γ µ is given by {γ µ ,γν} = 2gµν and Σµν = i
2 [γ µ ,γν ].3) From these relations two very fundamental

consequences arise:

• The particles in a supermultiplet have the same mass, but differ in their spin by half a unit.

• There is the same number of fermionic and bosonic degrees of freedom in every irreducible repre-
sentation of supersymmetry.

Hence, in supersymmetric theories every boson has a fermionic partner particle with the same mass and
vice versa. In particular, the supermultiplets are chosen such that every Standard Model particle with
spin 0, 1

2 , 1, 2 has a partner with spin 1
2 , 0, 1

2 , 3
2 , respectively. The corresponding multiplets are often

called chiral, vector and gravity supermultiplet:

chiral chiral vector gravity
SM particle spin 0 1

2 1 2
SUSY particle spin 1

2 0 1
2

3
2

For the construction of supersymmetric models so-called superfields are used, which are reducible
representations of the supersymmetry algebra and contain a variety of component fields. Supersymmet-
ric conditions are imposed to project out the respective irreducible representations. The corresponding
superfields are then called chiral or vector superfields, which are used to describe the matter or gauge
content of the theory, respectively. The supersymmetric version of a Lagrangian is easily derived by
simply applying the same rules as for the original model.

There is an additional continous symmetry called R-symmetry U(1)R under which the minimal su-
persymmetric extension of the Standard Model is invariant [37]. Since this symmetry acts chirally on the
gluinos, the partner particles of the gluons, and would constrain them to be massless even after sponta-
neous supersymmetry breaking, it has to be broken.4) In most of the supersymmetric models a discrete
Z2 remnant of the continous symmetry remains, called R-parity [38, 39], which is given by

RP = (−1)3(B−L)+2S (2.25)

and is closely connected to the baryon number B, lepton number L and the spin S. It is a multiplicative
quantum number, which is +1 for all Standard Model particles and −1 for all supersymmetric partner
particles. If R-parity is assumed to be conserved in a supersymmetric model no baryon or lepton number
violation occurs. Two of the most important consequences of R-parity conservation are:

2)Only the case of a single generator (N = 1) will be discussed here. Theories with extended supersymmetry (N > 1) have
an extended algebra, an extended particle content per multiplet and are usually not considered in simulation studies in ATLAS.

3)From Eq. (2.24) it can be seen that a supersymmetry transformation includes space-time transformations. If supersymmetry
is treated as a local gauge symmetry, the transformations include local space-time transformations, which means that the theory
is a theory of gravity.

4)Massless gluinos would lead to relatively light R-hadrons made of quarks, antiquarks and gluinos, which have not been
observed.
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• At colliders supersymmetric particles can only be produced in pairs.

• The lightest supersymmetric particle (LSP) is stable.

The first item ensures that a supersymmetric particle always decays into another supersymmetric particle
and that there are always two decay chains of (unstable) supersymmetric particles in each supersymmet-
ric event at colliders. The second item has cosmological consequences, since the LSP could serve as
a candidate for the yet unknown dark matter, if there are large remnants of them in the universe. This
also means in turn that the LSP cannot carry an electromagnetic or color charge and that it only interacts
weakly, since otherwise they would have been observed in astrophysical experiments. Another conse-
quence is that the LSP only interacts weakly with a particle detector and thus cannot be observed directly,
but leads to the signature of missing energy.

If R-parity is violated additional B and L violating terms appear in the Lagrangian, which has a variety
of phenomenological consequences. One interesting example is the most general Lagrangian, where all
B and L violating terms are allowed. In such a model the proton is unstable and decays rapidly. This
can be avoided by setting at least one of the coupling constants to zero [38]. The breaking of R-parity
can be done by introducing appropriate terms in the Lagrangian or by using a mechanism of spontaneous
R-parity breaking [40, 41]. Also in ATLAS R-parity violating models are studied, but throughout this
thesis R-parity conservation will be assumed.

2.2.2 The MSSM

Model and particle content

The minimal supersymmetric extension of the Standard Model (MSSM) is the simplest and most general
supersymmetric model based on the Standard Model Lagrangian [42]. This means that the field content is
one of vector supermultiplets associated with the gauge symmetry SU(3)C ⊗ SU(2)L ⊗U(1)Y coupling
to chiral supermultiplets containing the matter particles of the Standard Model. The partner particles
of the gauge bosons are called gauginos, while the partners of the Standard Model fermions are called
squarks and sleptons. In particular, the gauginos are the winos, zinos and photinos. Table 2.3 shows the
particle content and the corresponding quantum numbers of the MSSM for one generation. The D- and
F-fields denote auxiliary fields.5)

Besides the 19 parameters of the Standard Model the most general MSSM contains 105 additional
parameters, among them 43 CP violating phases and 21 masses. The number of parameters can be
constrained by requiring underlying physics such as Grand Unification, family symmetries etc. As an
example, the minimal supergravity model contains only five additional parameters, while the minimal
GMSB model includes six parameters besides those of the Standard Model.

At the LHC the cross section for gluino and squark production is much larger than for electroweak
gaugino production, if the corresponding particle masses lie in the reach of the LHC. Figure 2.6 shows the
tree-level Feynman diagrams for the production of squarks and gluinos via gluon-gluon and quark-gluon
fusion, while Fig. 2.7 shows the production via quark-antiquark annihilation and quark-quark scattering.

The Higgs sector

As in the Standard Model the gauge symmetry of the MSSM is broken spontaneously by a Higgs mech-
anism. In the Standard Model a single Higgs doublet is used in order to give mass to all fermions.

5)The auxiliary fields are needed to close the supersymmetry algebra off-shell, since the numbers of fermionic and bosonic
degrees of freedom have to be equal. They can be used for spontaneous supersymmetry breaking.
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SU(2)L U(1)Y particle content (weak eigenstates)
triplet 1 W a

µ , λ a, Da

singlet 0 Bµ , λ , D

doublet -1
(

νL
eL

)
,
(

ν̃L
ẽL

)
,
(

F (νL)
F (eL)

)

singlet 2 eR, ẽR, F (eR)

doublet 1
3

(
uL
dL

)
,
(

ũL
d̃L

)
,
(

F (uL)
F (dL)

)

singlet − 4
3 uR, ũR, F (uR)

singlet 2
3 dR, d̃R, F (dR)

doublet -1
(

H0
1

H−
1

)
,
(

H̃0
1

H̃−
1

)
,
(

F
(
H0

1
)

F
(
H−

1
)
)

doublet 1
(

H+
2

H0
2

)
,
(

H̃+
2

H̃0
2

)
,
(

F
(
H+

2
)

F
(
H0

2
)
)

SU(3) SU(2)L×U(1)Y particle content (weak eigenstates)
octet singlet gα

µ , g̃α , Dα

Table 2.3: Particle content and quantum numbers of the MSSM particles for one generation. The latin
indizes are flavor indizes, while the greek ones denote color-indizes [22, 42].
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Figure 2.6: Diagrams for squark and gluino production at the LHC from gluon-gluon and gluon-quark
fusion.
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Therefore, isospin invariant combinations of the Higgs field with the left-handed fermion doublets are
constructed:

φ †
(

ψ1L
ψ2L

)
= φ †

1 ψ1L +φ †
2 ψ2L,

φ T ε
(

ψ1L
ψ2L

)
= φ1ψ2L −φ2ψ1L,

(2.26)

where
(

ψ1L
ψ2L

)
and φ =

(
φ1
φ2

)
are a left-handed fermion doublet and the Higgs doublet, respectively, and

ε =

(
0 1
−1 0

)
. The coupling to the right-handed fermions then allows transitions like

ψ1L −→ ψR +φ2. (2.27)

If one examines the weak hypercharges of the quark doublets and singlets in Tab. 2.3, it is clear that
both couplings in Eq. (2.26) (hypercharge Y = 1

2 and Y = − 1
2 ) are needed in order to conserve the weak

hypercharge in processes like (2.27) and to assign a mass to the up-type as well as the down-type quarks.
In the MSSM this imposes a problem, since either only left- or right-chiral superfields can be used in

the construction of the Lagrangian and since the hermitian conjugate of a left-chiral superfield is right-
chiral and vice versa, the coupling to a hermitian conjugated Higgs superfield is forbidden. This leads
to the usage of two Higgs superfields, one for the up-type quarks and one for the down-type quarks, and
five physical Higgs bosons. With the two Higgs superfields a quadratic term using the Higgs fields only
can be formed and added to the superpotential. From this term the additional Higgs mass parameter µ is
introduced, which plays an important role in the gaugino mixing. The corresponding vacuum expectation
values of the Higgs fields are denoted v1 and v2 and their ratio tan β = v1

v2
is an important parameter of

supersymmetric models.

2.3 Supersymmetry breaking
As discussed above, the supersymmetric particles have the same masses as their Standard Model partners,
also after spontaneous SU(2)L symmetry breaking via the Higgs mechanism. However, since none of the
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supersymmetric particles have been observed so far, supersymmetry has to be broken. In this section the
introduction of soft-breaking terms and the resulting gaugino mixing is discussed, as well as the general
theoretical description of supersymmetry breaking and the example of gauge mediation.

2.3.1 Soft-breaking and gaugino mixing
For the generation of additional masses for the supersymmetric particles additional mass terms have to
be introduced in the Lagrangian, which then is no longer supersymmetric. In the general MSSM one
parametrizes the underlying breaking mechanism by so-called soft-breaking terms [22, 42]:

Lsoft = −1
2M1λλ − 1

2M2λ aλ a − 1
2M3g̃α g̃α +h.c.

− m̃2
1H∗

1H1 − m̃2
2H∗

2H2 −
(
m̃2

12H1H2 +h.c.
)
−∑̃

fi

m̃2
f̃i

f̃ ∗i f̃i

−
√

2mu
v2

AuH2q̃LũR +

√
2md
v1

AdH1q̃Ld̃R +h.c.

+

√
2me
v1

AeH1 l̃LẽR +h.c.,

(2.28)

where H1 ≡
(
H0

1 ,H−
1
)

and H2 ≡
(
H+

2 ,H0
2
)
. Au, Ad and Ae are trilinear scalar coupling constants, while

the other parameters are explicit mass terms for the gauginos, Higgs particles and sfermions. In the
following the gaugino mass terms will be discussed in some detail, since they play a crucial role in the
phenomenology of supersymmetry. First, the mixing of the charged gauginos with the charged Higgsinos
will be discussed, followed by a discussion of the neutral gaugino-higgsino mixing.

In the soft-breaking term (2.28) only the SU(2)L triplet superfield contains two charged gauginos (in
analogy to the Standard Model W bosons)

λ± =
1√
2
(
λ 1 ∓ iλ 2) , (2.29)

i.e. only the term with M2 enters the charged gaugino mixing:

Lsoft = −1
2M2λ+λ−− 1

2M2λ−λ+. (2.30)

Additionally, a Higgsino-gaugino mixing term and the Higgs mass term

LH̃Ṽ = −
√

2mW cos β H̃−
1 λ+ −

√
2mW sin β H̃+

2 λ−, (2.31)
LH̃mass = −µH̃−

1 H̃+
2 (2.32)

enter, where mW is the W boson mass. From these equations one can construct a mass term

LCM = −
(

λ+

H̃+
2

)†
Xαβ

(
λ−

H̃−
1

)
(2.33)

that contains the mass matrix

Xαβ =

(
M2

√
2mW cosβ√

2mW sin β µ

)
. (2.34)

Xαβ can be diagonalized by two complex unitary 2×2 - matrices Umn and Vmn:

U∗
mαXαβV−1

βn = mχ̃±
i

δmn, (2.35)
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where the eigenvalues are given by the particle masses

m2
χ̃±

1,2
=

1
2
(
|µ |2 +M2

2 +2m2
W ∓∆C

)
. (2.36)

The quantity

∆C =

√(
M2

2 −|µ |2
)2

+4m2
W cos2 2β +4m2

W
(
M2

2 + |µ |2
)
+8m2

W M2|µ |sin 2β cosϕµ , (2.37)

where φµ denotes the complex phase of the Higgsino mass parameter µ , determines the mass difference
of the two physical mass eigenstates

χ̃+
i =

(
λ̄−

iR
λ+

iL

)
and χ̃−

i =

(
λ̄+

iL
λ−

iR

)
, i = 1,2, (2.38)

that are constructed from the four Weyl-spinors and
(

λ−
1R

λ−
2R

)
= V

(
λ−

H̃−
1

)
, (2.39)

(
λ+

1L
λ+

2L

)
= U

(
λ+

H̃+
2

)
. (2.40)

χ̃+
i and χ̃−

i are called charginos.
A similar procedure can be performed for the neutral gauginos and Higgsinos. In principal the same

terms contribute as in the case of the charginos, but they look different. From Eq. (2.28) the SU(2)L
singlet and triplet superfields enter, while the neutral gaugino of the latter is denoted λ 0. The terms are

Lsoft = −1
2

M1λλ − 1
2

M2λ 0λ 0, (2.41)

LH̃Ṽ = −mZ cosβ cosθW H̃0
1 λ 0 +mZ cos β H̃0

1 sin θW λ , (2.42)
+mZ sin β cosθW H̃0

2 λ 0 −mZ sinβ sinθW H̃0
2 λ , (2.43)

LH̃mass = µH̃0
1 H̃0

2 , (2.44)

where θW is the Standard Model mixing angle and mZ is the Z boson mass. Again, a mass term

LNM = −1
2




λ
λ 0

H̃0
1

H̃0
2




†

Yαβ




λ
λ 0

H̃0
1

H̃0
2


 (2.45)

can be constructed with the symmetric mixing matrix

Yαβ =




M1 0 −mZ sinθW cos β mZ sinθW sinβ
∗ M2 mZ cosθW cosβ −mZ cosθW sinβ
∗ ∗ 0 −µ
∗ ∗ ∗ 0


 . (2.46)

Yαβ can be diagonalized by a complex unitary 4×4 - matrix Ni j:

N∗
iαYαβ N†

βk = mχ̃0
i
δik, (2.47)
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(a) (b) (c)

Figure 2.8: Couplings of gauginos (solid plus wavy) to (a) gauge bosons (wavy) and (b,c) sfermions
(dashed) and fermions (solid).

where the eigenvalues represent the masses of the mass eigenstates

χ̃0
i =

(
λ̄i
λi

)
, i = 1, . . . ,4, (2.48)

where



λ1
λ2
λ3
λ4


= N




λ
λ 0

H̃0
1

H̃0
2


 . (2.49)

χ̃0
i are called neutralinos. Together with the charginos they are also called gauginos, as the unmixed

states. This terminology will be used from now on. The couplings of the gauginos to other particles
are determined by the couplings of their individual components, i.e the wino, zino, photino or Higgsino
fraction. The general couplings to sfermions, fermions and gauge bosons are depicted in Fig. 2.8.

2.3.2 General theoretical description
Supersymmetry breaking is achieved, if the physical vacuum state |0〉 is not invariant under supersymme-
try transformations. This is the same requirement as in the Standard Model and electroweak symmetry
breaking. Equivalently, |0〉 should not be annihilated by all supersymmetry generators:

QA|0〉 6= 0 or

Q̄Ȧ|0〉 6= 0.
(2.50)

From Eq. (2.24) follows that when supersymmetry is unbroken in the vacuum state this state has zero en-
ergy and in the spontaneously broken case it has positive energy. Therefore, whenever a supersymmetric
vacuum state exists as a local minimum of the effective potential, it is also the global minimum. If the
physical vacuum shall not be supersymmetric, it is therefore necessary for the effective potential V 6) to
possess no supersymmetric minimum. Figure 2.9 shows generic forms of the potential for broken and
unbroken supersymmetry. Supersymmetry breaking arises from a field in the model having a non-zero
vacuum expectation value. One can either use one of the F- or D-auxiliary fields of chiral or vector
superfields, respectively, but only the so-called F-term supersymmetry breaking will be discussed here
due to the connection to gauge mediation models. Hence, the criterion for supersymmetry breaking is

〈0|Fi|0〉 6= 0 (2.51)

for one of the auxiliary fields Fi.
6)The effective potential is given by V = F†

i Fi for Lagrangians for chiral superfields, where Fi are the auxiliary component
fields of the superfield.
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Figure 2.9: Generic forms of the effective potential V as a function of some vacuum expectation value
for (a) unbroken supersymmetry and (b) broken supersymmetry.

The simplest model of F-term breaking is the O’RAIFEARTAIGH model [43], which has three chiral
superfields Φ1, Φ2 and Φ3 with the superpotential

W = λΦ1
(
Φ2

3 −M2)+ µΦ2Φ3, (2.52)

where λ > 0, M 6= 0 and µ 6= 0 are parameters of the model. The absolute minimum of this potential is
at

F†
1 = λM2, F†

2 = F†
3 = 0 (2.53)

and

V = λ 2M4 > 0. (2.54)

The supersymmetry breaking scale can be definied as the expectation value of the F-term responsible for
supersymmetry breaking.

In analogy to the Standard Model, where massless Goldstone bosons appear after spontaneous break-
ing of the global gauge symmetry, a massless Goldstone fermion with spin 1

2 is expected in broken global
supersymmetry, since the supersymmetry generators are fermionic. The spinor ψ i of the superfield Φi to
which Fi belongs will be the Goldstone fermion.

The Goldstone fermion might be a problem for globally supersymmetric models, but the models
studied in the literature are mostly locally supersymmetric. When supersymmetry is localized in analogy
to the localization of the Standard Model gauge group by the Noether procedure, then a gauge field for
supersymmetry appears in the theory. Due to the fermionic character of supersymmetry and due to the
preservation of the Lorentz structure, the gauge field is described by a RARITA-SCHWINGER vector-
spinor Ψµ with spin 3

2 [44], also called gravitino. Its free field equation simply reads

ελ µνργ5γµ ∂ν Ψρ = 0 (2.55)

with ε0123 = 1 and its partner field in the supermultiplet is a spin 2 field, called graviton. After the break-
ing of local supersymmetry the Goldstone fermion is absorbed by the gravitino, becoming its longitudinal
component and giving mass to the gravitino [45, 46]:

m3/2 ∼
〈F〉
MP

, (2.56)
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where 〈F〉 is a vacuum expectation value and MP is the Planck scale. Hence, the gravitino mass can vary
over many orders of magnitude, depending on the scale of supersymmetry breaking. In particular, its
mass can be almost zero in models of gauge mediated supersymmetry breaking.

A problem in constructing theories with spontaneous supersymmetry breaking is that there is no
candidate gauge singlet in the MSSM whose F-term could develop a vacuum expectation value [23].
Additionally, it is very difficult to mediate supersymmetry breaking to the MSSM fields by including
renormalizable interactions at tree level only, even if the model has been extended by additional super-
fields. Therefore, one expects that the MSSM mass terms (2.28) arise radiatively and that supersymmetry
breaking occurs in a hidden sector, which does not or only weakly couple directly to the MSSM sector.

There are two main mechanisms of mediating supersymmetry breaking to the MSSM scale. The first
one assumes that the mediation is due to gravitational interactions and the MSSM mass terms are given
by

mMSSM ∼ 〈F〉
MP

. (2.57)

For masses of a few 100 GeV one therefore expects a supersymmetry breaking scale of about
√

F ∼ 1011 GeV. (2.58)

This mechanism is called minimal supergravity (mSUGRA) [47, 48, 49, 50, 51] and the gravitino mass is
of the order of a few 100 GeV. The second possibility assumes that the mediation is due to the ordinary
electroweak and QCD gauge interactions. The MSSM masses are given by

mMSSM ∼ 〈F〉
Mmess

, (2.59)

where Mmess is the mass scale of an intermediate sector of messenger particles. The expected supersym-
metry breaking scale can then be as low as

√
F ∼ 104 GeV (2.60)

to assign the right mass to the MSSM particles. These models are called gauge mediated supersymmetry
breaking models [52,53,54,55] or GMSB models and will be discussed in some detail in the next section.

2.3.3 Gauge mediated supersymmetry breaking
General model

In GMSB models a messenger sector of chiral supermultiplets is introduced, which couples to the sector
of supersymmetry breaking and transforms under the Standard Model gauge group. These messenger
particles then couple indirectly to the MSSM particles through ordinary gauge and gaugino interactions.
As in the case of supergravity models there is also gravitational interaction between the supersymmetry
breaking sector and the MSSM, but this effect is relatively unimportant compared to the gauge inter-
action effects. GMSB can then be understood in terms of loop effects in a renormalizable framework
in contrast to gravity mediation. In the simplest model the messenger fields can be chosen to be chiral
supermultiplets q, q̄, l and l̄ transforming under the Standard Model gauge group in the same way as the
MSSM quark and lepton supermultiplets (see Tab. 2.3). The particle content of these supermultiplets has
to aquire large masses, since it has not been discovered so far. Therefore, they couple to a gauge-singlet
chiral supermultiplet S through the superpotential

Wmess = y1Sll̄ + y2Sqq̄, (2.61)
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Figure 2.10: 1-loop contributions from messenger scalars
(dashed) and messenger fermions (solid) to the MSSM
gaugino masses.

〈FS〉

〈S〉

Figure 2.11: 2-loop contributions from messenger scalars (dashed), messenger fermions (solid), Standard
Model gauge bosons (wavy) and MSSM gauginos (solid plus wavy) to the MSSM scalar masses in
GMSB models [23].

where y1 and y2 are coupling constants. Supersymmetry breaking can be accomplished by e.g. using
S in an O’RAIFEARTAIGH model and the scalar component of S and its F-term auxiliary field acquire
vacuum expectation values 〈S〉 and 〈F〉, respectively. This leads to mass terms and a mass splitting of
each messenger supermultiplet:

l, l̄ : m2
fermions = |y1〈S〉|2, m2

scalars = |y1〈S〉|2 ±|y1〈FS〉|, (2.62)
q, q̄ : m2

fermions = |y2〈S〉|2, m2
scalars = |y2〈S〉|2 ±|y2〈FS〉|, (2.63)

where the breaking order parameter FS felt by the messengers may not coincide with the underlying
breaking parameter F . A dimensionless parameter Cgrav ≥ 1 is introduced, relating F and FS by

F = Cgrav ·FS. (2.64)

Hence, the supersymmetry breaking in the messenger sector is due the F-term vacuum expectation value
and is communicated to the MSSM sector via radiative corrections. The overall messenger mass scale
is denoted Mmess ∼ y1,2〈S〉. The MSSM gauginos obtain their masses from 1-loop corrections, shown in
Fig. 2.10, while the MSSM scalars obtain masses at the 2-loop level, shown in Fig. 2.11.

Messengers transforming under the ordinary Standard Model gauge group might impose problems
for the gauge coupling unification, if their masses are far below the GUT scale. This can be avoided
by requiring that the messengers consist of N5 multiplets transforming under a SU(5) group containing
the Standard Model group.7) This is called the minimal GMSB (mGMSB) model.8) N5 may not be too
large, in order to avoid that the running gauge couplings diverge before unifying at the GUT scale. For
instance, one needs N5 ≤ 4 for messenger masses of order 106 GeV. The masses of the gauginos and

7)This restriction is not necessary and more general models have been identified, which are not particularly more unnatural
than the minimal model [56].

8)The mGMSB model achieves gauge coupling unification at 1-loop level. However, at 2-loop level the unification fails and
the model has to be extended to a model with larger SU(5) representations [57].
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Figure 2.12: Goldstino G̃ coupling to superpartner pairs (a) (φ ,ψ) and (b) (λ ,A).

MSSM scalars can be computed to be

Ma =
αa
4π

ΛN5, (2.65)

m2
φi = 2Λ2N5

3

∑
a=1

Ca(i)
(αa

4π

)2
, (2.66)

where Ca(i) are numerical constants of order ∼ 1 and

Λ =
FS

Mmess
(2.67)

is called the effective visible sector breaking parameter. With this parameter F can be written as

F = Cgrav ·Λ ·Mmess. (2.68)

GMSB models predict that the gravitino G̃ is the LSP and that all MSSM sparticles will decay
to final states including it. One might think that these decays are very slow due to the gravitational
coupling of the gravitino, but since its longitudinal component is the Goldstino, also non-gravitational
couplings are present. Only the Goldstino component plays a role in collider phenomenology and the
denotations Goldstino and gravitino can be used interchangeably. In GMSB models each Standard Model
particle is coupled to its supersymmetric partner particle through the Goldstino with a strength inversely
proportional to F , as depicted in Fig. 2.12. In particular, a sparticle X̃ can decay to its Standard Model
partner X and a Goldstino with a decay rate of

Γ
(
X̃ → XG̃

)
=

κm5
X̃

16πF2

(
1− m2

X
m2

X̃

)4

, (2.69)

where κ is a mixing parameter. For slepton decays κ = 1, while for a pure U(1)Y bino decay to a
photon and a Goldstino κ = cos2 θW , where θW is the electroweak mixing angle. The decay rate (2.69)
corresponds to a decay length of

cτ
(
X̃ → XG̃

)
=

(
100 µm

κ

)(
100GeV

mX̃

)5
( √

F
100TeV

)4(
1− m2

X
m2

X̃

)−4

. (2.70)

In summary, the minimal GMSB model is described by the following 6 parameters:

• Λ is the effective visible sector supersymmetry breaking parameter given by Eq. (2.67). The
MSSM superpartner masses scale linearly with Λ, which is of the order ∼ 100TeV/

√
N5.

• N5 is the number of SU(5) messenger multiplets. The gaugino masses scale linearly with N5,
while the scalar masses scale like

√
N5. For low values a neutralino χ̃0

1 is the NLSP, while for
larger values a right-handed slepton l̃ is the NLSP.
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• Mmess is the overall mass scale of the messenger sector. All sparticle masses depend only logarith-
mically on Mmess, while the lifetime of the NLSP depends quadratically on Mmess. Mmess > Λ is
required to avoid color and charge breaking in the messenger sector.

• tanβ is the ratio of the vacuum expectation values of the Higgs fields and lies in the region 1.5 <
tanβ < 60. The lower limit leads to a light CP-even Higgs scalar below the LEP exclusion limit,
while large values of tanβ leads to τ̃ slepton that is significantly lighter than the other sleptons.

• sign(µ) is the sign of the Higgs mass parameter µ appearing in the gaugino mixing matrices.

• Cgrav is the scale factor of the Goldstino coupling. It can be used to control the NLSP lifetime,
which scales like C2

grav.

General phenomenology

The phenomenology of GMSB is largely determined by the nature of the NLSP leading to different types
of final state particles, such as leptons or photons. Since the scalars have a different dependence on the
model parameters as the gauginos, the nature of the NLSP also depends on the parameters. Especially
the value of N5 has a big influence, as discussed above, but also tanβ , which determines the mixing in
the τ̃ sector and thus the mass of the lighter τ̃ .

Figure 2.13(a) shows the mass difference mτ̃ −ml̃ in the Λ− tan β plane for sign(µ) = 1, Cgrav = 1,
Mmess = 250 TeV and N5 = 3. For low values of tanβ the selectrons, smuons and staus are degenerate
and the region is called co-NLSP region. For increasing values of tanβ the difference between the masses
of the two staus becomes larger and the lighter stau is the NLSP. The lightest neutralino is heavier than
the sleptons and does (most often) not decay directly to the gravitino. In this part of the parameter space
one expects leptons from the l̃ → lG̃ decay in the final state, while the gravitino escapes detection due
to the weak interaction with the detector material. This can lead to a large amount of missing transverse
energy. If the lifetime of the NLSP is large, such that the decay occurs outside the detector, one expects
heavily ionising heavy charged particles in the detector leading to very interesting signatures (see [18]
for ATLAS studies and [58] for searches at the TeVatron experiments).

Figure 2.13(b) shows the mass difference mτ̃ −mχ̃0
1

in the Λ− tan β plane for sign(µ) = 1, Cgrav = 1,
Mmess = 500 TeV and N5 = 1. The lightest neutralino is now the NLSP for small values of tanβ due to
the low value of N5. For larger values of tanβ the stau mass splitting is again large enough to render the
lightest stau the NLSP. In this region of the parameter space one expects photons from the χ̃0

1 → γG̃ decay
in the final state, since the lightest neutralino is almost a pure bino in the minimal GMSB model and thus
the branching ratio to photons dominates. Again, one expects a large amount of missing transverse energy
due to the escaping gravitino. If the lifetime of the neutralino is large, such that it decays outside the
detector, it might become difficult to distinguish this signature from those arising in mSUGRA models
where the neutralino is the LSP and also escapes detection. In this thesis the focus lies on GMSB models
with a neutralino NLSP decaying to a photon and a gravitino.

2.3.4 Experimental results
Searches for signatures arising from GMSB, especially with photons in the final state, have been per-
formed at a variety of experiments [59], including the LEP experiments ALEPH [60], L3 [61], DEL-
PHI [62] and OPAL [63] and the TeVatron experiments D0 [64,65,66] and CDF [67,68]. Also combined
TeVatron analysis have been presented [69, 70, 71], but no evidence for a GMSB signal has been found
so far. The current best limit is derived from the TeVatron experiments due to the large center-of-mass
energy in pp̄ collisions.
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Figure 2.13: Mass differences (a) mτ̃ −ml̃ and (b) mτ̃ −mχ̃0
1

in GeV in the Λ− tanβ plane for sign(µ) = 1,
Cgrav = 1 and (a) Mmess = 250 TeV, N5 = 3 and (b) Mmess = 500 TeV, N5 = 1. Region A is theoretically
excluded, due to the existence of tachyonic states. Below the m τ̃ −mχ̃0

1
= 0 line a neutralino is the NLSP

decaying to a photon and a gravitino.

As an example, the CDF collaboration has searched for neutralino decays to photons and gravitinos
in the two photons plus missing transverse energy E miss

T channel [71]. The requirements have been two
isolated photons γ1,2 with transverse energy ET > 13 GeV each, ∆φ(γ1,γ2) < π −0.15, HT > 200 GeV9)

and Emiss
T significance10) of larger than three. These requirements have been optimized in order to obtain

the largest possible significance for the GMSB signal and additional requirements have been imposed to
reduce non-collision background. After all selections a single event remained being consistent with the
expected background of 0.62±0.29 events. Figure 2.14 shows the derived exclusion limits as a function
of the neutralino mass and lifetime. For a vanishing neutralino lifetime the mass below 138 GeV is
excluded at 95% C.L.. Based on these results and experiences search strategies have been developed
for the LHC experiments analysing several benchmark points and trying to identify reasonable search
strategies.

GMSB models have also been investigated in the cosmological context of the WMAP data and the
constraining of warm dark matter candidates [72,73,74,75]. Usually dark matter candidates are classified
according to their velocity dispersion which defines a free-streaming length. For cold dark matter this is
by definition so small that it is irrelevant for cosmological structure formation. In the case of hot dark
matter the free-streaming length is so large that it smoothes out fluctuations in the total matter density
even on galaxy cluster scales. Strong constraints on the mass of hot dark matter candidates can be
derived. Warm dark matter is in the region between these two alternatives and it is found that gravitinos
arising in GMSB models might lie within this region and that GMSB models with gravitino LSPs cannot
be excluded cosmologically in general, since the limits on the GMSB parameters depend strongly on the

9)HT is the scalar sum pT of all identified objects in the event.
10)The significance is calculated by performing pseudo-experiments for each event and it is defined as − log(P), where P is

the probability for the Emiss
T drawn from the expected mis-measured Emiss

T distribution to be equal to or larger than the observed
Emiss

T .



26 2 The Standard Model and supersymmetric extensions

)2 mass (GeV/c0
1

χ∼
70 80 90 100 110 120 130 140 150 160 170

 li
fe

tim
e 

(n
s)

0 1χ∼

0

5

10

15

20

25

)2 mass (GeV/c0
1

χ∼
70 80 90 100 110 120 130 140 150 160 170

 li
fe

tim
e 

(n
s)

0 1χ∼

0

5

10

15

20

25

)2 mass (GeV/c0
1

χ∼
70 80 90 100 110 120 130 140 150 160 170

 li
fe

tim
e 

(n
s)

0 1χ∼

0

5

10

15

20

25

)2 mass (GeV/c0
1

χ∼
70 80 90 100 110 120 130 140 150 160 170

 li
fe

tim
e 

(n
s)

0 1χ∼

0

5

10

15

20

25
-1 analysis with 2 fb

T
E+γγExpected exclusion region with 

-1 analysis with 2 fb
T

E+γγObserved exclusion region with 
-1+Jet analysis with 570 pb

T
E+γObserved exclusion region with 

ALEPH exclusion limit
2 mass < 1.5 keV/cG~Cosmology favored region with 1.0 < 

-1CDF Run II Preliminary, 2 fb

Figure 2.14: Exclusion limits for GMSB signatures with photons in the final state derived from the CDF
searches as a function of the neutralino mass and lifetime [71].

cosmological assumptions, such as the details of inflation or leptogenesis [76, 77, 78].



Chapter 3

The LHC and the ATLAS detector

The Large Hadron Collider (LHC) [79] is a proton-proton collider with a center of mass energy of 14 TeV.
For the investigation of the products of the collisions, four large experiments have been built. ATLAS
(A Toroidal LHC ApparatuS) is one of two general purpose detectors, built to detect final state particles
produced with the LHC. CMS (Compact Muon Solenoid) is the other general purpose detector and the
remaining two experiments are ALICE (A Large Ion Collider Experiment), a dedicated detector for
heavy ion collisions, and LHCb (Large Hadron Collider beauty), which investigates the decay products
of B-hadrons. In this chapter the LHC will be described briefly and the several subcomponents of the
ATLAS detector will be presented.

3.1 The Large Hadron Collider
The LHC is a ring accelerator of 27 km circumference, which has been built by the European Organiza-
tion for Nuclear Reseach (CERN), based near Geneva. It is located in the former LEP tunnel between
70 m and 140 m underground. Proton-proton collisions, as well as heavy ion collisions will be provided,
but only the proton-proton collisions are relevant in this thesis. The main operation mode starts in the
end of 2009 with a center of mass energy of 10 TeV, which will be increased later. The layout and the
position of the experiments are shown in Fig. 3.1.

The nominal center of mass energy is
√

s = 14 TeV with 7 TeV energy per beam. The protons
are pre-accelerated by different systems, including the Proton Synchrotron (PS) and the Super Proton
Synchrotron (SPS). The injection into the LHC is done by the SPS at a beam energy of 450 GeV and the
protons need approximately 20 minutes to reach the design energy in the LHC. The energy is provided by
superconductive radio frequency cavities, while the protons are kept on track by magnetic fields. These
are provided by 1232 superconductive dipole magnets with a length of 15 m each, which are configured
such that both proton beams in both directions are deflected correctly. With a radius of rLHC = 4298 m
a magnetic field of B = 8.33 T is needed. Additional magnets are used for focussing and correcting the
beams. In total 9300 superconductive magnets operate at a temperature of 1.7 K.

The interaction rate Ṅ is proportional to the cross section σ of a specific process and the propor-
tionality factor is called the instantaneous luminosity L . It can be expressed by the colliders beam
configuration:

L = f kn1n2
4πσxσy

Rφ , (3.1)

where n1 and n2 are the numbers of particles in each of the k bunches in each beam, σx and σy give the
extensions of the bunches perpendicular to the beam direction, f is the revolution frequency and Rφ is
a luminosity reduction factor due to the non-vanishing LHC beam crossing angle. In each bunch there

27
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Figure 3.1: Layout of the LHC and the position of the experiments.

are about 1.15 · 1011 protons and in the whole collider 2808 bunches are circulating. The revolution
frequency is fixed to f = 11.25 kHz and the bunch crossing rate is 40 MHz leading to a bunch spacing of
25 ns. The total number of events is given by

N = L ·σ , (3.2)

where L is the integrated luminosity

L =
∫

dtL . (3.3)

For the running of the LHC several different luminosity phases are planned. The first phase will be
at around L = 1031 cm−2s−1 and will be used for commissioning of the collider and for first physics
results. Then the luminosity will be increased to L = 1033 cm−2s−1 and later to L = 1034 cm−2s−1,
which is the design luminosity. This design phase is intended to last several years and an integrated
luminosity of some 100 fb−1 of data will be collected. For the far future additional luminosity upgrades
are planned and are discussed under the name SLHC (Super-LHC).

The total inelastic proton-proton cross section is around 99 mb [19] at a center of mass energy of
14 TeV. Therefore, around 23 proton-proton interactions are expected per bunch crossing at a luminosity
of L = 1034 cm−2s−1, while one of these interactions is a hard scattering process. However, the overlap
of these pile-up events imposes a great challenge for the data analysis in order to assign all final state
particles to the correct interaction. The detector components also have to deal with the high radiation
level and especially the components of the ATLAS detector have been built in this respect.

3.2 The ATLAS detector
ATLAS is one of the four LHC experiments and one of two multipurpose detectors, which have been built
to cover a broad range of physics topics expected at the LHC. It is designed to measure electrons, muons,
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Figure 3.2: Schematic view of the ATLAS detector [80].

photons and hadronic particles with high precision and high acceptance. Therefore it has an onion-like
structure and is built around the beam pipe, as shown in Fig. 3.2. ATLAS is forward backward symmetric
and can be divided into three parts, the barrel and two endcaps. The innermost part of the detector is the
tracking system, where the momenta of charged particles are measured with high precision. It consists
of the pixel detector, the silicon microstrip tracker (SCT) and the transition radiation tracker (TRT)
and is surrounded by a superconductive solenoid with a magnetic field of 2 T. The electromagnetic and
hadronic calorimeters are built behind the tracking system to measure the energy of electromagnetically
and strongly interacting particles. The outermost system is the muon spectrometer with the barrel and
endcap toroid magnets providing a field of 0.5 T and 1 T, respectively. In total ATLAS is 44 m long and
25 m high and weights around 7000 tonnes. Table 3.1 lists some of the important performance goals for
the ATLAS detector.

3.2.1 The coordinate system
The nominal interaction point is in the center of the ATLAS coordinate system and is located in the center
of the detector. The x-axis is pointing towards the center of the accelerator, while the y-axis is pointing
upwards. To define a right-handed coordinate system the z-axis is chosen to point counter-clockwise
along the beam direction. The polar angle θ is measured with respect to the positive z-axis such that the
pseudo-rapidity can be defined as

η = − ln tan
(

θ
2

)
. (3.4)

This reflects the problem of the unknown initial boost along the z-axis at hadron colliders as ∆η is
invariant under Lorentz boosts. For massless particles η is the same as the rapidity. The coverage of
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Detector component Required resolution η coverage
Measurement Trigger

Tracking σpT /pT = 0.05%pT ⊕1% ±2.5
EM calorimetry σE/E = 10%/

√
E ⊕0.7% ±3.2 ±2.5

Had. calorimetry
barrel and endcap σE/E = 50%/

√
E ⊕3% ±3.2 ±3.2

forward σE/E = 100%/
√

E ⊕10% 3.1 < |η | < 4.9 3.1 < |η | < 4.9
Muon Spectrometer σpT /pT = 10% ±2.7 ±2.4

at pT = 1 TeV

Table 3.1: Performance goals of the ATLAS detector. The muon-spectrometer performance is indepen-
dent of the inner tracking system for high energetic muons [80].

each detector component in η is listed in Tab. 3.1. The x-axis and y-axis define the azimuthal angle φ by
tanφ = y

x , which varies between −π and π . The distance of two particles can be defined in terms of η
and φ as

∆R =

√
(∆η)2 +(∆φ)2. (3.5)

The transverse momentum pT =
√

p2
x + p2

y of a particle and the missing transverse energy are also mea-
sured in the x-y-plane and are Lorentz-invariant along the z-axis.

3.2.2 The magnet system

Figure 3.3: Layout of the ATLAS mag-
net system. The eight barrel and endcap
toroid coils and their relative position to
the tile calorimeter steel are shown. The
solenoid windings lie inside the calorime-
ter [80].

The ATLAS magnet system provides the magnetic fields
needed to measure the particle momenta in the tracking sys-
tem. It consists of four superconductive parts, one solenoid
and three toroids (one barrel and two endcaps) and is 22 m in
diameter and 26 m long. Figure 3.3 shows a drawing of the
geometry of the magnet windings and the tile calorimeter
steel. In total the magnets store an energy of 1.6 GJ.

The solenoid provides an axial field of 2 T, which bends
the particle tracks in the inner tracking system. It is designed
such that it minimizes the amount of material in front of the
electromagnetic calorimeter to ensure a good energy reso-
lution. In total it contributes around 0.66 radiation lengths.
The inner and outer radius of the solenoid are 2.46 m and
2.56 m and its axial length is 5.8 m.

The barrel (endcap) toroids deliver a toroidal field of
0.5 T (1 T) to measure the momenta of the muons travers-
ing the muon spectrometer. Each of the toroids consists of
eight coils assembled radially and symmetrically around the
beam axis. The endcaps are rotated by 22.5◦ with respect to
the barrel system to provide overlap and optimize the bending power at the interface of the systems.
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Figure 3.4: Schematic view of a quarter of the ATLAS inner detector. Each of the major elements is
shown with the active dimensions [80].

3.2.3 Inner detector
The purpose of the inner detector is to measure the momentum of charged particles as precisely as pos-
sible. Additionally, secondary vertices can be measured to determine the lifetime of charged particles,
reconstruct photon conversions or allow b-tagging. The momentum and the sign of the charge are deter-
mined by measuring the bending of the track in the rφ -plane by the Lorentz force in the magnetic field.
Since the solenoidal field is parallel to the z-axis, only the transverse momentum can be measured. The
hits needed for fitting the tracks are provided by all three subcomponents of the inner detector. To opti-
mize the accuracy of the momentum measurement one has to choose a high magnetic field, a long lever
arm on the track, a maximal single hit position resolution and one has to use as many hits as possible.

For the analysis of photon final states in GMSB models the tracker plays an important role. Although
photons do not have a track, they have to be distinguished from electrons and the most important criterion
is the electron track. A high efficiency reduces the number of electrons misidentified as photons. Ad-
ditionally, photon conversions can be reconstructed with inner detector information. On the other hand,
the selection of signal events requires a good understanding of jets and missing transverse energy. The
jet energy measurement can be enhanced by a good understanding of the charged fraction of a jet, which
in turn leads to a better estimate of the missing transverse energy.

Fig. 3.4 shows a schematic view of a quarter of the inner detector with all relevant subsystems.
The outer radius is 115 cm, given by the dimension of the cryostat, which contains the electromagnetic
calorimeter. The total length is 7 m, again given by the position of the endcap calorimeter. The acceptance
in pseudo-rapidity is |η | < 2.5. In the following the three subsystems are described.

The pixel detector

The pixel detector is the innermost part of the inner detector. It is designed to provide exact measurements
of the primary vertex, as well as the starting point of any charged track. This is necessary for an exact
reconstruction of all tracks. With this ability the pixel detector can distinguish secondary vertices from
the primary vertex, which is needed for the identification of heavy quark decays, such as bottom quarks.
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Also in some supersymmetric scenarios long-lived heavy charged particles might decay inside the pixel
detector allowing their lifetime to be measured. The suppression of pile-up events is another important
issue, since these events do not originate from the hard scattering process and often have a different
vertex.

The pixel detector provides three precision measurements of hits over the full acceptance region, as
can be seen in Fig. 3.4. The barrel part consists of three cylindrical layers, while three discs on each side
are used for the endcaps. The system consists of approximately 1500 identical barrel modules and 1000
disc modules, while the modules themselves have more than 60 000 pixel elements of size 50×400 µm2.
This structure allows for a spatial resolution of 10 µm in the R−φ -plane and 115 µm in z-direction. Each
layer has a thickness of around 1% of a radiation length. The total number of readout channels amounts
to 80.4 million, which is around 90% of the total number of readout channels of the ATLAS detector.

The lifetime of the pixel detector is limited by radiation damage and needs to be replaced after a few
years of data-taking, depending on the luminosity.

The semiconductor tracker

Since the number of hits is limited to three in the pixel detector, the semiconductor tracker (SCT) extends
the inner detector system in the intermediate radial range with a barrel part and two endcaps. It provides
additional four high precision measurements per track and contains 63 m2 of silicon detectors. Each of
these silicon detectors has a surface of 6.36× 6.40 cm2 with 768 readout strips each with 80 µm pitch.
In the barrel two detectors are wire-bonded together to form 12.8 cm long strips of which two are glued
together back-to-back at a 40 mrad stereo-angle to form a module. The forward modules, 7 and 12 cm
long, are similar in construction, but use tapered strips. In total the SCT consists of 4088 modules with
6.2 million readout channels, while the spatial resolution is 17 µm in Rφ -direction and 580 µm in z-
direction. Tracks can be distinguished, if they are separated by more than 200 µm. The full length of the
SCT is almost 6 m, while the outer radius is at 50 cm.

The transition radiation tracker

To further extend the radius of the tracking detector, the transition radiation tracker (TRT) is added to the
structure outside the SCT. It is a drift chamber with about 370 000 straw tubes containing 70% Xenon,
27% CO2 and 3% Oxygen. Each straw tube has a diameter of 4 mm.

The barrel part consists of 50 000 straws, which have a length of 144 cm and cover the radial range
from 56 to 107 cm. For the ease of construction and maintainance it is built of three rings of 32 individual
modules with 329 to 793 axial straws each. The straws are equipped with 31 µm diameter tungsten
wires plated with 0.5-0.7 µm gold as anodes and aluminium cased coats as cathodes. The readout is at
each end of the tubes. The endcaps contain 320 000 radial straws, which are organized in 20 wheels
each, as depicted in Fig. 3.4. The first 12 wheels near the interaction point contain 8 successive straw
layers spaced 8 mm apart. The last 8 wheels also contain 8 straw layers, but with a spacing of 15 mm.
Each layers contains 768 straws of 37 cm length, while the readout is at the outer radius. The TRT
contains 420 000 electronic channels in total, which also provide a drift-time measurement to determine
the distance of the track from the readout wire. This results in a spatial resolution of 130 µm in Rφ -
direction.

An additional feature of the TRT is its electron identification capability due to the transition radiation
fibres that are interleaved between the straws. Low energy transition radiation photons are absorbed in
the Xenon gas and give larger signal amplitudes than minimum-ionising charged particles. Low and high
thresholds are used to distinguish between transition radiation signals and normal track signals for each
straw providing discrimination power between electrons and charged pions. Also for the identification
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Figure 3.5: Schematic view of the inner detector showing a particle (η = 0.3) traversing the three pixel
layers, the four SCT layers and about 36 straw tubes in the TRT [80].

of heavy stable charged particles, which appear also in GMSB models, the TRT can be used. From time-
over-threshold measurements the particle β can be determined, which can be used to select the signal
and measure the particle mass.

Figure 3.5 shows a particle (η = 0.3) traversing the complete inner detector. After having passed
the beam pipe, it traverses the three pixel layers, the four cylindrical double layers of the SCT and ap-
proximately 36 axial straw tubes in the TRT. The overall performance of the tracking system has been
studied in [18] for the reconstruction of muons, electrons and pions. The muon momentum resolution
for 1/pT has been found to be 0.34 TeV−1 in the barrel and the resolution of the transverse impact pa-
rameter is 10 µm. The muon and electron charge can be measured for particles with pT up to 1 TeV with
misidentification rates of a few percent. In the barrel muons can be identified with an efficiency of al-
most 100%, while the electron and pion identification suffers from material effects and are reconstructed
with efficiencies between 70% and 95%. The rate of pions misidentified as electrons is of the order of
a few percent for an electron efficiency of 90% at pT = 25 GeV. Primary and secondary vertices can be
identified with high efficiency (∼99%) in the presence of low-luminosity pile-up. The performance of
the conversion reconstruction is discussed in Sect. 5.2.

3.2.4 Calorimetry

Calorimeters are used to measure the energy of the final state particles. While the inner detector contains
as little material as possible to not disturb the path of the traversing particle, the principle of a calorimeter
is to fully absorb the particle by using material of several radiation lengths. The particle interacts with the
absorber material and produces secondary particles, which in turn interact with the material. The result is
a shower of particles, whose energy can be measured. The ATLAS calorimeter is a sampling calorimeter
consisting of layers of active, as well as passive absorbers. The latter causes the shower development,
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Figure 3.6: Drawing of the ATLAS calorimeter system [80].

while the former is mainly meant for the measurement of the deposited energy. Also neutral particles
can be measured in the calorimeter, as long as they are electromagnetically or hadronically interacting.
Only weakly interacting particles escape the calorimeter completely and cannot be measured with the
detector at all. If the calorimeter is designed granularly, a position measurement of the deposed energy
is possible and a geometrical matching with the tracking system can be performed. Also the shape of the
shower can be determined and used for particle discrimination. In particular, the separation of pions and
photons has to be done with the calorimeter.

ATLAS contains four systems for calorimetry: the electromagnetic calorimeter, the hadronic tile
calorimeter, the hadronic endcap calorimeter and the forward calorimeter. Figure 3.6 shows a drawing
of the complete system. One can see the barrel and endcap parts of the electromagnetic and hadronic
calorimeters, as well as the extension of the hadronic tile barrel and the forward calorimeter. For the
study of supersymmetric events all subsystems are crucial: the electromagnetic part for the identification
and measurement of photons and leptons and the hadronic part for jets and missing transverse energy.
For the precise determination of the latter the complete system must cover as much of the η- and φ -
directions as possible to measure the complete transverse energy of the event. All subsystems will be
described in the following.

The electromagnetic calorimeter

The ATLAS electromagnetic calorimeter (ECal) is a lead-liquid-Argon (LAr) detector with accordion
geometry. The main task is the measurement and identification of electrons and photons over a broad
energy range. It is therefore particularly important for the study of GMSB events in this thesis. The lead
layers serve as absorbers and the liquid argon is the active material for detection. The ECal is divided into
a barrel part (|η | < 1.475) and two endcaps (1.375 < |η | < 3.2). The central solenoid position is in front
of the ECal demanding an optimization of the material in order to achieve the desired performance. The
calorimeter has to be thick enough in terms of radiation lengths in order to limit the punch-through into
other systems. The ECal therefore has a total thickness of more than 22 radiation lengths in the barrel
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Figure 3.7: Sketch of a module of the electromagnetic barrel calorimeter. The different compartements
with the accordion shape and the corresponding granularities in φ - and η-directions are shown [80].

and more than 24 radiation lengths in the endcaps. In the region |η | < 1.8 a LAr-presampler is installed
to correct for the energy losses of electrons and photons in the inner detector as well as the cryostats and
the solenoid.

The barrel part consists of two identical half-barrels of 3.2 m length, separated by a small gap of
4 mm at z = 0. Also the endcaps are divided into two parts: an outer wheel covering the region 1.375 <
|η | < 2.5 and an inner wheel covering the region 2.5 < |η | < 3.2. The accordion shaped geometry with
the kapton electrodes provides a complete φ uniformity without azimuthal cracks, as shown in Fig. 3.7.
One can also see the segmentation into three samplings for the region |η | < 2.5 used for precision
measurements. The endcap inner wheel is segmented into two samplings in depth and has a coarser
granularity than for the rest of the acceptance, which is sufficient to measure jet energies and missing
transverse energy precisely enough.

The first sampling of the precision region is equipped with very fine strips allowing for a precise
determination of the η position of a particle and therefore the distinction from e.g. two photons coming
from a neutral pion decay. This is important to separate single photons or electrons from jets and for
the reconstruction of τ leptons. The second sampling is the longest one and absorbs most of the energy
with cubic cells of size ∆η ×∆φ = 0.025×0.025. The resolution in φ direction is better than in the first
sampling and allows for the determination of the φ position of a particle. The η direction of a photon is
determined from the η position of the cluster in the first and second layer. The determination of the φ
direction is hardly possible due to the insufficient φ resolution in the first sampling. The third sampling
is used to estimate the leakage into the hadronic calorimeter. The values for the rapidity coverage, the
granularity and the longitudinal segmentation of the ATLAS ECal subsystems are listed in Tab. 3.2.

As an example, the energy of an electron in each layer, E0 for the presampler and E1, E2 and E3
for the different samplings, is the sum of the energies in each selected cell in the cluster. The cluster is
constructed first in the second sampling, where cells within a square window of 3× 3 cells around the
cell with the highest energy are clustered together. The total energy is given by

E = offset +w0 ×E0 +w01 ×
√

E0E1 +λ (E1 +E2 +E3)+w3×E3, (3.6)

where w0,01,3 and λ are different correction factors depending on the electron energy and η . The energy
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Barrel Endcap
Number of layers and η coverage

Presampler 1 |η | < 1.52 1 1.5 < |η | < 1.8
Calorimeter 3 |η | < 1.35 2 1.375 < |η | < 1.5

2 1.35 < |η | < 1.475 3 1.5 < |η | < 2.5
2 1.5 < |η | < 2.5

Granularity ∆η ×∆φ versus |η |
Presampler 0.025×0.1 |η | < 1.52 0.025×0.1 1.5 < |η | < 1.8

Calorimeter 1st layer 0.025/8×0.1 |η | < 1.40 0.050×0.1 1.375 < |η | < 1.425
0.025×0.025 1.40 < |η | < 1.475 0.025×0.1 1.425 < |η | < 1.5

0.025/8×0.1 1.5 < |η | < 1.8
0.025/6×0.1 1.8 < |η | < 2.0
0.025/4×0.1 2.0 < |η | < 2.4
0.025×0.1 2.4 < |η | < 2.5
0.1×0.1 2.5 < |η | < 3.2

Calorimeter 2nd layer 0.025×0.1 |η | < 1.40 0.050×0.025 1.375 < |η | < 1.425
0.075×0.025 1.40 < |η | < 1.475 0.025×0.025 1.425 < |η | < 2.5

0.1×0.1 2.5 < |η | < 3.2
Calorimeter 3rd layer 0.050×0.025 |η | < 1.35 0.050×0.025 1.5 < |η | < 2.5

Number of readout channels
Presampler 7808 1536 (both sides)
Calorimeter 101760 62208 (both sides)

Table 3.2: Main parameters of the ATLAS electromagnetic calorimeter and its subsystems [80].

resolution has been studied in test beam measurements and simulation and can be parametrized as [81]

σ(E)

E =
a√

E(GeV)
⊕b, (3.7)

where a = 10% ·
√

GeV is a stochastic term and b = 0.17% is a constant term. In the energy range from
15 GeV to 180 GeV the energy response is linear within ±0.1%.

The tile calorimeter

The main task of the ATLAS hadronic calorimeter (HCal) is the measurement of jet energies and the
reconstruction of missing transverse energy together with the ECal. This is particularly important for
studies of supersymmetric events, since multiple jets and missing transverse energy from weakly inter-
acting neutralinos or gravitinos is expected in many models.

The barrel part of the HCal uses steel as absorber material and scintillating tiles for detection. Fig-
ure 3.8 shows the construction principle and arrangement of the steel plates and tiles. It is placed directly
outside the ECal envelope and covers the region |η | < 1.7. The barrel part covers |η | < 1.0 and has
a length of 5.8 m, while the two extended barrels cover 0.8 < |η | < 1.7 and have a length of 2.6 m, as
can be seen in Fig. 3.6. Radially, it reaches from an inner radius of 2.28 m to an outer radius of 4.25 m
and is divided into three layers. Azimuthally, each barrel consists of 64 modules of size ∆φ ≈ 0.1; the
layout and principle are depicted in Fig. 3.9. The granularity of the calorimeter is ∆η ×∆φ = 0.1×0.1
(0.2×0.1 in the last layer). The rapidity coverage and granularity of the tile calorimeter are summarized
in Table 3.3.
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Figure 3.8: Schematic view of the tile calorimeter. The tiles, fibres and photomultipliers are shown [80].
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Figure 3.9: Segmentation in depth and η of the tile calorimeter in the central (left) and extended (right)
barrels [80].

Barrel Extended barrel
|η | coverage |η | < 1.0 0.8 < |η | < 1.7

Number of layers 3 3
Granularity ∆η ×∆φ 0.1×0.1 0.1×0.1

Last layer 0.2×0.1 0.2×0.1
Readout channels 5760 4092 (both sides)

Table 3.3: Main parameters of the ATLAS tile calorimeter [80].
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Figure 3.10: Schematic view of the three FCal modules and their position relative to the EMEC and
HEC. The black regions are parts of the cryostat [80].

Systematic studies of the energy resolution have been performed with beams of isolated pions [80].
The fractional energy resolution σ(E)/E has been modelled with Eq. (3.7) and the best fit yields a =
(56.4±0.4)% and b = (5.5±0.1)%.

LAr hadronic endcap and forward calorimeter

For the measurement of jets (and missing transverse energy) in the region 1.5 < |η | < 3.2 two hadronic
endcap calorimeters (HEC) have been built. Due to the higher radiation exposure the intrinsically ra-
diation hard LAr technology has been chosen. Parallely arranged copper plates are used as absorber
material. The HEC consists of two wheels in each endcap: a front and a rear wheel with an outer radius
of 2030 mm, each containing two longitudinal sections. The system has a total length of 1818 mm and
the size of the individual readout cells is ∆η ×∆φ = 0.1×0.1 for |η | < 2.5 and ∆η ×∆φ = 0.2×0.2 for
larger values of η .

For the region 3.1 < |η | < 4.9 the forward calorimeter (FCal) has been built at a distance of 4.7 m
from the interaction point. The active material is again liquid argon, while two different absorber materi-
als have been chosen. The first of the three modules features copper for electromagnetic measurements,
while tungsten is used for hadronic measurements in the other two layers. Each module has a length of
45 cm, as shown in Fig. 3.10. One can clearly see the relative position of the electromagnetic endcap
(EMEC), the HEC and the FCal.

3.2.5 The muon spectrometer
Muons are very important for the search for new physics. In many models heavy particles decay into
high energetic muons yielding important information on particle masses and couplings. The muon spec-
trometer of the ATLAS detector enables a very good identification and reconstruction of these muons.
Additionally, heavy stable charged particles are predicted by some supersymmetric models, which leave
a track in the inner detector, but cannot be stopped by the calorimeters. Some of the properties of these
particles, such as mass and velocity, can also be measured with a muon detector [18].

The muon system is the outermost part of ATLAS. Since muons are minimal ionising particles, they
traverse the inner detector and the calorimeters relatively undisturbed and a track can be measured in
the muon system. The magnetic field for the bending of the tracks is generated by the toroid magnet
system. In the region |η | < 1.4 the bending is provided by the barrel part of the magnet system, while
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Figure 3.11: Cut-away view of the ATLAS muon system and its individual components: MDTs, CSCs,
TGCs and RPCs [80].

in the region 1.6 < |η | < 2.7 the endcap toroids provide the magnetic field. In the transition region both
systems are used. The fields are mostly orthogonal to the muon trajectories.

Four different gaseous detector technologies are used (Fig. 3.11): monitored drift tubes (MDT),
cathode strip chambers (CSC), thin-gap chambers (TGC) and resistive plate chambers (RPC). Over most
of the η range, the MDTs are used to provide precision measurements of the track coordinates. These
chambers consist of three to eight layers of drift tubes (Fig. 3.12, Rmin is used to measure the coordinate)
that measure the drift time of an electron produced by the ionizing muon. The maximal drift time from
the wall to the wire is 700 ns. The tubes are made of aluminium and possess a diameter of 30 mm, while
the gas in the tubes consists of 93% Ar and 7% CO2. This mixture is responsible for the long drift
time, but has been chosen due to good aging properties. An average resolution of 80 µm is achieved per
tube, or around 35 µm per chamber. There are 1088 MDT chambers in ATLAS with 18 main types. A
considerable number of chambers with special shapes have been built in order to minimize acceptance
losses.

In the forward region 2.0 < |η | < 2.7 CSCs are used in the innermost tracking layer. They are
multiwire proportional chambers with cathode planes segmented into strips in orthogonal directions. The
measurement priciple is different from the MDTs, since induced-charge distributions are determined to
measure the track coordinates. A resolution of 40 µm is achieved with each chamber in the bending plane
and 5 mm in the transverse plane. The CSCs have a higher rate capability and a better time resolution
than the MDTs due to the gas mixture of 30% Ar, 50% CO2 and 20% CF4.

An important performance goal of the muon system is the measurement of a 1 TeV track with a
resolution of 10%. To achieve this goal the position of the MDTs wires and the CSC strips have to
be known with a precision of better than 30 µm. Therefore, a high precision optical alignment system
monitores the positions and internal deformations of the system.

Another very important task of the muon system is to trigger efficiently on muon tracks and identify
the corresponding bunch-crossing. For this purpose additional fast trigger chambers have to be built



40 3 The LHC and the ATLAS detector

µ

29.970 mm

Anode wire

Cathode tube

Rmin

Figure 3.12: Cross section of an MDT tube [80].

Chamber resolution (RMS) in Measurements/tracks Number of
Type Function z/R φ time barrel endcap chambers channels
MDT tracking 35 µm (z) - - 20 20 1088 (1150) 339k (354k)
CSC tracking 40 µm (R) 5 mm 7 ns - 4 32 30.7k
RPC trigger 10 mm (z) 10 mm 1.5 ns 6 - 544 (606) 359k (373k)
TGC trigger 2-6 mm (R) 3-7 mm 4 ns - 9 3588 318k

Table 3.4: Main parameters of the ATLAS muon system [80].

to complement the precision tracking chambers. RPCs have been chosen in the barrel region |η | <
1.05, which have a time resolution of 1.5 ns. In the endcap region 1.05 < |η | < 2.4 TGCs have been
chosen with a time resolution of 4 ns. The RPCs are gaseous detectors, which do not use a wire but two
resistive plates as parallel electrodes with a distance of 2 mm. Electron avalanches are produced along
the ionizing track towards the anode due to the electric field of 4.9 kV/mm. The TGCs are multiwire
proportional chambers, which function similar to the CSCs. To achieve a better time resolution, they have
a smaller anode to cathode distance and a different gas mixture. In addition to the time measurement, the
TGCs also determine the azimuthal coordinate of a muon track to complement the measurement of the
MDTs. The inner layer of the MDTs is complemented by two layers of TGCs, while the middle layer
is complemented by seven TGC layers. Table 3.4 summarizes the main parameters of the ATLAS muon
system.

3.2.6 Trigger and data acquisition

The high interaction rate in pp collisions at the LHC is a great challenge for all experiments. As described
in chapter 3.1 around 23 hard interactions per bunch crossing at a bunch crossing rate of 40 MHz lead
to an approximate interaction rate of 1 GHz at high luminosity. This is opposed to the maximum rate
of about 100 Hz that can be written to permanent storage. This results in the need of a rejection factor
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Figure 3.13: Organization of the ATLAS trigger and data acquisition system [82].

of 107. The rate of interesting events for the search for new physics will be much lower than that. As
an example, for some of the studied supersymmetric models in ATLAS around 10 events per hour are
expected. Most of the rejected events are minimum-bias processes, which will also be studied, but do
not have priority to be stored. Therefore not only a high rejection is required, but also a high detection
efficiency for rare and interesting events is needed. The ATLAS trigger system is designed to provide
such a high rejection, while accommodating different and also changing requirements for many different
physics analyses, including standard model physics and new physics searches.

The event selection is performed by three different levels, as shown in Fig. 3.13. At each level the rate
is reduced by a few orders of magnitude, allowing for an increased decision complexity, which requires
more time, at each level. The first step is done by the Level-1 Trigger (L1), that is based on very fast
custom-made hardware and reduces the rate to 75 kHz. Every decision has to be made in less than 2.5 µs.
The Level-2 Trigger (L2) is run on a large computer farm and is solely based on software. It reduces the
rate further down to about 1 kHz, while having around 40 ms for each decision. The final step is done
by the Event Filter (EF) reducing the rate to approximately 100 Hz, while each decision can take up to a
few seconds.

Level-1 Trigger

The task of L1 is to search for high energetic muons, electrons, photons, hadronically decaying τ-leptons
and jets. Also events with large missing transverse energy and total transverse energy are selected. For
the search for muons it uses dedicated fast muon trigger chambers, the RPCs and TGCs as discussed in
section 3.2.5. Electrons and photons are selected by calorimeter information. Since L1 has to provide
very fast decisions, a reduced granularity is used.

All the information from each detector channel has to be retained, while the L1 decision is formed.
This is done in pipeline memories, which are contained in electronics placed physically close to the
detector. About 1 µs of the total decision time of 2.5 µs is needed for pure cable propagation delays.
Also the bunch crossing identification is an important task for L1, which is challenging due to the short
bunch crossing interval of 25 ns. The size of the muon system alone implies that the time-of-flight of
particles is larger than the bunch crossing interval. Also the width of the calorimeter signals extends over
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Figure 3.14: Sketch of the electron and photon trigger algorithm [80].

many bunch crossings.
Since also minimum-bias events or other processes with a very high cross section will be investigated,

it is necessary to have the possibility to prescale trigger items on L1. This allows the optimal use of the
bandwidth and a flexible physics program. The prescales of each item can in principle be changed during
run time to account for the decreasing luminosity in a certain run or for other changing conditions.

For the study of GMSB events the calorimeter trigger is of special interest. Both the standard su-
persymmetry selection based on missing transverse energy and multiple jet triggers, as well as a special
treatment of GMSB events with photons in the final state use the calorimeter trigger items. The L1
calorimeter trigger (L1Calo) is based on trigger towers of size 0.1× 0.1 in η ×φ (in the central region
and larger at higher |η |). The result is sent to the CTP 1.5 µs after the event occurs. L1Calo consists
of three subsystems: for the digitization of the calorimeter signal and the bunch crossing identification
the pre-processor is used. A look-up table is used for the production of the transverse energy values of
each object. Then the Cluster Processor (CP) identifies electrons, photons and τ-lepton candidates with
transverse energy above the given threshold, while the Jet/Energy-sum Processor (JEP) identifies jets and
calculates global sums of (missing) transverse energy from 0.2×0.2 trigger elements in η ×φ .

The algorithm triggering on electrons and photons is shown in Fig. 3.14. 2× 2 clusters of trigger
towers are identified of which at least one of the four possible sums of two towers, 1×2 or 2×1 exceeds
a given threshold. The 12 towers surrounding the core, as well as the 2×2 hadronic tower sum are used
for the isolation threshold, which is an absolute value rather than a ratio of isolation energy to cluster
energy. The algorithms are run over all possible 4× 4 windows and slide in steps of 0.1 in both η and
φ . If an electron or photon candidate is found, the location of the 2×2 cluster is also the location of the
region-of-interest (ROI) seeding the L2 decision.

The overall L1 trigger decision is made by the central trigger processor (CTP). It combines the
information from the muon system with the information from the calorimeters, as shown in Fig. 3.15. The
decision is based on the multiplicity of trigger objects, such as calorimeter clusters, and the corresponding
energy thresholds. The information about the location of the trigger object is retained and sent as a ROI
to seed the L2 decision. The trigger menu consists of up to 256 trigger items, while each item is some
combination of requirements on the input data. These trigger items can be programmed with 4 to 16
transverse energy thresholds per object type. After the L1 selection the data from the detector front-
end is transferred over 1574 readout links (ROLs) and received into the 1574 readout buffers (ROBs)
contained in the readout system units (ROSs), where it is temporarily stored for later usage.
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Figure 3.15: Diagram of the ATLAS L1 trigger system. The trigger decision is made by the central
trigger processor, which receives input from the muon trigger chambers and the calorimeters. The ROI
information is transferred to L2 [80].

The High-Level Trigger

After the L1 decision the ROI data is passed to the High-Level trigger (HLT) system, which consists of
L2 and the EF and applies trigger decisions in a series of steps, each refining existing information by
acquiring additional data from more and more detector subsystems. First the L2 trigger receives coordi-
nate, energy and signature type information to reduce the amount of data that has to be read out from the
detector subsystems. This is seeded by the ROIs and accounts for about 2% of the total data of an event.
Every detector subsystem including the tracker is used. The ROI information is provided over eight
dedicated ROLs to the ROI builder, which is the first subsystem of L2 and where the information from
each L1 subsystem (calorimeter, muon system and CTP) is assembled to an integrated data structure.
Then it is forwarded to the next L2 step, the L2 supervisors, which assign each event to one of the L2
processing units and receive their results from analysing the ROI data requested from the corresponding
event. These results are forwarded to the data flow manager (DFM), which manages the event building
process. All data from the ROBs are taken. The outcome is a single event data structure, which is given
to the third level of the trigger system, the EF. In total the L2 processing farm provides an event rejection
factor of about 30.

At the EF level the complete detector information from all subsystems not constrained to ROIs is
available to make a last decision, if the event is permanently stored on tape. Additionally, the EF classifies
each event according to a predefined set of event streams and adds this information to the event structure.
Selected events are sent to the output nodes (SFOs) of the data acquisition system, while all event data
from rejected events is removed from the system. Again the EF is a processing farm where on each
processing node a configurable list of tasks receives and processes events. Unlike L2, the decisions are
based on standard ATLAS event reconstruction and analysis applications. The results are objects that are
close to the ones in the offline analysis: electron, photon, muon or jet candidates.

In the case of GMSB events with photons in the final state one could use a dedicated photon signature
to build a trigger chain. As an example, on L1 one could look for one or more isolated clusters in the
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electromagnetic calorimeter and refine the selection with the HLT to have good photon candidates with
a certain transverse energy threshold in the end. It is also possible to logically combine different trigger
chains. Especially multijet triggers could be combined with triggers based on the selection of missing
transverse energy, which is used for general supersymmetry searches.



Chapter 4

Monte Carlo generation and detector
simulation

The results of a huge experiment like the ATLAS detector cannot be interpreted without a detailed un-
derstanding of every single subcomponent. Therefore, the simulation of the detector response to various
physics processes is necessary in order to optimize the whole setup and estimate the performance for
physics studies. Particle identification strategies can be developed in advance and the efficiencies of
analysis algorithms can be tested. Also the preparation of searches for new physics needs a detailed de-
tector simulation in order to estimate the discovery potential and to find methods for measuring particle
properties. When real collision data are available simulated data are needed in order to apply correc-
tions to the real data and to find deviations from the Standard Model. Figure 4.1 shows a schematic
representation of the ATLAS event simulation procedure.

First of all, the event under study has to be generated by a Monte Carlo event generator program [84,
85], which delivers four-vectors of the final state particles. Afterwards the detector simulation [86] is run
that delivers the hits in the detector, which have to be digitized and reconstructed. The digitized data are
equivalent to real data. The reconstructed events are used as input for the final data analysis in the form
of AOD (Analysis Object Data) files.

The complete generation, simulation and reconstruction of an event can take up to 15min in the
current ATLAS software [87]. A large fraction of this time is needed for the simulation of the shower
development in the calorimeter. For large scale productions of event samples the ATLAS computing
grid resources are used and the production is centrally organized. If large amounts of data are needed
that cannot be produced centrally, a fast detector simulation (ATLFAST [88]) can be used that takes the
generated events as input and performs the simulation and reconstruction in a single, simplified step. In
this chapter all relevant computing steps are briefly discussed.

4.1 Generation of simulated events
Events have to be generated by a Monte Carlo generator to study the physics of a given process in detail.
Since calculations in quantum mechanics only give the probability of an outcome of the experiment, the
event generator uses (pseudo)random numbers event by event to produce a result. A couple of programs
exist which are used by ATLAS, depending on the type of process under study. The different programs
differ in the way they implement the several substeps of event generation:

• Hard scattering: The primary parton-parton interaction is determined from the matrix elements
calculated using perturbative QCD (and electroweak theory). The PDFs have to be taken into
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Figure 4.1: Schematic overview of the ATLAS simulation chain. The single steps are shown (rectangles)
together with the corresponding data formats (ellipses) [83].

account in that step. Tree level as well as higher order matrix elements are used by different
generators.

• Initial and final state radiation: Radiative corrections from QCD and electroweak theory are
applied by adding gluon and photon emission from initial or final state particles. This step can
be absorbed in the first step by using the corresponding amplitudes and calculating the Feynman
diagrams order by order. It is possible to go to quite high orders of up to eight partons in the final
state, if one solely uses tree-level diagrams. This approach is very time consuming, but gives a
quite accurate estimate of the final state particle multiplicities which is important e.g. for multijet
events. Soft and collinear partons can better be described by the parton shower approach [85],
which approximates the full matrix elements in a phenomenological way by allowing the inital
or final state partons to split up into pairs of other partons. Initial (final) state radiation can be
modelled by so-called space-like (time-like) parton showers.

• Hadronization: All partons in the final state have to be combined to colorless hadrons. This
cannot be described from first principals within any calculational technique and several models
have been used for this step. In the string fragmentation process [89] two partons that are produced
in the primary interaction are connected via a one-dimensional string. As the partons move apart
the potential energy stored in the string increases and the string can break by the production of
two new partons that form color-singlets with the initial partons. Depending on the invariant mass
of the string pieces further string breaks may occur. This process continues until only on-shell
hadrons remain. Finally the hadrons may decay evolving into hadronic showers and leading to a
realistic final state. If long-lived particles are generated that decay somewhere in the detector, the
event generator has to be connected to a detector simulation, since interactions with the detector
material may happen before the particle decays.

• Multiple interactions: Since the proton consists of multiple partons, there is some probability that
more than one parton is involved in a hard scattering process. This is called multiple interactions
and may not be confused with pile-up events where several hadrons in the same bunch crossing
collide and which is not modelled by the event generator [84]. The parts of the proton that do not
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Figure 4.2: Schematic overview of the computational steps of a Monte Carlo event generator [96].

directly participate in the hard interaction also carry part of the total beam energy and are color
connected to the rest of the interaction.

Figure 4.2 schematically shows the development of a hard proton-proton interaction with all involved
substeps. Several multipurpose generators exist like PYTHIA [90], HERWIG [91], ALPGEN [92] and
MC@NLO [93] and a variety of specialised generators that can be used as plugins for the former ones.
To allow the interoperability of different generators, spectrum calculators [94] and detector simulations
several standards have been developed, e.g. the SUSY Les Houches Accord [95] allowing for the stan-
dardized transfer of mass spectra, couplings and branching ratios to other programs.

Pythia

PYTHIA [90] is one of the most commonly used event generators. It provides code for all relevant
subprocesses of the event generation, as shown in Fig. 4.2 including parton showering and hadronization.
It provides almost all 2 → 1 and 2 → 2 and some 2 → 3 Standard Model and some beyond Standard
Model leading order processes. It can be used as showering and hadronization program by other event
generator codes that have not implemented these algorithms themselves. The Les Houches Accord PDFs
as described in [97] can be used and linked in easily. The hadronization is implemented via the Lund
string fragmentation framework [89]. PYTHIA is written in FORTRAN until version 6 and is currently
rewritten in C++ [98]. It is used for the generation of a broad spectrum of Standard Model processes in
ATLAS.

Herwig

HERWIG [91] is a general purpose leading order event generator for the simulation of lepton-lepton,
lepton-hadron and hadron-hadron collisions. It provides a large range of hard scattering processes in-
cluding initial and final state radiation using angular-ordered parton showers, hadronization via the clus-
ter hadronization model [85] and underlying event simulation. The cluster hadronization is based on the
color pre-confinement property of the angular-ordered parton showers. After the parton shower phase all
partons can be uniquely formed into color singlet clusters. Due to the color pre-confinement the distribu-
tion of the cluster mass spectrum is strongly peaked at low masses. The high mass clusters are split into
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low mass clusters using a string-like mechanism which is followed by the decay of the low mass clusters
to the final state hadrons. The program includes a Les Houches Accord interface for other programs to
allow users the implementation of additional processes, as well as the use of external PDFs. A special
interface to ISAJET [99] exists to allow the transfer of supersymmetric mass spectra and branching ra-
tios. Additionally, a large range of MSSM processes with and without R-parity violation is included in
HERWIG [100] and used in ATLAS. HERWIG is written in FORTRAN, but a completely new event gen-
erator written in C++ based on the experience gathered with the FORTRAN code is under development
called HERWIG++ [101].

Alpgen

ALPGEN [92] is an event generator designed for the generation of Standard Model processes in hadronic
collisions with emphasis on final states with large jet multiplicities. It uses the exact leading order
calculations for partonic matrix elements in order to provide accurate predictions for final state particle
multiplicities. No contributions from loop diagrams are used. The parton shower approach is used
in addition to simulate the emission of soft/collinear gluons. Therefore, interfaces to HERWIG and
PYTHIA are provided using the Les Houches format. The code is written in FORTRAN77 and is used
in ATLAS for the generation of Standard Model background processes for studies of supersymmetric
models.

MC@NLO

The MC@NLO generator [93] includes the full next-to-leading order (NLO) QCD matrix elements in the
calculations of hard subprocesses and is therefore able to provide sensible descriptions of multiple soft
and collinear emissions. It is written in FORTRAN and makes use of HERWIG for the showering and
hadronization steps. Since soft emissions are described by the NLO matrix elements, double counting
of radiated partons due to the showering step has to be avoided by a dedicated mechanism. Therefore
MC@NLO produces events with negative weight, typically 15% of all events.

Supersymmetric events in ATLAS

In ATLAS the program ISASUGRA, which is part of the ISAJET package, is used to calculate the
supersymmetric mass spectrum, all branching fractions and particle widths in leading order. This is used
as input for HERWIG/JIMMY [102] for the sparticle cascade decays, parton showers, hadronization and
the simulation of the underlying event.

4.2 Detector Simulation
Although generated events can be used for approximate studies of the properties of e.g. supersymmetric
models, a detailed detector simulation is needed in order to estimate the detector response on all gener-
ated objects. Only with a detector simulation it is possible to estimate efficiencies and to optimize the
identification criteria for final state particles.

4.2.1 Full GEANT4 simulation
The GEometry ANd Tracking (GEANT4) program [103, 104] is a toolkit for the simulation of the pas-
sage of particles through matter. In ATLAS it is used for several tasks. First of all a detector which has
not been built yet can be designed and optimized using a detector simulation toolkit. It also serves as
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a tool for understanding a concrete detector concept and its interaction with elementary particles. Ad-
ditionally, the reconstruction tools can be tested as well as associated systems like the trigger and data
acquisition. In the end, all precise analysis studies are based on GEANT4 in ATLAS as long as no real
data are available. Once this is the case, many analysis results depend on an accurate detector simulation,
since not all effects and efficiencies can be estimated from the data itself.

For a precise simulation the exact geometry of all subsystems described in Sec. 3.2 has to be known.
All physical effects of the interaction of the particle with several materials are included as well as the in-
teraction with the magnetic fields. The trajectories of particles passing through the detector are recorded
by GEANT4 by simulating the energy loss due to material interactions. The positions of the interactions
are stored and called hits. In the digitization step the simulated signals are converted to a format which
looks like the output of the real readout channels of the various subsystems. Inefficiencies and estimates
of internal noise due to deficient hardware have to be taken into account.

Electron-positron pairs and other particles that are produced in the interactions are generated by
GEANT4 and also bremsstrahlung is taken into account. Especially the case of photon conversions is
interesting for this thesis, since GMSB models with photons in the final state are studied. If long-lived
particles have been generated by the event generator, it is important to simulate their passage through the
detector before they decay. That means not all final state particles can be created by the generator, but
GEANT4 has to take over this task. Therefore, an interface to the generator is used in order to transfer
the relevant information to the detector simulation, such as the lifetime of the decaying particle and the
masses and couplings of the final state particles. In this thesis long-lived neutralinos decaying to photons
and gravitinos are studied, which are generated by GEANT4.

The output digits of the simulation serve as input for the reconstruction algorithms that try to identify
candidates of various particle types. This step is necessary for Monte Carlo generated events as well as
for real data. The reconstruction and final identification of objects relevant for this thesis are discussed
in the next chapter. Finally, a graphical representation of the simulated events is available to visualize
the detector response.

4.2.2 Fast simulation approach
For analyses that need very large amounts of data, such as multidimensional supersymmetric parameter
scans, the application of a full detector simulation is not feasible due to the enormous amount of CPU
time needed. Therefore, the fast simulation package ATLFAST has been developed, which has been
extensively used in the context of the ATLAS Physics Performance Technical Design Reports [105,106].
Since a fast simulation can never be as accurate as a full GEANT4 simulation, a careful validation of
the performance has to be done and eventually the results have to be tuned in order to match the full
simulation results [107]. It should be noted that critical issues like the treatment of converted photons
or the estimation of detector efficiencies need to be studied with the full simulation, since they are not
implemented in ATLFAST.

Principals of the fast simulation ATLFAST

To keep the CPU time per event at a reasonable level, no detailed simulation of the interaction of particles
with any of the detector components is performed. Instead, the detector response is parametrized to
take the interactions into account implicitly. The reconstructed particles are created directly from the
generated particles by tracking the particle through the perfect magnetic field and geometrically matching
the built calorimeter clusters to the true particle. No interaction of the particle with the tracker or the
muon system is simulated and thus no energy loss or bremsstrahlung is included. This has to be taken
into account in the energy resolution functions. The primary vertex is assumed to be at the center of the
detector and the impact point of any stable particle in the calorimeter surface is calculated.
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The calorimeter is a single entity without a separation between electromagnetic and hadronic part.
Particle energies are deposited in a calorimeter cell map, while the response of the calorimeter is assumed
to be one and uniform over the full detector region. The cell map has a granularity of ∆η×∆φ = 0.1×0.1
for |η | < 3.2 and ∆η ×∆φ = 0.2×0.2 for 3.2 < |η | < 5.0. The entire energy of the particle is deposited
in the hit cell, i.e. no lateral nor longitudinal shower development is simulated and a shower fine structure
cannot be taken into account. The clusters are reconstructed with a simple seeded cone algorithm, while
otherwise no reconstruction based on the simulated detector information is implemented. The Monte
Carlo information on generator level is used for this purpose.

The reconstruction procedure for the objects relevant in this thesis is the following:

• Clusters are reconstructed from the calorimeter cell map via a cone algorithm with a cone size
of ∆R =

√
∆η2 +∆φ 2 = 0.4 and a seed cell energy above 1.5 GeV. A particular cell can only

be associated to a single cluster that has to pass an energy threshold of 5 GeV. The clusters are
classified as electrons, photons, taus or jets, as detailed in the following.1)

• Electrons are searched by matching a cluster with a true electron with a matching radius of ∆R =
0.15. An isolation criterion can be defined to search for isolated electrons by requiring that the
difference of the energy in a cone of ∆R = 0.2 around the electron direction and the smeared
energy needs to be below 10 GeV. The reconstructed electron energy is obtained by smearing the
true energy with a resolution function based on test beam studies [81]. Slight modifications to
Eq. (3.7) have to be applied, since energy losses due to bremsstrahlung in the inner detector are
not simulated in the fast simulation and have to be taken into account in the calculation of the
energy resolution. Identified electrons are recorded with the η and φ coordinates of the electron
on generator level and the associated cluster is removed from the list of clusters.

• Photons are treated in the same way as electrons concerning isolation. Again Eq. (3.7) is used as
the photon energy resolution function. In contrast to the electron energy calculation it has to be
considered that no energy loss in the inner detector due to bremsstrahlung is present. Converted
and unconverted photons are not distinguished. Since the η direction of a photon cannot be re-
constructed from a track as in the case of electrons, the following smearing of the η direction is
applied:

σ(θ) =
65mrad√

E
for |η | < 0.8

σ(θ) =
50mrad√

E
for 0.8 ≤ |η | < 1.4

σ(θ) =
40mrad√

E
for 1.4 ≤ |η |

(4.1)

• Muons are reconstructed by applying a pT , η and φ dependent resolution function to the generated
muon momentum. They are further classified as isolated or non-isolated by applying the same
energy isolation criterion as for electrons. If the muon lies inside a ∆R = 0.4 cone of a jet, it is
added to the jet and the jet momentum is changed accordingly.

• Jets are constructed from all clusters with ET > 10 GeV that have not been assigned to a true
electron or photon. The jet energy is taken to be the cluster energy including muons and is also
smeared with the resolution function (3.7). The direction of the jet is the direction of the cluster.

1)Since τ leptons are not used in this study, they will not be discussed here.
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• Missing transverse momentum is calculated from all reconstructed objects and the remaining
clusters that are not associated to any object. Additionally, all cells that have not been associated
to clusters are also included. Their energies are smeared with the jet resolution function.

In the reconstruction process no detector efficiency corrections are applied, except for τ leptons and in
b-tagging procedures. The appropriate correction factors have to be taken into account in the analysis
and can be taken from the GEANT4-based simulation.

4.3 Event data model
After the trigger selection the amount of data produced by ATLAS is still so large that it is impossible
to distribute it completely to the worldwide community. It is therefore necessary to reduce the stored
amount of data in such a way that only the analysis specific information remain. In ATLAS a chain of
data formats is used that incorporates smaller and smaller datasets [108].

• RAW data are events coming from the byte stream of the EF. At this stage the data are not stored
in an object oriented representation. It reflects the format in which the data are delivered from the
detector and the size of a single event is about 1.6 MB.

• ESD (Event Summary Data) are the result of the reconstruction process and have an already re-
duced dataset size compared to RAW data. The data content is sufficient for most of the physics
analysis, such that access to RAW data is not necessary. The reconstructed objects are stored in
an object oriented way in POOL ROOT data format [109]. The size of an event is currently about
1 MB, but aiming for a size of 500 kB.

• AOD (Analysis Object Data) are derived from the ESD and contain physics objects suitable for
analysis. The event size is further reduced to about 100 kB compared to the ESD. The AOD is
intended to be general enough for most types of analyses.

• DPD (Derived Physics Data) are more specialized compared to the AOD and are classified accord-
ing to three stages. The primary DPD are subdivided into performance DPD and physics DPD and
are already made for specific purposes. The data structure is the same as for the AOD, but can
contain additional ESD information. Also the secondary DPD are written in the POOL format and
are again more specific than the primary DPD. The tertiary DPD are finally organized in simple
ROOT [110] trees and are intended to be the most specialized data format for a given analysis. An
analysis framework like EventView [111] can be used for the production, which includes a very
modular set of analysis tools. In this thesis such flat n-tuples are used.





Chapter 5

Object reconstruction and identification

The discovery potential of ATLAS for signatures with photons in the final state arising from GMSB
models relies heavily on the photon identification performance as well as on the identification of jets and
the calculation of missing transverse energy. These are the most important physics objects needed in the
analysis and the discussion of the ATLAS identification performance will be restricted to them.

In the following the identification of photons will be described in some detail, starting with the trigger
selection of photons followed by the offline reconstruction and identification procedure. A few remarks
on electron identification will be made to compare with the photon criteria. Photon conversions will
briefly be discussed, since a good conversion recovery also contributes to the discovery potential. Non-
pointing photons occur in GMSB models for non-vanishing Cgrav, which impose some problems for the
identification. The solution adopted in this thesis will be discussed briefly. Finally, the reconstruction of
jets as well as the calculation of missing transverse energy will be described.

5.1 Photon identification

5.1.1 Trigger strategy

The L1 calorimeter (L1Calo) trigger algorithm has briefly been described in Sec. 3.2.6. Figure 3.14
shows how the trigger towers of size ∆η ×∆φ ≈ 0.1×0.1 are used to construct electromagnetic clusters
with a sliding 4×4 window. This window searches for local maxima inside the 2×2 core, while the 12
towers surrounding the core are used for the isolation criterion. For each tower the energy of all cells
of the full depth of the ECal are summed. At least one of the four possible sums of two towers, 1× 2
or 2× 1, must exceed a given threshold in order that the cluster is selected by the L1 trigger. Isolation
provides a good handle to reduce the jet background rate, which is typically needed at low transverse
energy thresholds.

The L2 selection is based on the L1 ROIs. The η and φ position as well as energy and object type
information are passed to L2 and based on this information the L2 cluster building algorithm scans the
cells in the second layer of the ECal and searches for the cell with the largest transverse energy. A cluster
of size ∆η ×∆φ = 0.075× 0.175 is built around this seed cell, where the larger cluster size in φ is due
to the effect of the magnetic field resulting in photon conversions and electron bremsstrahlung. The
L2 photon selection cuts on the following four quantities in order to separate photon candidates from
jets [18]:

• Transverse energy of the electromagnetic cluster (E EM
T ): The jet cross section decreases with

energy and thus a cut on this variable provides the best rejection power against jet background.

53
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Figure 5.1: Distributions of the L2 photon selection variables as described in the text for a H → γγ signal
and dijet background. Both distributions are normalized to unity [18].

• Transverse energy in the first layer of the HCal (E HAD
T ): Photons deposit typically less than 1% of

their energy in the HCal.

• Shower shape in η direction in the second sampling of the ECal (Rcore): Showers from photons
are typically smaller in the plane transverse to their direction than showers from jets. The cut
variable is the ratio of the energy deposited in 3×7 cells and in 7×7 cells. For photons this ratio
is typically larger than 80%.

• Search for a second maximum in the first sampling of the ECal (Rstrips): A π 0 decays to two
photons leaving very small hadronic activity and can be separated from single photons with the
fine granularity in η in the first sampling of the ECal. In a ∆η ×∆φ = 0.125× 0.2 window the
ratio of the difference between the energy deposited in the bin with highest energy E1st and the
energy deposited in the bin with second hightest energy E2nd divided by the sum of both energies
is calculated. For isolated photons this ratio tends to be one, while for the background it tends to
be zero.

Figure 5.1 shows the distributions of the four variables for a H → γγ sample (dashed line) with mH =
120 GeV1) and for jet background from a dijet sample (solid).

The EF selection is based on the offline reconstruction algorithms with the difference that the EF
reconstruction runs once over every L2 seed and thus only uses part of the whole detector information.
Compared to L2 additional shower shape variables are used as well as leakage into the HCal and the

1)The photon selection criteria on trigger level and for the offline selection have been optimized used a sample of H → γγ
decays.
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Cluster type Nwindow
η ×Nwindow

φ E thresh
T [GeV] Npos

η ×Npos
φ ∆ηdupl, ∆φdupl

Size 5×5 3 3×3 2×2

Table 5.1: Window size and parameters for the seed finding algorithm as described in the text.

transverse energy of the cluster. Together with an improved calibration this leads to a further reduction
of the trigger rate.

5.1.2 Cluster reconstruction

Before an object can be ultimately identified as a photon with complicated shower shape variables the
cells in the ECal have to be clustered together such that these variables can be calculated and the total
amount of deposited energy can be measured. Two clustering algorithms are used in ATLAS, which are
called sliding-window and topological algorithm [112]. Only the former one is used in this thesis, but it
should be noted that the latter one also promises to have advantages for the identification of non-pointing
photons.2)

As soon as an event has passed the L1 requirements, the analog signal from the ECal is sampled and
digitized and the energy deposited in each cell is computed using an optimal filtering algorithm [113].
The cell energies are corrected for effects coming from the calorimeter defects.3) The sliding-window
algorithm used for photon identification is subdivided into three steps: the tower building, the seed
finding and the cluster formation.

For the tower building process the ECal is divided into a grid of Nη ×Nφ = 200×256 elements with
the size ∆η ×∆φ = 0.025× 0.025. Inside each element the energy of all cells is summed up over all
longitudinal layers defining the tower energy. After the towers have been built, a window of fixed size
Nwindow

η ×Nwindow
φ in units of the tower size in η ×φ is moved across each element of the tower grid. A

precluster serving as a seed for the cluster formation is formed, if the transverse energy of the sum of
all towers inside a window exceeds a given threshold E thresh

T and is a local maximum. The preclusters
position is calculated using a window of size Npos

η ×Npos
φ as the energy-weighted barycenter of all cells.

It might be that duplicated preclusters with positions within ∆ηdupl×∆φdupl appear and only the one with
the larger transverse energy is kept. Table 5.1 summarizes the window sizes and thresholds used for the
seed finding.

The final electromagnetic cluster is built by using all cells within a window of size N cluster
η ×Ncluster

φ
centered around the seed position that depends on the layer. First the middle layer is processed, where
the seed position ηprecl, φprecl is taken from the precluster barycenter. The position ηmiddle, φmiddle of the
barycenter of the cells in the middle layer is determined, which is used as the seed for the strip layer.
Finally, the preshower and back layers are computed, using the strip layer barycenter and the middle layer
barycenter, respectively. The sizes of the windows used for different particle types are summarized in
Tab. 5.2. The sizes for electrons and photons are chosen differently, since the showers from electrons are
wider in the barrel due to bremsstrahlung and the interaction with the magnetic field. All cells collected
with these algorithms are merged to a cluster, that serves for the identification procedure of photons (and
electrons).

2)The topological clustering is based on grouping cells in clusters based on their neighbor relations and on the significance of
their energy contents. The resulting clusters can have a different number of cells in contrast to the fixed size clusters provided
by the sliding-window algorithm.

3)Such corrections are not applied in the detector simulation used in this thesis. Instead the energy of each cell is scaled by
some random factor in order to simulate the miscalibrations.
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Particle type Barrel Endcap
Electron 3×7 5×5
Converted Photon 3×7 5×5
Unconverted Photon 3×5 5×5

Table 5.2: Size Ncluster
η ×Ncluster

φ of the ECal cluster windows for different particle types in the barrel and
endcap.

5.1.3 Identification
Once the clusters have been defined selection criteria can be used to ultimately identify photons and reject
background from jets and π0s decaying into two photons. In this thesis the standard ATLAS cut-based
identification method [18] is used and will be descibed in the following.

As described for the case of the L2 selection not only information about the energy of a cluster is
used, but variables describing the shape of the electromagnetic shower are needed in order to distinguish
real photons from fake photons. The standard ATLAS photon identification is based on the variables
from three sections of the calorimeter: the HCal and the first and second sampling layers of the ECal.
For each variable there are up to 20 pT and η dependent cut values:

• Hadronic cuts:

– Hadronic leakage (HadEM) defined as the ratio of the transverse energy deposited in the first
layer of the HCal in a window ∆η ×∆φ = 0.024 × 0.024 and the energy deposited in the
ECal.

• Second sampling cuts: Most of the energy of electromagnetic showers is deposited in the second
sampling of the ECal.

– Rφ : Ratio of the uncalibrated energy (sum of cells) of the second sampling in a window of
size 3×3 to the energy in a 3×7 rectangle.

– Rη : Ratio of the uncalibrated energy (sum of cells) of the second sampling in a window of
size 3× 7 to the energy in a 7× 7 rectangle. The magnetic field increases the width of the
converted photon contributions in the φ direction and thus Rφ is less discriminating than Rη .

– The lateral shower width in η direction calculated in a window of 3× 5 cells, using the

energy weighted sum over all cells w2 =

√
∑(EC×η2

C)
∑EC

−
(

∑(EC×η2
C)

∑EC

)2
, where EC is the energy

deposited in each cell and ηC is the η position of each cell.

• First sampling cuts: Jets containing high energy hadrons result in broad showers that can be
rejected with cuts on the second sampling and HCal variables. Jets containing neutral hadrons
have to be rejected with variables from the first sampling due to the very fine granularity in η .
The rejection power is due to the resolution of substructures inside jets. The fraction f of the total
energy deposited in the first layer is required to be at least 0.5%.

– The decay π0 → γγ leads to two energy maxima in the shower and thus a second maximum
is searched in a window ∆η ×∆φ = 0.125× 0.2 around the cell with the highest transverse
energy:
∗ Difference ∆ES = Emax2 − Emin of the energy associated with the second maximum

(Emax2) and the energy reconstructed in the strip with the minimal value (Emin) between
the first and second maximum.
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Figure 5.2: Distributions of the offline photon selection variables for true and fake photons with |η |< 0.7
and 20 < ET < 30 GeV and normalized to unity [18].

∗ Rmax2 = Emax2/(1+9(5)×10−3ET ), with ET the transverse energy of the cluster in the
ECal and the constant value 9(5) refers to low(high) luminosity.

– Fraction Fside = [E(±3)−E(±1)]/E(±1) of energy deposited outside the shower core in η
of three central strips. E(±n) is the energy deposited in n strips around the strip with the
highest energy.

– Shower width ws3 =
√

∑Ei × (i− imax)2/∑Ei using the three strips i around the one imax
with the maximal energy.

– Total width wstot over the strips that cover 2.5 cells of the second layer.

The distributions of each variable for true photons (coming from a Higgs decaying into two photons) and
fake photons (coming from a dijet sample) are shown in Fig. 5.2 for |η | < 0.7 and 20 < ET < 30 GeV
including the cut values. The same cuts are applied for converted and unconverted photons, however,
this might be improved in the future, since converted photons appear as a pair of electrons in the ECal
which looks different to a single photon.

With the cuts on the shower shape variables the background from fake photons is already greatly
reduced. In addition, an isolation criterion is imposed by requiring that the energy deposited in a region
of ∆R < 0.45 around the photon cluster does not exceed 10 GeV. The efficiency of the calorimeter cuts
defined as the ratio of the number of identified photons and generated photons as a function of η and pT
is shown in Fig. 5.3 for H → γγ photons with pT > 25 GeV and 0 < |η |< 1.37 or 1.52 < |η |< 2.47. The
restrictions in the η region are made to account for the crack region of the calorimeter, where the barrel
and endcap overlap and the identification of photons is insecure. Three different samples of H → γγ de-
cays have been used using an ideal detector geometry with and without pile-up and a misaligned detector
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Figure 5.3: Efficiency of the photon identification criteria as a function of (a) η and (b) pT for three
different samples of H → γγ decays using an ideal detector geometry with and without pile-up and a
misaligned detector geometry with pile-up [18].

geometry with pile-up. The overall photon identification efficiency is 87.6±0.2% using the nominal ge-
ometry without pile-up events and decreases to 83.6±0.2% with a distorted geometry including pile-up.
The fake rate defined as the ratio of all misidentified jets in the dijet sample and the total number of jets
reconstructed in a normalization sample as a function of η is shown in Fig. 5.4 with and without isolation
requirement.

5.1.4 Electron/photon discrimination and electron identification

At this stage most of the electrons are also identified as photons, since they interact similarly in the
calorimeter. Their showers can just be slightly wider in φ direction due to their interaction with the
magnetic field. In this thesis the discrimination between electrons and photons is done via a dedicated
electron identification procedure. After an electromagnetic cluster has been identified as an electron, it
is removed from the collection of electron/photon candidates and can thus no longer be identified as a
photon.

Three successive sets of electron identification criteria are used in ATLAS: loose, medium and tight.
The loose electron is identified only via the hadronic leakage and the shower variables in the second
compartment of the ECal. This definition obviously allows for an excellent identification efficiency, but
with very low background rejection. The medium electron is selected analogously to the photon with
cuts on hadronic leakage and the shower shape variables from the second and first layer of the ECal and
additional quality criteria for a track. These are a minimum number of hits in the pixel detector (at least
one), a minimum number of hits in the pixel and SCT detectors (at least 9) and a minimal transverse
impact parameter (< 1 mm). The track quality criteria are refined in the definition of the tight electron.
Additional to the medium electron criteria, isolation is required, as well as a minimal number of hits in
the vertexing layer and a good matching between the track and the cluster. TRT variables are also used,
such as the number of hits in the TRT and the ratio of the number of high-threshold hits to the total
number of hits. Most of the criteria depend on η and pT and provide a very good electron identification
efficiency with good background rejection power. Medium electrons will be used in this thesis for the
measurement of supersymmetric particle masses and the neutralino lifetime.
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Figure 5.4: Photon fake rate as a function of η with and without isolation criterion [18].
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Figure 5.5: (a) Material budget in the inner detector and (b) resulting photon conversion probability [18].

5.2 Photon conversions
Since photons can convert into an electron-positron pair at any point in the tracker in the presence of
material, it is important to develop efficient algorithms to reconstruct such conversions in order not to
misidentify them as electrons or jets. The probability of a conversion is proportional to the amount and
density of the material in the trajectory of a photon, which is measured in terms of radiation lengths. The
total amount of material in the inner detector as a function of η is shown in Fig. 5.5(a). The resulting
dependence of the conversion probability on η and the distance from the interaction vertex is shown
in Fig. 5.5(b). It can clearly be observed that the overall conversion probability in the inner detector is
around 50% and that a recovery strategy has to be developed.

The ability to reconstruct a photon conversion depends on the type of tracking algorithm that is used
and thus on the coordinates in the tracker where the conversion occurs. Photons that convert within
300 mm of the beam axis can be reconstructed with the efficient standard silicon-seeded tracking algo-
rithm (inside-out tracking). Photons that convert at a larger distance of the beam axis do not leave enough
hits in the silicon tracker such that additional tracking algorithms have to be used that are seeded from
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TRT hits and may or may not incorporate hits from the silicon tracker (outside-in and standalone TRT
tracking).

• Inside-out tracking: Seeds are formed using three combinations of space-points in the pixel
detector and SCT by imposing some constraints such as the curvature to limit the number of
candidates. Afterwards a geometrical tool is used to identify detector elements that are searched
for additional hits. A fitting procedure is used every time after adding a hit to the track and outliers
are efficiently eliminated. Around 10% of all seeds lead to a fully reconstructed track. The tracks
are subject to quality criteria and are ranked accordingly for comparison. After a silicon track has
been accepted it is extrapolated into the TRT and combined with TRT hits. If the extended track
has a higher quality than the original silicon track, the extension is kept, otherwise only the silicon
track is stored. Since the inside-out tracking algorithm requires at least 7 silicon hits it is inefficient
for late photon conversions.

• Outside-in tracking: The TRT is divided into 24 slices in η direction and a histogramming tech-
nique is used to scan for straight line patterns that are fitted to extract the track parameters. A
minimal number of hits in the straw tubes is required. The reconstructed TRT segments are extrap-
olated into the silicon tracker where space-points are searched seeded by the track parameters. At
least 2 hits in the SCT are required which are selected using quality criteria such as the curvature.
Once a silicon extension is found, it can serve as seed for searching new TRT extensions as in the
case of the inside-out tracking. In order to reduce the time needed for the procedure all TRT and
silicon hits are excluded that are already part of an inside-out track. The main improvement of the
track reconstruction efficiency due to outside-in tracking is in the region of 300 mm to 450 mm in
radial distance.

• Standalone TRT tracking: All TRT segments that are not assigned a silicon extension are finally
transformed into tracks by resolving remaining ambiguities. No track refitting is done. The total
track reconstruction efficiency is improved in the region from 450 mm in radial distance to the
calorimeter surface significantly by the TRT tracks.

The total track reconstruction efficiency as a function of the conversion radius is shown in Fig. 5.6.
All three track collections are finally merged into a single track collection that serves as input for the
following building of track pairs and secondary vertex fitting procedure after overlap is removed [18].

Track pairs are built by selecting a positively and a negatively charged track and imposing selection
criteria on the tracks and on the pair selection in order to reduce the number of electron tracks and oth-
erwise wrongly selected pairs. Cuts are imposed on the perigee, the longitudinal track impact parameter
and on the minimum transverse momentum. Cutting on the ratio of high-threshold TRT hits over the
total number of TRT hits selects tracks from electrons. Additionally, the polar angles of the two tracks
should be small as well as the distance between the first hits of the tracks.

After having selected track pairs the conversion vertex has to be fitted, which is quite different com-
pared to the fitting of ordinary tracks that are assumed to come from the primary interaction vertex. The
massless nature of the photon can be used as additional constraint and a specific algorithm has been
developed. A new track perigee is calculated using an initially estimated secondary vertex candidate
and a new vertex is fitted with a fast Kalman filtering method using the full three dimensional informa-
tion of the refitted conversion tracks. Again, quality criteria are imposed in order to select good vertex
candidates.

Finally, the conversion tracks have to be matched to an electromagnetic cluster that has been re-
constructed with the standard reconstruction method discussed above. Once a track (not necessarily a
conversion track) is matched to a cluster, it is labeled as electron-like and is re-examined in order to de-
termine whether or not it originates from a photon conversion. Two algorithms are used for this purpose:
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Figure 5.6: Total track reconstruction efficiency for converted photons with pT = 20 GeV. The individual
contributions from inside-out plus outside-in tracking (“Si tracks”) and standalone TRT tracking are also
shown [18].

the angle-based matching and the track-based matching. For the latter the conversion track collection is
searched for candidates that match exactly with the best-match tracks associated with the electron-like
clusters. If that is the case, further quality checks are performed in order to avoid declaring an electron
which emits converting bremsstrahlung as a converted photon. In the angle-based matching the η and
φ coordinates of the center of the cluster are compared with the η and φ coordinates of the candidate
conversion vertices. If a candidate matches a cluster within a window of ∆η = 0.048 and ∆φ = 0.048, it
is declared as a conversion with the corresponding flag.

In some cases not both of the tracks of a photon conversion can be reconstructed successfully. For
instance, the photon can decay so late in the tracker, that the tracks cannot be distinguished from each
other or the photon decays asymmetrically such that only one track has high enough momentum (>
500 MeV) to be reconstructed. These single track conversions can be reconstructed by re-examining the
remaining tracks from the conversion track collection that could not be assigned to a conversion. The
effect of including these conversions into the overall conversion reconstruction efficiency is significant.
Figure 5.7 shows the efficiency as a function of the conversion radius. As expected, the efficiency of the
vertex reconstruction drops for radii larger than 300 mm, while the single track conversions occur mainly
in the region of the TRT. Identified converted photons will be included in the set of photons used in this
thesis.

5.3 Non-pointing photons

5.3.1 Identification

The standard photon identification as discussed above has been optimized for the selection of photons
coming from the primary interaction vertex (prompt photons) and leads to inefficiencies for the selection
of non-pointing photons that occur somewhere in the inner detector. Figure 5.8 shows a sketch of a
delayed neutralino decay to a gravitino and a non-pointing photon. The shower axis does not point back
to the interaction vertex and therefore the shower of a non-pointing photon seems to be broader than that
of a prompt photon and thus it might not survive the cuts on the shower shape variables.
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Figure 5.8: Schematic view of a non-pointing photon coming from a delayed neutralino decay using the
ATLAS event display ATLANTIS [114].

Figure 5.9 shows the selection efficiencies of the various shower shape variables defined as the num-
ber of photons with |η | < 2.5 and pT > 20 GeV that pass the cut on the given variable divided by the
number of reconstructed photons as a function of the z-component of the neutralino decay length. A sig-
nificant dependence on five of the identification variables can be observed, namely Rη , w2, Fside, ws3 and
wstot. The relative effect of loosening the cuts on these variables on the background has been investigated
using a jet sample [18]. Table 5.3 shows the fraction of jets reconstructed as photons and passing all
photon criteria. The hadronic, second sampling and first sampling cuts have been applied sequentially.
The slightly increased jet fake rate is taken as acceptable for the studies in this thesis since the photon
identification efficiency for a GMSB sample with a non-zero neutralino decay length is increased, as
discussed in Sect. 6.3. The cuts on these five shower shape variables will therefore be skipped in this
thesis whenever non-pointing photons are used and only the un-biased selection will be used.
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Figure 5.9: Efficiencies of the various photon identification cuts as a function of the neutralino decay
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Selection hadronic 2nd sampling 1st sampling
default 3.4%±0.1% 0.57%±0.06% 0.19%±0.03%
unbiased 3.4%±0.1% 2.7%±0.1% 0.70%±0.07%

Table 5.3: Fraction of jets reconstructed as photons and passing the given photon criteria. The cuts have
been applied sequentially [18].

5.3.2 Clustertime measurement with the ECal
In GMSB events with long-lived neutralino NLSPs it is expected that the resulting non-pointing photon
arrives later in the calorimeter than the photons from prompt neutralino decays. This is due to two
effects: First, the sum of the paths of the neutralino and the photon is longer than the path of a prompt
photon coming from the primary interaction vertex as is depicted in Fig. 5.8, since the angle between
the neutralino direction and the photon direction is non-zero. Hence, a longer time period is needed
before the photon arrives at the surface of the calorimeter. Second, the neutralino is a heavy particle and
hence travels with a velocity β · c through the detector that is significantly lower than the speed of light
c. The neutralino β spectrum for neutralinos with a mass of m χ̃0

1
= 118 GeV is shown in Fig. 5.10(a).

The relative importance of both effects is shown in Fig. 5.10(b) for a typical GMSB scenario with mχ̃0
1
=

118.85 GeV and τχ̃0
1
= 11.2 ns, where the additional time needed due to the longer path is denoted ∆tpath

and the additional time needed due to the neutralino velocity is denoted ∆tβ . The time differences are
given by

∆tpath =
|non-pointing photon path|− |prompt photon path|

c (5.1)

∆tβ =
neutralino path · (1−β )

β · c . (5.2)
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Figure 5.10: (a) β spectrum of a neutralino with mass mχ̃0
1
= 118.85 GeV. (b) ∆tpath and ∆tβ distributions

for a neutralino with mass mχ̃0
1
= 118.85 GeV and lifetime τχ̃0

1
= 11.2 ns.

It can be observed that the effect of the finite neutralino mass dominates the effect of the decay angle
between the neutralino and the photon. This is due to the fact that the photon as well as the gravitino are
(almost) massless and thus are strongly boosted in the direction of the neutralino and hence have a small
decay angle.

The arrival time of the electromagnetic cluster in the ECal (referred to as clustertime in the following)
can be measured with ATLAS [115]. It is defined as the measured time of the cell in the second layer
with the largest energy with respect to the bunch crossing time, where the time of flight of a particle
travelling with c and coming from the interaction vertex is subtracted. The triangular shaped ionization
signal of a cell as a function of time is shown in Fig. 5.11(a), where the pulse is obtained from a large
number of physics pulses averaged after normalization to their amplitudes and with the time derived from
scintillator signals. The first 125 ns are used for the reconstruction of the amplitude A and the time τ .
The signal is digitized every 25 ns such that n = 5 samples are used. The optimal filtering method is used
for the reconstruction [113]:

A =
n

∑
i=1

aisi, τ =
1
A

n

∑
i=1

bisi, (5.3)

where si is the amplitude of the sample i and ai and bi are the optimal filtering coefficients, which
are determined by minimizing the variance of A and Aτ under specific constraints. The computation
requires the knowledge of the noise autocorrelation matrix and the signal waveform and its derivative.
The physics waveform can be numerically computed from a calibration waveform obtained in special
delay runs. The resulting precision of the physics waveform is about 1-2% over the first 125 ns used for
time reconstruction, as shown in Fig. 5.11(a).4)

If the calorimeter signal shape is distorted, a bias can be introduced in the clustertime reconstruction.
Therefore, the detailed study of cross talk between the single calorimeter cells for each module is im-
portant and a complete map has been extracted from test beam runs and the different sources have been
identified [116]:

4)The dispersion on the LHC beam crossing time is 186 ps, while the dispersion from the longitudinal beam position induces
a time dispersion of about 170 ps, if not corrected [115].
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amplitude of the signal with the medium gain. The SCA has a

depth of 144 capacitors. The distribution of the sampling clock is

not fully uniform along the 144 capacitors due to parasitic

resistance and capacitance on the write clock bus. This induces a

bias in the reconstruction time that depends on the sampling

location in the pipeline. On a test bench, an increase of 1.9 ps per

capacitor has been observed. In the test beam, the trigger rate is

low and the digitized samples are always consecutive in the

pipeline so that the reconstructed time needs only to be corrected

for this factor. At large trigger rate as expected in LHC running, the

digitized samples might not be consecutive in the pipeline and

such a correction will not be sufficient.

The calibration board [11] provides a signal resembling closely

the ionization signal for all calorimeter channels. This signal

voltage is derived from a precise DC current flowing into an

inductor and is brought to the motherboard on the calorimeter

with a 50O cable terminated at both ends. The amplitude

uniformity dispersion is better than 0.2%. One calibration signal

is distributed through precise resistors to eight calorimeter

channels for the middle and back layers and to 32 channels in

the front layer. The location of the pulsed channels has been

designed in order to measure the cross-talk.

An example of the calibration and physics pulse taken with the

calorimeter is presented in Fig. 2.

3. Time measurement method

The signal digitized every 25 ns (n ¼ 5 samples are foreseen for

the ATLAS running conditions) is used to reconstruct both the

amplitude (A) and the arrival time (t) using the optimal filtering

(OF) method described in Ref. [12]:

A ¼
X

n

i¼1

aisi (1)

t ¼ 1

A

X

n

i¼1

bisi (2)

Here, si is the amplitude of the sample in ADC counts after

pedestal subtraction and ai and bi are the OF coefficients. The

absolute time of the signal is given by the tbeam crossing þ t, so that

a positive value of the time t means that the particle arrives late

with respect to the beam crossing. The coefficients ai and bi are

determined by minimizing the variance of A and At under specific

constraints: if we assume that the shape of the signal is a known

function gðtÞ normalized to a unit amplitude, then the constraints

are:
P

aigi ¼ 1;
P

aig
0
i ¼ 0;

P

bigi ¼ 0 and
P

big
0
i ¼ �1. These

constraints guarantee the correct reconstruction of both the

amplitude and the time t. The computation requires the knowl-

edge of the noise autocorrelation matrix easily extracted from

pedestal runs, and of the signal waveform and its derivative.

Various methods of signal shape prediction are still being
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Fig. 1. Schematic of the calorimeter readout.

Fig. 2. Calibration pulse from delay runs (dashed line) and measured pulse

obtained with an electron beam (solid line). These waveforms are a combination of

a large number of pulses registered after the shaper and digitized every 25 ns. The

calibration pulse is built from the interleaved events taken every 1 ns in delay runs.

The ionization pulse is obtained from a large number of physics pulses, averaged

after normalization to their amplitudes, and with the time derived from scintillator

signals. The faster rise time at the beginning of the pulse for the calibration is

explained by the inductance on the electrode seen differently on the calibration

and ionization path. The difference of the positive width of the pulses is given by

the exponential calibration decay time and by the ionization drift time.

M. Aharrouche et al. / Nuclear Instruments and Methods in Physics Research A 597 (2008) 178–188180

(a)

about 339 ps for a 245 GeV electron beam. The physics pulse

description in the front layer is not as accurate as in the middle

layer and is reflected by the larger residual effect of the phase

correction. In Fig. 13, the distribution of the time difference is

presented as a function of the barycenter in the Z and f directions.

The larger amplitude and the sign of the correction along Z is well

explained by the expected�10% capacitive cross-talk between the

front cells directly on the electrode. Along the f direction,

the accordion is also clearly visible although the agreement

with the simulation is not very good. As such an effect is not

negligible, the f modulation is corrected for in the front layer.

After correction, a 252 ps timing resolution is obtained. In contrast

to the middle layer, a dependence of the reconstructed time on the

shower depth is also observed. As shown in Fig. 14 for 245

and 30 GeV beam energies this effect is energy dependent.
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Fig. 13. Time difference between the reconstructed time tof and the trigger phase

t2 as a function of the strip barycenter in Z (top) and middle layer barycenter in f

(bottom). The cross-talk in Z is known to be not left/right symmetrical and

explains the use of a parabola not centered on the middle of the cell.

Fig. 11. Time resolution (ps) in the middle (circles) and in the front (stars) as the

function of the beam energy, in the medium and in the high gain (below 50 GeV

beam energy). The solid line is the result of the fit in the middle compartment. For

245 and 20 GeV, the open star gives the resolution when the front and the middle

times are combined, taking into account their respective resolutions. The

resolution of the trigger, as well as that of the TTC system, has been subtracted.

Fig. 12. Time resolution (ps) as a function of the energy deposited in the middle

layer cell. Events with beam energy at 10, 20, 50, 100, 150, 180 and 245 GeV beam

energy have been used. The resolution of the trigger, as well as that of the TTC

system, has been subtracted. The solid line is the result of a fit in the high gain and

medium gain.

M. Aharrouche et al. / Nuclear Instruments and Methods in Physics Research A 597 (2008) 178–188186

(b)

Figure 5.11: (a) Ionization signal collected on ECal cell electrodes. A calibration pulse (dashed line)
and a measured pulse from an electron test beam (solid line) are shown. The first 125 ns are used for the
energy and time measurement [115]. (b) Time resolution of the middle and front layer of the ECal as
a function of the test beam energy in the medium (high) gain of the electronics above (below) 50 GeV
beam energy [115].

• Front layer: The amplitude of the cross talk in first neighboring cells is about 10% of the signal
amplitude due to a capacitive coupling on the electrodes in η direction.

• Middle layer: In φ direction an inductive and uniform contribution of about -2% comes from
the summing board. In η direction a capacitive contribution from the electrodes contributes about
0.8% of the signal amplitude.

The resolution στ of the clustertime measurement depends on the accurate correction of the noise and
cross-talk effects and is parameterized as

στ =
a
E ⊕ c. (5.4)

After all corrections a constant term c of about 100 ps is the ultimate goal, while at the beginning of data
taking a constant term of about 1 ns seems to be realistic. The term including a depends on the energy of
the particle and its impact on the overall resolution is shown in Fig. 5.11(b). The time resolution has been
measured in test beam runs and it can be observed that for beam energies above 50 GeV the resolution
is flat and about 100 ps. The discontinuity at 50 GeV is due to the fact that for beam energies larger
(smaller) than 50 GeV the middle layer cell is always reconstructed in the medium (high) gain regime of
the electronics.

5.3.3 Projected photon path
As can be observed in Fig. 5.8, the delayed neutralino decay leads to a photon path that does not point
back to the interaction vertex. This is due to the non-vanishing angle between the direction of the neu-
tralino momentum and the direction of the photon momentum. For illustration, the angle ∆θ( χ̃0

1 ,γ) in
θ direction obtained from the generator information is shown in Fig. 5.12 for a neutralino with mass
mχ̃0

1
= 118.85 GeV and lifetime τχ̃0

1
= 11.2 ns. The width of the distribution is ∼ 0.62 corresponding
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Figure 5.12: ∆θ(χ̃0
1 ,γ) for a neutralino with mass mχ̃0

1
= 118.85 GeV and lifetime τχ̃0

1
= 11.2 ns leading

to a non-vanishing |zcluster|.

to an angle of ∼ 36◦ leading to a displaced intersection point of the z-axis with the projected photon
path with respect to the primary interaction vertex. This intersection point (referred to as z-vertex in the
following) can be calculated. Since photons leave no tracks in the inner detector, the calorimeter system
has to be used to reconstruct the photon path. This is possible due to the excellent resolution in η direc-
tion of the first and second compartment of the ECal. The φ direction cannot be measured, but for the
calculation of the z-vertex this is not necessary.

The η position of the photon cluster in the first and second ECal layer is needed, denoted by η1 and
η2, respectively. Furthermore, the radial distances R1 and R2 of the cluster in the first and second layer,
respectively, have to be known. The z-vertex zcluster is given by a simple geometrical equation:

zcluster =
R1 ·R2

R2 −R1
· (sinhη1 − sinhη2) . (5.5)

The ηp direction of the photon is defined by the angle

θ = atan2 (R2 −R1,z2 − z1) , (5.6)

with z1 = R1 · sinh η1 and z2 = R2 · sinh η2, between the z-axis and the projected photon path. However,
if a photon is selected for analysis and a geometrical η cut is imposed due to the detector acceptance
region, the usual η variable has to be used defined by the interaction vertex. The uncertainty on the
z-vertex position is given by two η and photon energy E dependent functions, one for the barrel and one
for the endcap section:

∆zbarrel
cluster = 13 · cosh η ·

√
500 · cosh η

E (5.7)

∆zendcap
cluster = 70 ·

√
25 · coshη

E . (5.8)

The resolution of the z-vertex lies typically in the region of 5-10%. The variable will later be used for
the measurement of the neutralino lifetime.
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5.4 Jet reconstruction and missing transverse energy

5.4.1 Jet reconstruction

Produced partons hadronize which leads to a jet of particles that has to be identified and the corresponding
transverse energy has to be measured correctly. Depending on the particle types contained in the jet,
different fractions of the transverse energy are deposited in the ECal and the HCal. If a jet mainly
consists of heavy hadrons it will deposit most of the energy in the HCal. If it consists of neutral pions
that decay to photons, most of the energy is deposited in the ECal and the jet has to be differentiated
from electrons and photons. Therefore, the multiplicity of jets strongly depends on the identification
performance of electrons, photons and other objects.

The jet trigger algorithm on L1 searches for local maxima in the energy sums of 2×2 trigger towers,
as described briefly in Sect. 3.2.6. Afterwards the energy sums of the deposited energies are calculated
using a window of size ∆η ×∆φ = 0.8×0.8 and are compared with 8 different energy thresholds. The
multiplicities of the individual thresholds are derived in this step and are sent to the CTP. On L2 and EF
level similar algorithms as for the offline reconstruction of jets are used based on the scanning of the
calorimeter with a cone of fixed size in η and φ direction, as descibed in the following.

In ATLAS two main jet algorithms are used [18]: the cone algorithm as well as the kT algorithm.5)

Only jets reconstructed with the cone algorithm will be used throughout this thesis.6) There are some
principal guidelines for the efficient and high quality jet reconstruction:

• Infrared safety: The presence or absense of soft particles between two particles belonging to the
same jet should not affect the combination of these particles to a jet.

• Collinear safety: The splitting of a high energetic particle into two collinear particles with lower
energy should not affect the jet finding.

• Technology independence: The reconstructed jet should not depend on the signal source, i.e. all
detector inefficiencies have to be corrected, such as the detector resolution or environment.

• Event independence: The jet should be reconstructed independently of multiple interactions or
pile-up events.

For the seeded cone algorithm two parameters are needed: the transverse energy threshold of 1 GeV
and the cone size ∆R =

√
∆η2 +∆φ 2 with ∆R = 0.4 for narrow jets and ∆R = 0.7 for wider jets. The

input for this algorithm are reconstructed calorimeter signals, such as reconstructed calorimeter towers
or topological clusters, as described above. First, all input is ordered in decreasing order in transverse
momentum and it is checked, if the object with highest pT is above the seed threshold. All objects within
the given cone are combined with the seed followed by a new calculation of the direction from all four-
momenta inside the cone. A new cone is centered around the new direction in order to recollect objects
inside this new cone and recalculate the direction. This process continues until the direction does not
change anymore. The same procedure is run on the next seed candidate until no more seeds are available.
Finally, the jets are calibrated using a method originally developed for the H1 experiment [119]: all
calorimeter cells are resummed using weighting functions that depend on the cell signal density and on
the location in the calorimeter.

5)The development of more sophisticated jet finding algorithms is an ongoing process.
6)In contrast to the cone algorithm the kT algorithm is more complex and takes into account the structure of the jet rather

than just scanning the calorimeter with a cone of fixed size. Details can be found in [117,118]. However, the cone algorithm is
considered to be simpler and more robust and therefore the kT algorithm will not be described in detail.
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The jet energy resolution is fitted with a function considering three independently contributing terms [18]:

σ
E =

a√
E (GeV)

⊕b⊕ c
E , (5.9)

where the term including a is a sampling term due to statistical fluctuations in the energy deposits, b is
a constant term reflecting the effect of the calorimeter non-compensation7) and the term including c is a
noise term describing the noise contribution to the energy measurement. For central jets the stochastic
term is about a ≈ 60%, while the other terms are b ≈ 3% and c ≈ 5% [18].8)

Due to the highly granular calorimeters in ATLAS the jet direction can be determined precisely
together with the primary vertex from the inner detector. Almost all jets with transverse energies above
100 GeV can be matched to the true jet within a cone of ∆R < 0.2. However, at lower energies the
precision of the jet axis reconstruction degrades and a non-negligible fraction of reconstructed jets lies
outside the matching cone. The jet reconstruction efficiency is almost 100% for jets with a transverse
momentum larger than 30 GeV [18].

With the given jet reconstruction algorithms also electrons, photons and other particles are identified
as jets. This is taken into account in the analysis by an overlap removal step.

5.4.2 Missing transverse energy measurement
The accurate reconstruction of missing transverse energy E miss

T is a very complex task in ATLAS due to
the dependence of the calculation on multiple objects ranging from the individual cell calibration in the
calorimeters to the accurate reconstruction of muon tracks in the muon system over the full η range of
the detector. The most relevant issues for a good E miss

T reconstruction are [18]:

• The suppression of electronics noise.

• After noise suppression, all calorimeter cells have to be used.

• Accurate calorimeter (inter-) calibration, in particular in the barrel and endcap region.

• The full |η | < 5 range of the calorimeter has to be used.

Two different approaches are utilized in ATLAS: the cell-based and the object-based reconstruction.
Only the cell-based approach will be discussed here, since it is commonly used for supersymmetry
analyses.

The cell-based algorithm uses the energy deposits in each of the calorimeter cells that have been
calibrated with global weights depending on their energy density. Only the cells that remain after a noise
suppression procedure are used. Additional corrections are applied for the muon energy and the energy
lost in the cryostats. This algorithm is stable also for early data taking, since it does not rely on the
accurate reconstruction of physics objects in contrast to the object-based algorithm.

Due to the large number of read-out channels in the calorimeters (≈ 200K) the amount of electronics
noise can contribute as much as 13 GeV [18] to the width of the Emiss

T resolution. The standard method
for suppressing the noise is based on only using calorimeter cells with energies larger than 2×σnoise,
where σnoise is the width of the noise distribution which has to be known. If the cells are used with the
usual electromagnetic calibration, the calculated amount of E miss

T has a shift of 30% with respect to the
truth information. This shows that a dedicated algorithm for the cell calibration has to be developed in

7)The ATLAS calorimeter is a non-compensating calorimeter, i.e. the response to hadrons is lower than to electrons and
photons.

8)Equation (5.9) has been found to be best suited for the determination of the jet energy resolution [18], while Eq. (3.7) has
been used to parametrize the energy resolution of the calorimeters using isolated pion beams [80].
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Figure 5.13: Resolution of Emiss
T after calibration as a function of the total transverse energy measured in

the calorimeters for different physics processes. The curves correspond to the fit to (a) Z → ττ and (b)
A → ττ [80].

order to reduce the systematic shift and optimize the resolution. A cell classification scheme is used
for this purpose by defining the energy deposit in a cell as hadronic or electromagnetic, since hadronic
showers tend to have lower energy densities compared to electromagnetic ones.

Since muons do not deposit their energy in the calorimeters, their tracks have to be used separately in
the calculation of Emiss

T . The muon momentum as measured in the muon system is taken and the energy
loss in the calorimeters is already taken into account in the calorimeter cell term. Muons that are lost
outside the acceptance region of the muon system of |η | < 2.7 are not taken into account, but the muon
term in general only marginally influences the overall E miss

T reconstruction performance [18], since the
muon system provides a very good muon reconstruction efficiency. However, lost muons can be a source
of large fake Emiss

T .
The third important source of Emiss

T in ATLAS is the cryostat system. The thickness of the system
between the ECal barrel and the tile barrel calorimeter is about half an interaction length. Therefore, jets
can loose a significant amount of their energy leading to additional fake E miss

T . This energy loss can be
recovered by using the correlation of the energy measurements in the last layer of the ECal and the first
layer of the HCal. The same is done for the endcap sections. The correction is applied to all reconstructed
jets in the event, which in turn leads to a better estimate of E miss

T . The cryostat correction contributes at
a level of ∼ 5% per jet with a transverse momentum above 500 GeV and is therefore non-negligible for
high momentum jets.

The expected performance of the Emiss
T reconstruction is estimated by comparing the measured value

with the true value as a function of the total transverse energy. Figure 5.13 shows the Emiss
T resolution

defined as the width of the Emiss
x,y −Emiss,true

x,y distribution in a certain ET bin. The distribution is fitted with
a function σ = a ·

√
∑ET , where the fit parameter a varies between 0.53 and 0.57 for different physics

processes [18].
In supersymmetry studies it can be important to suppress fake E miss

T to reduce the Standard Model
background. One possibility is to look for correlations between the direction of the reconstructed E miss

T
and the direction of jets, which can hint at fake E miss

T from badly measured jets. In general, the resolution
of the Emiss

T direction for events with genuine Emiss
T depends on the relative fraction of fake E miss

T and
on the event topology. As an example, Fig. 5.14 shows the resolution of the Emiss

T measurement in φ
direction as a function of the true Emiss

T for different physics processes. It can be observed that the
measurement is more accurate for W → eν events, which contain moderate hadronic activity compared



70 5 Object reconstruction and identification

 (GeV)miss
TTrue E

0 20 40 60 80 100 120 140 160 180 200

 (r
ad

)
ϕσ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
tt

ττ →Z 
ν e→W 

Figure 5.14: Performance of the φ -direction measurement of E miss
T for different physics processes [80].

to tt̄ events. For values below 40 GeV the accuracy degrades rapidly, while for large values of true E miss
T

the accuracy can reach 100 mrad and below [18].



Chapter 6

Discovery potential for GMSB models with
photon final states

In GMSB models with N5 = 1 and low tanβ the lightest neutralino χ̃0
1 is the NLSP and decays to a grav-

itino G̃ and a photon, since the neutralino is mainly a photino in the minimal GMSB model. Therefore
the standard mSUGRA-like decay cascade of squarks and gluinos is extended by the decay

χ̃0
1 → γG̃. (6.1)

Depending on the branching ratio of the squarks and gluinos decaying to various types of supersym-
metric particles, the decay chain may also contain multiple jets. Events with high energetic photons are
expected, if the NLSP lifetime is not too long, such that most of the NLSPs decay outside the detector.
The corresponding event signatures and the discovery potential of the ATLAS detector for these models
are discussed in this chapter, including the optimization of the signal selection, the role of the trigger
signatures and the expected background from Standard Model processes. The scenarios in the GMSB
parameter space chosen for detailed reconstruction and trigger studies are described in Sect. 6.1. The
case of prompt photons (Cgrav = 1) is investigated in Sect. 6.2, while the case of non-pointing photons
(Cgrav > 1) and therefore larger NLSP lifetimes is studied in Sect. 6.3. The discovery potential in a wider
range of the parameter space is presented in Sect. 6.2.4, where a fast simulation approach has been used
and a comparison of full and fast simulation results is presented.

6.1 Benchmark points and datasets
6.1.1 GMSB scenarios
In this chapter, the following GMSB scenarios are studied:

• For the detailed study of properties of GMSB models with prompt photon final states and their
signatures in the ATLAS detector, the specific GMSB scenario called GMSB1 has been chosen.
The parameters of this benchmark point are Λ = 90 TeV, N5 = 1, Mmess = 500 TeV, tanβ = 5,
sign(µ) = + and Cgrav = 1.
In the GMSB1 scenario the total cross section for the production of supersymmetric particles in
pp-collisions at 14 TeV is about 7.8pb calculated in NLO. The resulting mass spectrum is shown
in Fig. 6.1. Apart from the quasi-massless gravitino (mG̃ = 1.08 · 10−8 GeV, not shown), it fea-
tures squarks with masses around 1 TeV and gluinos that are significantly lighter than the squarks,
while the sleptons and gauginos have lower masses around (100− 500) GeV. The NLSP is the
lightest neutralino χ̃0

1 with mχ̃0
1

= 118.85 GeV. Due to its dominant photino component it decays

71
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Figure 6.1: Supersymmetric mass spectrum of the GMSB1 scenario. The quasi-massless gravitino is not
shown.

Particle Mass [GeV] Particle Mass [GeV] Process BR [%]
χ̃0

1 118.85 G̃ 1.08 ·10−8 q̃L(R) → g̃q 53 (> 80)
χ̃0

2 225.47 g̃ 735.58 q̃L(R) → χ̃0
2 q 14 (< 1)

χ̃0
3 434.30 ũR,c̃R 944.50 g̃ → χ̃±

1 q 50
χ̃0

4 455.23 d̃R,s̃R 941.02 g̃ → χ̃0
2 qq̄ 27

χ̃±
1 225.32 ũL,c̃L 987.30 χ̃±

1 → χ̃0
1W± 90

χ̃±
2 453.82 d̃L,s̃L 990.33 χ̃0

1 → γG̃ 97
ẽR,µ̃R 160.54 b̃1 938.16 χ̃0

1 → Z0G̃ 1
ẽL,µ̃L 326.34 t̃1 843.08

τ̃1 164.01 b̃2 946.53
τ̃2 325.07 t̃2 966.61
ν̃ 314.76 h0 107.11

Table 6.1: Mass spectrum and important branching ratios of the GMSB1 benchmark scenario.
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Figure 6.2: Relative fraction of the numbers of the initial supersymmetric particles in pp-collisions at
14 TeV for the GMSB1 benchmark point.

to a gravitino and a photon with a branching ratio of 97%. The masses of all supersymmetric par-
ticles and the branching ratios of some important decays in the GMSB1 scenario are summarized
in Tab. 6.1. Figure 6.2 shows the relative fraction of the numbers of the initial supersymmetric
particles for all types of particles. In total, squarks (gluinos) are produced in 36% (43%) of the
GMSB1 events at 14 TeV. The remaining events mainly consist of gaugino pair production, while
the initial production of sleptons is strongly suppressed.

The initial pair of squarks and gluinos can decay via two main decay classes, as shown in Figs. 6.3(a)
and 6.3(b). Since (i) the branching ratio of left- (right-) handed squarks decaying to a gluino g̃ is
53% (> 80%), (ii) the gluino decays predominantly (50%) to a χ̃±

1 and (iii) the χ̃±
1 in turn decays

with a branching ratio of 90% into a χ̃0
1 and a W± boson, the decay chain in Fig. 6.3(a) dominates.

In contrary, the decay chain of Fig. 6.3(b) has a smaller total branching ratio, since left- (right-)
handed squarks and gluinos decay to a χ̃0

2 only with a branching ratio of 14% (< 1%) and 27%, re-
spectively. However, the latter case leads to the interesting signature of opposite-sign-same-flavor
(OSSF) lepton pairs in the final state, which is used for the measurement of kinematic endpoints
in Sect. 7.1 and in one of the methods to determine the χ̃0

1 lifetime (see Sect. 7.2.5). Figure 6.4
shows the number of particles being the mother particle of the NLSP in a certain event.1) If the
mother particle is a right-handed slepton, an OSSF lepton pair is present in the event2). The two
decay classes shown in Figs. 6.3(a) and 6.3(b) cover a combined branching ratio of almost 100% of

1)The next-to-next-to-lightest supersymmetric particle in the mass hierarchy shown in Fig. 6.1 is the l̃R. However, e.g. the
χ̃±

1 can also be the mother particle of the lightest neutralino, as shown in Fig. 6.3(a).
2)A right-handed slepton always decays to a χ̃0

1 and a lepton and its mother particle is always a (heavier) neutralino decaying
to the slepton and a lepton. Since GMSB models are flavor-conserving, both leptons have the same flavor. The mother particle
of a right-handed slepton cannot be a chargino, since the wino component of the chargino only couples to left-handed particles
and the chargino does not couple to sleptons via its higgsino component.
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Figure 6.3: Main decay channels of squarks and gluinos in GMSB1-like scenarios: (a) decay via χ̃±
1 ; (b)

decay via χ̃0
2 .

the initial squark and gluino production. In summary, hard jets from the initial squark and gluino
decays, hard prompt photons from the χ̃0

1 decay, Emiss
T from the escaping gravitinos and depending

on the decay chain additional leptons are expected.

• For the study of the discovery potential in the Λ− tanβ -plane a scan is performed, while the
other parameters are fixed to the GMSB1 values. Hence, the properties of the various model
points under study are similar to the GMSB1 benchmark scenario with different cross sections and
slightly shifted mass hierarchies. In some regions of the scanned parameter space the τ̃1 becomes
the NLSP leading to τ-leptons in the final state. An analysis based on photons in the final state is
not sensitive to this signature and dedicated search strategies have to be developed [120].

• For detailed studies of the discovery potential for GMSB models featuring non-pointing pho-
tons in the final state, a benchmark point called GMSB3 has been chosen. The parameters of this
scenario are similar to the parameters of the GMSB1 scenario, except for Cgrav = 55. This leads to
a finite χ̃0

1 lifetime of τχ̃0
1

= 11.2 ns, which corresponds to a decay length of cτ χ̃0
1

= 3.2 m, and a
gravitino mass of mG̃ = 5.95 ·10−7 GeV. Again, this mass is much too small to have any influence
on the phenomenology. Due to the finite χ̃0

1 lifetime, a certain number of χ̃0
1 escape the detector

before they decay leading to a final state with a reduced number of photons compared to the prompt
photon case. All other features of the GMSB3 scenario, like cross sections and branching ratios,
are identical to those of the GMSB1 scenario and the above discussion of the phenomenology of
GMSB1 is also valid for GMSB3.

Table 6.2 summarizes the parameters of the benchmark scenarios used in this chapter. In Fig. 6.5(a)
an optical event display of a typical GMSB event with prompt photons and jets in the final state in the
ATLAS detector is shown in the x− y-profile. The inner detector is shown in black, while the ECal
and HCal systems are displayed in green and red, respectively. The segmentation of the calorimeters
is also indicated. The muon system is shown in blue. The tracks coming from the primary interaction
vertex belong to jets and have a transverse momentum larger than 10 GeV. Jets are indicated as brown
bars outside the muon system. The corresponding clusters are also shown in the calorimeter system as
gray bars and their lengths correspond to the deposited amounts of energy, which is larger than 10 GeV.
Photons are indicated with yellow bars outside the muon system and it can be observed that no tracks
belong to the photon clusters. The direction of the missing transverse energy is indicated with a dashed
red line. Note, that the event display is shown in a strong fish eye perspective and that therefore the size
relations between the individual detector components are not realistic. Figure 6.5(b) shows the same
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Figure 6.4: Relative fraction of the numbers of particles being the mother particle of the NLSP in the
GMSB1 benchmark scenario.

Name σNLO(LO) [pb] Λ [TeV] Mmess [TeV] N5 tanβ sign(µ) Cgrav cτχ̃0
1

[mm]
GMSB1 7.8 (5.1) 90 500 1 5 + 1.0 1.1
GMSB3 7.8 (5.1) 90 500 1 5 + 55.0 3.2 ·103

Table 6.2: Summary of the benchmark scenarios used in this chapter. GMSB1 is a prompt photon
scenario, while dataset GMSB3 features non-pointing photons.

event and the same detector components in the y− z-profile. Most of the activity of the event is found in
the barrel part of the detector, while only one jet is emmitted in the forward direction.

6.1.2 Datasets and Monte Carlo simulations

In this thesis various datasets simulating the response of the ATLAS detector for the supersymmetric
signal and all relevant Standard Model background processes, as listed in Tab. A.1, are used. Since the
GMSB signal under study has a complex final state including high multiplicities of several particle types,
such as jets, photons and leptons, as well as high missing transverse energy, a wide range of Standard
Model processes can potentially be misidentified as a GMSB event and thus have to be investigated.
Therefore, the samples used range from pure jet production to t t̄ production and gauge boson production
with additional jets and photons. In addition, direct photon production and di-boson production are
investigated. As indicated in the table, the events have been generated with ALPGEN, HERWIG or
PYTHIA. The corresponding datasets have been produced within the standard central ATLAS production
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Figure 6.5: Schematic view of a typical GMSB event with prompt photons in the (a) x−y-profile and (b)
y− z-profile of the ATLAS detector.
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procedure and are widely used in the ATLAS SUSY working group [18].3)

As described in Sect. 4.1, the supersymmetric mass spectrum is calculated using ISASUGRA, while
HERWIG/JIMMY is used for the sparticle cascade decays, parton showers, hadronization and the sim-
ulation of the underlying event. For the generation of events with a non-zero lifetime of the χ̃0

1 , as
in the GMSB3 scenario, the lifetime threshold above which the particles are not decayed, was set to
3.3×10−11 s in HERWIG similar to the default ATLAS configuration4) . In the detector simulation the
ATLAS interface for GEANT4 was used to define the properties of the long-lived particles, such as the
decay length of the lightest neutralino χ̃0

1 .

6.2 Discovery potential in the prompt photon scenario
The discovery potential of ATLAS for GMSB models with prompt photons in the di-photon channel
is investigated in this section. Characteristic features, such as multiple jets, high missing transverse
energy and high energetic photons will be used to separate the signal events from the Standard Model
background. The first step is to investigate the possible trigger strategies to select the signal events on
trigger level. This mainly aims at a high signal efficiency, rather than at a high background rejection
power. Once a data stream coming from the trigger system is recorded, the second step is to optimize
the selection criteria in order to separate the signal events from the Standard Model background with
high signal efficiency and high background rejection power simultaneously. For this purpose, a signal
significance is maximized. Using the selection criteria defined in the study of the fully simulated GMSB1
benchmark scenario, a fast simulation scan can be performed to estimate the overall discovery potential
of ATLAS for GMSB1-like scenarios.

6.2.1 Signal trigger strategy
The generic features of supersymmetric events, such as multiple high energetic jets and large missing
transverse energy can be used to trigger GMSB events. Additionally, the final state photons coming from
the χ̃0

1 decay provide a good possibility for the online selection.
As discussed in Sect. 3.1, the LHC will be run in different luminosity phases. The first phase will start

at around L = 1031 cm−2 s−1 and later the luminosity will be increased stepwise to L = 1033 cm−2 s−1

and L = 1034 cm−2 s−1. Depending on the luminosity the event rate will be different and therefore also
selections based on different trigger menus are foreseen:5)

• The menu for initial data taking will be solely based on the L1 selection, since the rates are low
enough to allow for a transparent mode of the HLT. The entire trigger menu is subdivided into
several groups of trigger items that are interesting for different physics analyses or performance
analyses. For the study of GMSB events only the triggers for electromagnetic clusters, as described
in Sect. 5.1.1, and for jets and missing transverse energy are relevant. The several trigger items
can in principal also be combined in an analysis and thus a variety of possibilities for a GMSB
trigger is available. Figure 6.6 shows the trigger efficiencies of various L1 trigger items for the
GMSB1 scenario. Here and in the following, the trigger efficiency is defined as the ratio of the
number of events without any preselection cuts passing a certain trigger requirement divided by
the total number of simulated events. The nomenclature of the trigger items is such that the first

3)Cuts on generator level have been applied during the production of the background samples. This allows for a faster
simulation of the most relevant background processes, since events with e.g. very low Emiss

T are rejected in any case. For details
see Tab. A.2.

4)This value is set in order not to decay K0 and Λ particles at the generator level, such that they can interact with the detector
material before they decay. Therefore, removing or changing the cut is not allowed.

5)These menus can currently change on a day-by-day basis and therefore no actual trigger menus can be presented here.
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Figure 6.6: L1 efficiency of various possible trigger items, as described in the text, for the selection of
the GMSB1 signal in the low luminosity running phase of the LHC.

Trigger item Efficiency [%] Trigger item Efficiency [%]
2EM13 98.71 ± 0.11 MET70 81.39 ± 0.39
EM100 83.00 ± 0.38 J70+MET30 93.64 ± 0.25
EM18+MET15 98.79 ± 0.12 2J42+MET30 93.98 ± 0.24
J100 91.43 ± 0.28 4J23 92.27 ± 0.27

Table 6.3: Trigger efficiencies and statistical uncertainties for some interesting trigger items for the
GMSB1 scenario for the low luminosity running phase of the LHC.

number gives the multiplicity of the trigger object, the second part of the name gives the type of
the trigger object, e.g. “EM” for “electromagnetic”, “J” for “jet” and “MET” for “E miss

T ”, and the
second number gives the energy threshold. An additional “I” at the end of the name indicates the
application of an isolation criterion. The combined trigger items, such as “J70MET30”, are com-
bined with a logical AND. It can be observed that there is a variety of possibilities to trigger events
of the GMSB1 scenario in the low luminosity running phase of the LHC. Table 6.3 summarizes
the total efficiencies of some of the interesting trigger items for GMSB1 with the corresponding
statistical uncertainties, that come from the limited statistics used in the simulation.

• The menu for the stable running phase with a luminosity of L = 1033 cm−2 s−1 will include the
decisions of all three available trigger levels in the selection. Only the trigger items without a
prescale factor6) are interesting for the study of GMSB events, since a maximal signal selection
efficiency is required to collect as much data as possible. Again, a variety of possibilities to trigger
GMSB events exists based on electromagnetic, jet or E miss

T trigger items. The L1, L2 and EF
efficiencies of four interesting possibilities are listed in Tab. 6.4, where the L2 and EF efficiencies
also include the efficiencies of the previous levels. These are a single photon trigger (photons are
denoted with a “g” in the name of the trigger item) for high energetic photons with pT > 55 GeV,

6)Trigger items can be prescaled, which means that not every selected event will be recorded due to the limited output rate
of the trigger system. If e.g. minimum bias events are studied, not every single event can be written to permanent storage due
to the large cross section. Instead only every nth event will be recorded, where n is the configurable prescale factor.
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Trigger item L1 L1+L2 L1+L2+EF
g55 97.18 ± 0.60 84.47 ± 1.32 80.47 ± 1.44
2g17i 71.13 ± 1.65 55.07 ± 1.81 47.91 ± 1.81
j65+xE70 80.66 ± 0.40 80.63 ± 0.40 69.53 ± 0.46
3j65 83.63 ± 0.37 83.55 ± 0.37 83.37 ± 0.37

Table 6.4: Trigger efficiencies and statistical uncertainties for some interesting trigger items for the
GMSB1 scenario for the L = 1033 cm−2 s−1 running phase of the LHC.
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Figure 6.7: L1 (blue), L2 (green) and EF (gray) efficiencies of the g55 trigger for the GMSB1 scenario
as a function of the reconstructed pT of the leading photon. The pT distribution of the leading photon
with pT > 20 GeV and |η | ≤ 1.37, 1.52 < |η | < 2.5 is also shown.

an isolated di-photon trigger with a threshold of pT > 17 GeV that could also be combined with
the single photon trigger, a combined jet (“j”) plus missing transverse energy (“xE”) trigger and a
multijet trigger with a threshold of pT > 65 GeV, which will become especially interesting in the
analysis of the non-pointing photon scenario in Sect. 6.3. It can be observed that for both of the
planned running phases the photon triggers as well as the E miss

T and jet triggers provide possibilities
to trigger efficiently on GMSB1 events. The efficiencies of the g55 photon trigger after the L1,
L2 and the EF selections as a function of the reconstructed pT of the leading photon are shown
in Fig. 6.7 for the GMSB1 scenario. As expected, after a steep turn on around 60 GeV a plateau
is reached. The integrated EF efficiency after the threshold of 60 GeV is ∼ 98%. Additionally,
the distribution of the reconstructed transverse momentum of the photons is illustrated. Since the
selection criteria, as described in Sect. 5.1.1, are refined from level to level, the efficiency drops
slightly, but remains very high in the region above 60 GeV. The trigger menu for the stable running
phase is used for the signal selection as discussed in the following.

• A trigger menu for the L = 1034 cm−2 s−1 running phase does not yet exist and will be constructed
based on the trigger operating experiences of the other phases.

In summary the use of photon triggers is possible for initial running conditions as well as at higher
luminosity. The efficiencies are as high as for the triggers based on jets and E miss

T and can therefore
provide good redundancy.
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Figure 6.8: Distributions of the relative fraction of events with a given number of photons with pT >
20 GeV and |η | ≤ 1.37, 1.52 < |η |< 2.5 in the final state for the GMSB1 scenario for events on generator
level (red) and for the reconstructed events (black).

6.2.2 Properties of the reconstructed signal events

In the GMSB1 scenario 46.5% (18.5%) of the signal events have one (two) reconstructed photons with
pT > 20 GeV in the fiducial acceptance region |η | < 2.5 used for photon identification. Photons that are
found in the region where the barrel and the endcap calorimeters overlap, i.e. 1.37 < |η | ≤ 1.52, are
excluded. Figure 6.8 shows the distribution of the relative fraction of events with a given number of final
state photons with pT > 20 GeV and |η | ≤ 1.37, 1.52 < |η | < 2.5 on generator level as well as after
the simulation and identification process without any preselection cuts.7) It can be observed that there
are events that contain more than two identified high energetic photons. These can be bremsstrahlung or
more likely misidentified electrons, where the track has not been reconstructed, or pions that decay to two
photons and where the substructure of the shower could not be used for the rejection (see Sect. 5.1.3).
The fraction of fake photons in the set of all reconstructed photons can be estimated by matching all
reconstructed photons to a generated photon, pion or electron within a cone of ∆R < 0.1. About 94% of
the reconstructed photons come from photons from neutralino decays, while about 5% come from pion
decays and a litte fraction of less than 1% comes from misidentified electrons.

The jets initiated by the squark and gluino decays as shown in Figs. 6.3(a) and 6.3(b) are very high
energetic due to the large mass difference of about 700 GeV (500 GeV) between the squarks (gluinos) and
the gauginos (see Fig. 6.1). As discussed above, multiple jets can be present in the event depending on
the decay chain. The distribution of the relative fraction of events with a given number of reconstructed
jets with pT > 10 GeV and |η | ≤ 1.37, 1.52 < |η | < 2.5 for 1 fb−1 is shown in Fig. 6.9(a). The average
jet multiplicity is high, since in addition to the squark and gluino decays also W ± decays and initial
state radiation can produce jets. About 90% of the events have at least four jets in the final state in the
fiducial acceptance region. This feature is used to reject Standard Model background events with low jet
multiplicity.

The distribution of the transverse momentum of the leading jet is shown in Fig. 6.9(b). It can be
observed that two different contributions are present. Due to the large mass difference to the daughter

7)The number of available signal MC events is 10 000 corresponding to an integrated luminosity of 1282.05 pb−1.
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Figure 6.9: Distribution of (a) the relative fraction of events with a given number of reconstructed jets
and (b) the transverse momentum of the leading jet for the GMSB1 scenario with pT > 10 GeV and
|η | ≤ 1.37, 1.52 < |η | < 2.5 for 1 fb−1.

particles, very high energetic jets originate from a squark or gluino decay. The jets in the lower transverse
momentum region arise from gaugino pair production events, where charginos decay to W ± bosons that
lead to final state jets.

In the GMSB1 scenario the decay chains of the two initial supersymmetric particles always lead
to two gravitinos in the final state that escape detection. Depending on the transverse momentum and
the relative orientation between the two gravitinos this leads to a significant amount of missing trans-
verse energy Emiss

T . Additional neutrinos in the decay chain originating either from sneutrino decays or
Standard Model W± decays as well as fake Emiss

T as discussed in Sect. 5.4.2 also contribute to the total
amount of Emiss

T . The distribution of the transverse momentum of the leading gravitino as taken from the
generator information for the GMSB1 scenario is shown in Fig. 6.10(a) leading to the distribution of the
reconstructed Emiss

T as shown in Fig. 6.10(b). Emiss
T is a very important variable for the rejection of all

kinds of Standard Model background in many analyses of supersymmetric models at the LHC [18] and
is also used in this analysis of the GMSB1 scenario to strongly suppress the multijet QCD background.

6.2.3 Signal selection
As shown in Sect. 6.2.1, events of the GMSB1 scenario can be selected online efficiently by using photon
triggers. The combination of the single photon trigger “g55” and the di-photon trigger “2g17i” from the
trigger menu of the stable running phase reaches a combined efficiency of about 85%. Figure 6.11(a)
shows the distribution of Emiss

T for the signal and the Standard Model background after the application
of the trigger requirement for 1 fb−1. It can clearly be observed that for low values of E miss

T the QCD
multijet background dominates.8) For large values of Emiss

T the GMSB signal distribution decreases much
slower than the Standard Model background distributions. In order to further separate the signal from
the Standard Model background the following preselection cuts have been applied:

1. Missing transverse energy Emiss
T > 60 GeV.

8)It should be noted that the distribution for the W± background is unrealistic for Emiss
T < 50 GeV due to the generator precut

(see Tab. A.2).



82 6 Discovery potential for GMSB models with photon final states

 [GeV]G
~

T,p
0 50 100 150 200 250 300

-1
Nu

m
be

r o
f e

ve
nt

s 
/ 1

 fb

0

50

100

150

200

250

300

350

400

450

(a)

 [GeV]T
missE

0 50 100 150 200 250 300 350 400 450 500

-1
Nu

m
be

r o
f e

ve
nt

s 
/ 1

 fb

0

50

100

150

200

250

300

350

400

450

(b)

Figure 6.10: Distribution of (a) the transverse momentum of the leading gravitino (taken from the gen-
erator information) and (b) the reconstructed missing transverse energy for the GMSB1 scenario for
1 fb−1.

2. At least four jets are found with transverse momentum pT > 50 GeV (pT > 100 GeV for the leading
jet).

Figure 6.11(b) shows the distributions of the number of jets with pT > 10 GeV and |η | ≤ 1.37, 1.52 <
|η | < 2.5 after the application of the cut on E miss

T for the GMSB1 signal and the Standard Model back-
ground for 1 fb−1. It can be observed that the cut on the number of jets is very efficient in reducing all
sources of background. Additionally, a cut on the momentum of the jets is imposed, since large jet mo-
menta are expected due to the large mass differences between the squarks and gauginos, see Fig. 6.9(b).

After these precuts 4809 background events remain, while 3813 signal events are selected for 1 fb−1.
However, due to the large jet cross section at the LHC, QCD multiple jet events, as well as other back-
ground processes, remain that have large values of E miss

T due to poorly measured jets. Therefore, a third
cut is applied in the preselection:

3. The angle |∆φ | between Emiss
T and the first, second and third jet must be larger than 0.2 in order to

reduce the background from poorly measured jets.

Fig. 6.12(a) shows the ∆φ(Emiss
T ,1st jet) distribution after the first and second cut for the GMSB1

signal and the remaining Standard Model background events for 1 fb−1. It can be observed that this cut
further rejects QCD multijet background. After all preselection cuts 3216 signal events and 2894 back-
ground events remain for 1 fb−1. However, as shown in Fig. 6.12(b) a cut on the number of reconstructed
photons with pT > 20 GeV and |η | ≤ 1.37, 1.52 < |η | < 2.5 provides an efficient way to efficiently
suppress the background.

Table 6.5 shows the numbers of selected signal and background events for different cut values on
Emiss

T and the number of photons including the preselection cuts and the trigger requirement (g55 OR
2g17i). To define a final set of cuts a signal significance has been defined as

σGMSB1 = #Signal events/
√

#BG events. (6.2)

The set of cuts is optimal, when the significance reaches its maximum. Additionally, the statistical and
systematic uncertainties are given. The former are given by the statistics of the Monte Carlo samples
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Figure 6.11: Distribution of (a) the reconstructed E miss
T after the photon trigger selection and (b) of the

number of jets with pT > 10 GeV and |η | ≤ 1.37, 1.52 < |η | < 2.5 after the cut on E miss
T for the GMSB1

signal (open symbols) and the Standard Model background (histograms) for 1 fb−1.
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Figure 6.12: Distribution of (a) the angle ∆φ between E miss
T and the leading jet after the first and second

preselection cut and (b) of the number of reconstructed final state photons with pT > 20 GeV and |η | ≤
1.37, 1.52 < |η | < 2.5 after all preselection cuts for the GMSB1 signal (open symbols) and the Standard
Model background (histograms) for 1 fb−1.
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Figure 6.13: Efficiency of the GMSB1 signal selection as a function of the cuts that have been applied
sequentially.

Emiss
T > Nγ ≥ Signal±stat.± syst. ∑BG±stat.± syst. σGMSB1 QCD tt̄ W± Z0

60 GeV 0 3216±50±195
226 2893±980±711

420 60 1468 1142 265 15
60 GeV 1 2030±40±132

176 80±11±63
24 227 0 64 17 0

60 GeV 2 511±20±33
58 2±2±0

0 361 0 2 0 0
70 GeV 0 3047±49±221

223 2456±977±581
334 61 1269 947 223 15

70 GeV 1 1922±39±150
164 65±10±30

26 238 0 50 15 0
70 GeV 2 477±19±44

44 2±2±0
2 337 0 2 0 0

Table 6.5: Number of selected signal and background events for 1 fb−1 after the preselection for different
cuts on Emiss

T and the number of photons. The statistical and systematic uncertainties are given as well
as the signal significance σGMSB1. The numbers of selected QCD multijet, t t̄, W± and Z0 events are also
listed.

used in the study9), while the latter are obtained by varying the jet energy scale and the electromag-
netic energy scale. The systematic uncertainties on the energy scales are assumed to be 5% and 0.5%,
respectively [18]. The systematic uncertainty is completely dominated by the jet energy scale, since it
strongly affects the measured value of E miss

T due to the numerous jets in the events. The effect of the
electromagnetic energy scale uncertainty on the number of selected events is negligible.

It turns out that an optimal event selection for the GMSB1 scenario is given by the above defined
preselection cuts plus an additional requirement on the minimal number of final state photons:

4. Nγ ≥ 2,

where the signal significance is largest, σGMSB1 = 361. After requiring at least two photons in the final
state the signal (511 events) is almost background free (two remaining t t̄ events) and cutting harder on
Emiss

T just reduces the number of selected signal events. In event selections optimized for mSUGRA
scenarios (and other supersymmetric scenarios without photons in the final state) the cut on E miss

T is
typically harder and additional selection criteria such as a minimal number of leptons or OSSF lepton

9)Due to the large event weights of the QCD jet samples, the statistical uncertainty on the number of selected background
events is large, when the fraction of QCD jet events is large.
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pairs have to be chosen [18]. Due to the presence of decay chains shown in Fig. 6.3(b), OSSF lepton
pairs can also be present in the GMSB1 scenario, but this decay chain is only exclusively selected for
the measurements of endpoints in invariant mass spectra as discussed in the next chapter. Figure 6.13
shows the efficiency for selecting the GMSB1 signal events as a function of the final selection cuts. It
can be observed that the preselection cuts are quite efficient in selecting the signal events, while the cut
on the number of photons reduces the signal significantly. However, the signal significance is largest
for this cut, since the number of remaining background events drops to almost zero. In summary, it
can be concluded that with a simple event selection based on a few variables the GMSB1 signal can be
discovered with high significance with 1 fb−1 of data.

6.2.4 GMSB parameter scan

The selection criteria discussed in the last section have been optimized for a single benchmark point in
the GMSB parameter space. For the investigation of the discovery potential of this selection over a wider
range of the parameter space, it is necessary to make use of a fast detector simulation to obtain adequate
statistics for the signal. As described in Sect. 4.2.2 the fast simulation package ATLFAST has been
developed, which performs no detailed simulation of particle interactions with the detector material, but
instead parametrizes the response.

Before the fast simulation can be used for a parameter scan, it has to be ensured that the results
of the fast simulation are reliable. This can be done by comparing the distributions of the variables
used for the analysis with the results obtained from the full GEANT4 detector simulation. In case of
significant deviations, the fast simulation result has to be corrected. Figure 6.14 shows the distributions
of Emiss

T , the number of reconstructed photons with pT > 20 GeV and |η | ≤ 1.37, 1.52 < |η | < 2.5
and the transverse momenta of the first and second leading photon for the GMSB1 scenario. The red
histogram shows the result from the full detector simulation, while the black data points show the result
from the fast simulation. It can be observed that the distributions of E miss

T agree reasonably well to
be used in a parameter scan. On the other hand large discrepancies between the distributions of the
number of photons and the transverse photon momenta can be observed, since in the fast simulation no
reconstruction efficiencies are applied and no particle misidentifications are present. This is corrected by
the application of correction factors. In the present analysis this has been done by calculating correction
factors in 13 bins of the photon pT that are used to randomly reject photons event by event according
to the probability given by the correction factor.10) The resulting corrected pT distributions for the first
and second leading photon are shown as green data points in Figs. 6.14(c) and 6.14(d), respectively.
The corrected distribution of the number of final state photons is shown in Fig. 6.14(b). After these
corrections and the application of the preselection cuts and the requirement of at least two photons in the
final state the number of selected events from the fast simulation is 568 agreeing with the full simulation
result (511) within the uncertainties, see Tab. 6.5.11). After correction the fast simulation is assumed to
be reliable to perform the parameter scan.

As shown in Fig. 2.13(b), the type of the NLSP, i.e. the discovery potential in the two photon channel,
depends on the value of tan β . Therefore, tanβ has been chosen as one scan parameter. The other
parameter that is interesting to investigate is Λ, since the masses of the supersymmetric particles scale
linearly with Λ. Hence, the total supersymmetric cross section decreases with Λ and it is expected that
this is also true for the discovery potential for these scenarios. On the other hand, no strong dependence
of the discovery potential on Mmess is expected, since the particle masses scale only logarithmically in

10)The correction factors are obtained by calculating the relative photon identification efficiency of the GEANT4 simulation
and the fast simulation as a function of the transverse photon momentum.

11)Since the fast simulation does not include a trigger simulation, the photon trigger decision has been emulated by randomly
rejecting events using the trigger efficiencies from Tab. 6.4.
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Figure 6.14: Distributions of (a) Emiss
T , (b) the number of reconstructed photons with pT > 20 GeV and

|η | ≤ 1.37, 1.52 < |η | < 2.5 and the transverse momenta of the (c) first and (d) second leading photon
for the GMSB1 scenario.

Mmess. N5 = 1 and Cgrav = 1 are also fixed to obtain a scenario with photons in the final state (N5 = 1)
that come from the interaction vertex (Cgrav = 1).12)

For the scan Λ has been varied from 60 TeV to 200 TeV in steps of 10 TeV, while tanβ has been
varied from 2 to 50 in steps of 2. The other model parameters are fixed to N5 = 1, Mmess = 500 TeV,
sign(µ) = + and Cgrav = 1, as for the GMSB1 scenario. The scanned region concurs with the region
used in Fig. 2.13(b) in which the χ̃0

1 is most often the NLSP. In each point of the parameter space 12 500
events have been generated and passed through the fast simulation. The event selection as described
in the last section has been applied to each signal sample. Figure 6.15 shows the contour lines with
ten signal events for different integrated luminosities.13) It can be seen that for large values of tanβ

12)The simulation of non-pointing photons is not possible with ATLFAST.
13)The criterion of 10 signal events for a discovery has been chosen arbitrarily, but corresponds to σGMSB1 ≈ 7 given the

definition of a significance as discussed in Sect. 6.2.3 under the assumption of two remaining background events. For integrated
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Figure 6.15: Discovery potential in the Λ− tanβ plane for N5 = 1, Mmess = 500 TeV, sign(µ) = + and
Cgrav = 1. The contour lines with ten signal events are shown for different integrated luminosities.

no discovery can be made with the selection based on hard photons, since the τ̃1 is the NLSP and no
photons are expected in the final state14). However, in the region where the χ̃0

1 is the NLSP, already with
300 pb−1 the region up to Λ ≈ 160 TeV can be covered corresponding to squark masses of m q̃ ≈ 1.7 TeV
and gluino masses of mg̃ ≈ 1.3 TeV. In general, the discovery potential for GMSB with prompt photons is
large in the scanned regions of the parameter space. This result gives confidence that an early discovery
of GMSB1-like scenarios is possible with the ATLAS detector.

6.3 Discovery potential in the non-pointing photon scenario
The discovery potential of ATLAS for GMSB models with non-pointing photons is investigated in this
section. In general, the same features, such as large E miss

T and multiple jets, as in the event selection for
the GMSB1 scenario, can be used for the background rejection. Additionally, the non-vanishing lifetime
of the neutralino can be exploited.

The first step is to define a trigger strategy to select the events on trigger level. The second step is the
optimization of criteria to efficiently select the signal events and reject the Standard Model background
in the offline data analysis. The GMSB3 scenario as discussed in Sect. 6.1.1 is used as the benchmark
scenario.

6.3.1 Signal trigger strategy
Since the only difference between the GMSB1 and the GMSB3 scenario is the neutralino lifetime, the
same features as discussed in Sect. 6.2 can in principle be used for triggering on GMSB3 events. Espe-
cially the trigger items shown in Tab. 6.4 are interesting for this purpose. Table 6.6 shows the efficiencies
of these trigger items for the GMSB3 scenario for the L = 1033 cm−2 s−1 running phase of the LHC
and it can be observed that the triggers based on E miss

T and jets are as efficient as in the prompt photon
luminosities smaller than 1 fb−1 the number of background events would have to be scaled down to calculate a significance.
However, for almost vanishing background such a procedure is doubtful.

14)The discovery potential for final states including τ leptons in the GMSB model is discussed in [120].



88 6 Discovery potential for GMSB models with photon final states

Trigger item L1 L1+L2 L1+L2+EF
g55 90.19 ± 1.08 46.04 ± 1.81 36.88 ± 1.75
2g17i 34.13 ± 1.72 17.77 ± 1.39 12.87 ± 1.22
j65+xE70 80.38 ± 0.56 80.24 ± 0.56 71.18 ± 0.64
3j65 79.80 ± 0.57 79.66 ± 0.57 79.62 ± 0.57

Table 6.6: Trigger efficiencies and statistical uncertainties for some interesting trigger items for the
GMSB3 scenario for the L = 1033 cm−2 s−1 running phase of the LHC.

case.15) On the other hand, a large deviation can be observed for the triggers based on photon selections
(g55 and 2g17i). The efficiency loss for the g55 trigger on L1 arises from the number of photons which
are produced within the fiducial region of the detector. The larger the NLSP lifetime is, the larger is the
number of NLSPs that will decay outside the inner detector and the resulting photons cannot be mea-
sured. This effect is even more pronounced for the 2g17i trigger, which is optimized for the production
of two photons within the inner detector volume. On L2 and EF level cuts are imposed on the shape of
the electromagnetic shower, as discussed in Sect. 5.1.1. Since photons that appear at a certain distance
from the primary interaction vertex have a wider shower shape than prompt photons, an additional loss
in efficiency is present (see Fig. 5.9 and the corresponding discussion).

Since one cannot assume that the online selection of photons will change before a positive signal
for non-pointing photons appears, the signal will be selected using a trigger based on the requirement of
multiple hard jets (“3j65”) in this analysis. The transverse energy threshold for the jets is chosen such
that on the one hand the trigger rate remains low enough to have no prescale factor and on the other hand
the selection efficiency is as high as possible. A threshold of 65 GeV is used in the following to select
the GMSB3 signal on trigger level.

6.3.2 Signal selection
For the final selection of the events in the GMSB3 scenario again the same features as in the GMSB1
scenario can be used. Again, large Emiss

T and multiple high energetic jets are expected in the final state.
On the other hand, Fig. 6.16 shows that the distribution of the relative fraction of events with a given
number of final state photons with pT > 20 GeV and |η | ≤ 1.37, 1.52 < |η | < 2.5 is different due to
the reduced identification efficiency for non-pointing photons. The red data points show the distribution
taken from the generator information, while the blue and black data points show the distribution for the
standard and unbiased (see Sect. 5.3) photon identification, respectively. It can be observed that the total
number of reconstructed photons is reduced compared to the GMSB1 scenario (see Fig. 6.8) and it is
expected that the requirement of at least two photons in the final state is inefficient in this case. The
following preselection cuts are imposed:

1. The missing transverse energy Emiss
T must be larger than 60 GeV.

2. At least three jets with pT > 65 GeV and |η |< 2.5 (due to the jet trigger requirement) and a fourth
jet with pT > 10 GeV must be found.

3. The angle |∆φ | between Emiss
T and the first, second and third jet must be larger than 0.2.

4. At least one photon using the unbiased selection must be present with pT > 20 GeV and |η | ≤ 1.37,
1.52 < |η |< 2.5. Since the photon identification efficiency is lower than in the prompt photon case

15)The slight drop of the efficiency of the 3j65 trigger is due to the non-vanishing χ̃0
1 lifetime. Some fraction of the neutralinos

decay outside the inner detector volume and no photons can be measured. Since photons can also be recognized by the jet
triggers, this leads to a decreased efficiency.



6.3 Discovery potential in the non-pointing photon scenario 89

γN
0 1 20 1 2

Re
la

tiv
e 

fra
ct

io
n 

of
 e

ve
nt

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard photons

Unbiased photons

Generated photons

Figure 6.16: Distributions of the relative fraction of events with a given number of photons with
pT > 20 GeV and |η | ≤ 1.37, 1.52 < |η | < 2.5 in the final state for the GMSB3 scenario for the gen-
erator events (red) and for the reconstructed events for the standard (blue) and unbiased (black) photon
identification.

and some fraction of the neutralinos decay outside the detector, the required multiplicity compared
to Sect. 6.2.3 is reduced.

As in the case of the GMSB1 scenario the first and second cut greatly reduce the Standard Model back-
ground, while the third cut serves as a good handle to reject QCD multijet background that leads to fake
Emiss

T . The cut on the number of photons further reduces the Standard Model background and after this
preselection 1441 events of the GMSB3 signal sample and 606 background events remain for 1 fb−1.
The Standard Model background is mainly dominated by t t̄ and W± → e±ν events, where real Emiss

T is
present due to the neutrinos in the final state and electrons are misidentified as photons.

The special kinematics of non-pointing photons offers additional opportunities to discriminate the
signal photons from the background using the measurement of the clustertime τcluster , as discussed in
Sect. 5.3.2. The distribution of the reconstructed clustertime of the leading photon with pT > 20 GeV and
|η | ≤ 1.37, 1.52 < |η | < 2.5 for the GMSB3 signal is shown in Fig. 6.17(a) without any event selection
cuts for 1 fb−1. It can be seen that a delayed clustertime is indeed expected for the GMSB3 signal. The
clustertime distribution for the signal and the Standard Model background after the preselection cuts is
shown in Fig. 6.17(b) for 1 fb−1. The background distribution has a Gaussian shape around τcluster = 0,
as expected. The total resolution is around 200 ps agreeing with the expectation of a value larger than
100 ps including an energy dependent term, as discussed in Sect 5.3.2. This result is exploited for the
separation of the signal from the background by the following cut, which is applied in the final event
selection:

5. At least one identified photon must be found with a measured clustertime larger than 0.6 ns.

Fig. 6.18(a) shows the signal significance σGMSB3 as a function of the clustertime threshold used in the
final cut.16) As can be observed, the maximum is reached for τcluster > 0.6 ns. Figure 6.18(b) shows
the efficiency for selecting the GMSB3 signal events as a function of the final selection cuts. It can be

16)It is assumed that for τcluster > 0.6 ns at least two background events remain, since any calculation of a significance is
doubtful for zero background events.
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Figure 6.17: Distribution of the clustertime of the leading photon (a) for the GMSB3 scenario without any
selection cuts for photons with pT > 20 GeV and |η | ≤ 1.37, 1.52 < |η | < 2.5 and (b) for the GMSB3
scenario (open symbols) and the Standard Model background (histograms) after the preselection for
1 fb−1.
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Figure 6.18: (a) Dependence of the signal significance σGMSB3 on the clustertime threshold used in the
final cut for 1 fb−1. (b) Efficiency of the GMSB3 signal selection as a function of the cuts.

observed that the preselection cuts without the requirement of at least one photon in the final state are ef-
ficient in selecting the signal events (as is the case for the GMSB1 scenario), while the cuts on the number
of photons and the measured clustertime reduce the signal significantly. However, the signal significance
is largest for these cuts, since the number of remaining background events again drops to almost zero.
With the final selection cuts the GMSB3 signal is almost free from background contributions for 1 fb−1

and a discovery can be made with high significance: 504 signal events and only two background events
remain.17)

17)If the GMSB3 signal events are selected using the final selection cuts of Sect. 6.2.3 including the photon trigger require-
ment, only 16 events remain. Hence, the specialized non-pointing photon selection is much more efficient in the case of a
GMSB3 scenario.



Chapter 7

Measurements from GMSB events

It has been shown in the last chapter that supersymmetry based on a GMSB model with photons in the
final state can be discovered by ATLAS with a small data set, if the masses of some of the colored
supersymmetric particles are of the order of 1 TeV. Once a signature consistent with supersymmetry has
been established, measurements of the properties of the supersymmetric particles can help to constrain
the underlying model realised in nature:

• Kinematic edges in invariant mass spectra can be used to constrain the masses of the particles
involved in the decay. This has been studied in detail for mSUGRA-like scenarios [18], as well as
for GMSB models with τ̃ NLSPs [120]. In the GMSB models studied here, the additional photons
in the final state can be used to built additional invariant mass combinations [121].

• If the GMSB model has non-pointing photons in the final state, the NLSP lifetime can be measured
and the underlying model can be further constrained.

In the following sections measurement techniques for supersymmetric particle masses using kinematic
edges in invariant mass spectra, as well as methods to determine the neutralino lifetime are presented and
tested in a certain benchmark scenario.

In principle, the kinematic edges are identical for prompt and non-pointing photon scenarios as they
only depend on the masses of the particles involved in the decay and are independent of the neutralino
lifetime. Since a scenario with a non-vanishing neutralino lifetime represents the more general case and
the influence of the lifetime measurement in a global GMSB fit is investigated in Chap. 8, a non-pointing
photon scenario (GMSB2 with Cgrav = 30 and τχ̃0

1
= 3.34 ns) for the mass measurements is used in the

following.1)

7.1 Measurements of kinematic edges and particle masses
In supersymmetric models with R-parity conservation the particle decay chain cannot be reconstructed
completely, since two LSPs leave the detector undetected. For this reason, kinematic endpoints in in-
variant mass distributions rather than mass peaks are measured and from the combination of several such
measurements the particle masses can be reconstructed. Extensive studies in this field have been done
in the past to analyse the potential of the ATLAS detector for mSUGRA-like scenarios with leptons and

1)The GMSB2 scenario has the same parameters as the GMSB1 and GMSB3 scenarios, but with Cgrav = 30. This results
in a lifetime of τχ̃0

1
= 3.34 ns. The GMSB2 scenario has been chosen, since it turns out that its NLSP lifetime is in a well

measureable region. The uncertainties on the lifetime measurement in GMSB3 are much larger than in the GMSB2 case. A
sample of 60 000 GMSB2 events has been generated and passed through a full GEANT4 detector simulation for this study
corresponding to approximately 7.5 fb−1.

91
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jets in the final state [18]. However, for the GMSB2 scenario discussed here, the additional photons in
the final state provide extra information to be exploited [121].

In this study the decay channel shown in Fig. 6.3(b) is investigated:

q̃ → χ̃0
2 q → l̃±R l∓q → χ̃0

1 l+l−q → G̃γ l+l−q, l = e,µ . (7.1)

The final state therefore contains at least two OSSF leptons, where only electrons and muons are con-
sidered as leptons.2) Additionally, the final state photons as well as the jets arising from the squark and
gluino decays are used.

7.1.1 Event selection
The additional requirement of leptons in the final state leads to slight modifications of the selection cuts
of the other final state objects compared to the discovery analysis for non-pointing photons discussed in
Sect. 6.3. Here, events are selected, which contain two photons with pT > 20 GeV and |η | < 2.5 (using
the unbiased identification criteria, as discussed in Sect. 5.3) and exactly two electrons (see Sect. 5.1.4)
or two muons3) with |η | < 2.5 and pT,e > 10 GeV and pT,µ > 5 GeV, respectively4) . Although a non-
pointing photon scenario is chosen, two photons in the final state are required to be able to resolve
ambiguities in the assignment of the photons to the decay chain that contains the lepton pair. Additionally,
three jets with pT > 65 GeV and values of the missing transverse energy larger than 50 GeV are required.
Again the multiple jets trigger requirement (“3j65”) has been imposed. With these cuts, 772 signal
GMSB2 events remain for 7.5 fb−1 of data while the SM background is negligible.5) For smaller values
of integrated luminosities the statistics of the selected signal was found to be too small for a reliable
measurement of the kinematic edges.

7.1.2 Measurement of endpoints involving leptons and photons
The χ̃0

2 decay shown in Fig. 6.3(b) is particularly suited to measure the masses of the χ̃0
2 , the l̃R and the

χ̃0
1 .6) These can be reconstructed from the four invariant mass spectra [121] that can be measured using

only the leptons and photons of the final state:

1) If at least one of the sleptons is lighter than the χ̃0
2 (as in the GMSB2 scenario), the two-body

decay channel χ̃0
2 → l̃±R l∓ → χ̃0

1 l+l− dominates and the spectrum of the invariant mass of the two
leptons features a sharp endpoint at

Mmax
ll =

√√√√√

(
m2

χ̃0
2
−m2

l̃R

)
·
(

m2
l̃R
−m2

χ̃0
1

)

m2
l̃R

= 106.4 GeV, (7.2)

where the numerical value corresponds to the expected result in the GMSB2 scenario using the
values of the particle masses as calculated with ISAJET. In the reconstruction of the di-lepton

2)For a discussion of invariant mass distributions involving τ leptons in the final state, see e.g. [18, 120].
3)For the details of the muon reconstruction, see e.g. [18].
4)The region 1.37 < |η| ≤ 1.52, where the barrel calorimeters and the endcap calorimeters overlap, are excluded for the

photons, leptons and jets throughout this chapter.
5)The signal selection efficiency is decreased compared to Sect. 6.3 due to the small branching ratio for the decay (7.1)

involving OSSF lepton pairs.
6)It should be noted that this is only possible under the assumption of a massless gravitino. The invariant mass distributions

may eventually be interpreted in a different way, e.g. including a left-handed instead of a right-handed slepton. All possible
interpretations have to be investigated in global fits of the different models to the data and the resulting χ2-distributions have to
be compared in order to decide which model describes the data best. This is investigated in Chap. 8
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Figure 7.1: (a) Di-lepton invariant mass distribution in the GMSB1 scenario for 100 fb−1 of data sim-
ulated with a fast simulation. (b) Flavor-subtracted di-lepton invariant mass distribution in the GMSB2
scenario for 7.5 fb−1. The flavor background from the signal is also shown in both cases.

invariant mass spectrum possibly remaining background from two independent leptonic decays in
Standard Model processes, as well as in the supersymmetric process itself, can be removed by
using the flavor-subtracted combination

N(e+e−)/β +βN(µ+µ−)−N(e±µ∓), (7.3)

where N is the number of events in a certain bin. Since GMSB models are flavor- (and charge-
) conserving, the leptons from the decay (7.1) are 100% correlated in flavor, whereas the lep-
tons from the background processes can have the same or opposite flavor (OSOF) with the same
probability. The efficiency correction factor β = 0.86 is equal to the ratio of the electron and
muon reconstruction efficiencies [18]. As an illustration of the expected shape of the distribu-
tion, Fig. 7.1(a) shows the di-lepton invariant mass (black data points) of a GMSB1 scenario for
100 fb−1 of data simulated with a fast simulation together with the distribution of the flavor back-
ground (red data points). As expected, it can be observed that the flavor background distribution
cancels the signal distribution exactly for values larger than the expected endpoint that is given
by a sharp edge. Since the branching ratio for the decay χ̃0

2 → χ̃0
1 Z0 is non-vanishing (∼ 3%)

the decaying Z0 contributes a small peak at mZ clearly visible in the figure. The flavor-subtracted
di-lepton distribution for the GMSB2 scenario passing a GEANT4-based detector simulation for
7.5 fb−1 is shown in Fig. 7.1(b). The peak from the Z0 decay is no longer visible due to the smaller
dataset and the endpoint is smeared out. This distribution has been fitted with a triangle convoluted
with a Gaussian resolution function and the resulting fit function is also shown in the figure.

2) The sequential two-body decays of the χ̃0
2 , the l̃R and the χ̃0

1 in the decay (7.1) lead to an endpoint
with a linear vanishing in the invariant l+l−γ mass spectrum at

Mmax
llγ =

√
m2

χ̃0
2
−m2

χ̃0
1
= 191.6 GeV. (7.4)

Due to the presence of two photons in the final state two different l+l−γ combinations can be
constructed. Since at least one of the combinations must have an invariant mass less than the



94 7 Measurements from GMSB events

 [GeV]
γ-l+lm

0 100 200 300

-1
Nu

m
be

r o
f e

ve
nt

s 
/ 1

00
 fb

0

500

1000

1500

 [GeV]
γ-l+lm

0 100 200 300

-1
Nu

m
be

r o
f e

ve
nt

s 
/ 1

00
 fb

0

500

1000

1500

 [GeV]
γ-l+lm

0 100 200 300

-1
Nu

m
be

r o
f e

ve
nt

s 
/ 1

00
 fb

0

500

1000

1500 OSSF Signal

OSOF background

(a)

 [GeV]
γ-l+lm

0 100 200 300

-1
Nu

m
be

r o
f e

ve
nt

s 
/ 7

.5
 fb

0

20

40

60

 [GeV]
γ-l+lm

0 100 200 300

-1
Nu

m
be

r o
f e

ve
nt

s 
/ 7

.5
 fb

0

20

40

60

(b)

Figure 7.2: (a) l+l−γ invariant mass distribution in the GMSB1 scenario for 100 fb−1 of data simulated
with a fast simulation. The flavor background from the signal is also shown. (b) Flavor subtracted l +l−γ
invariant mass distribution in the GMSB2 scenario for 7.5 fb−1.

value given in Eq. (7.4), the distribution of the smaller invariant mass vanishes at this point. Fig-
ure 7.2(a) shows the expected shape of the distribution (black data points) for the GMSB1 scenario
for 100 fb−1 of data simulated with a fast simulation. The flavor background (red data points) is
also shown and again the two distributions cancel each other for invariant mass values larger than
the expected endpoint. Figure 7.2(b) shows the flavor-subtracted distribution of the l+l−γ invari-
ant mass for the GMSB2 scenario for 7.5 fb−1 of GEANT4-based simulated MC data. Again, the
endpoint is smeared out due to the smaller statistics of the MC sample. The linear vanishing can be
fitted with a linear function convoluted with a Gaussian to obtain a measurement for the endpoint.
The fit result is also shown in the figure.

3) + 4) Finally, the l±γ invariant mass distribution can be exploited. Due to the two leptons in the final
state this distribution has two contributions: a distribution with a sharp endpoint is expected for
the combination of the photon with the second (so-called near) lepton (i.e. the lepton which arises
from the l̃R decay) and a distribution with a linear vanishing is expected for the combination of the
photon with the first (far) lepton (i.e. the lepton that arises from the χ̃0

2 decay). The corresponding
endpoints are expected at:

Mnear,max
lγ =

√
m2

l̃R
−m2

χ̃0
1
= 107.9 GeV, (7.5)

Mfar,max
lγ =

√
m2

χ̃0
2
−m2

l̃R
= 158.3 GeV. (7.6)

The ambiguity arising from the presence of the additional photon from the other supersymmetric
decay chain can be resolved by chosing the photon for which the invariant mass of the two l +l−γ
combinations is smaller than the endpoint measured in Eq. (7.4). This requirement ensures that
this l±γ combination is a result of the χ̃0

2 decay. If none or both of the combinations lead to an
invariant mass smaller than the endpoint, the event is rejected. This reduces the statistics in the
analysis7) , but is the only possibility to resolve the ambiguities and to obtain a precise measurement
of the l±γ invariant mass endpoint. Figure 7.3(a) shows the invariant mass distribution (black data

7)Around 45% of the events that have at least one combination smaller than the endpoint, have both combinations smaller.
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Figure 7.3: (a) l±γ invariant mass distribution in the GMSB1 scenario for 100 fb−1 of data simulated
with a fast simulation. The flavor background from the signal is also shown. (b) Flavor subtracted l±γ
invariant mass distribution in the GMSB2 scenario for 7.5 fb−1.

points) for the GMSB1 scenario for 100 fb−1 of data simulated with a fast simulation. The sharp
edge and the linear vanishing are clearly visible. For this distribution no background remains for
values larger than the expected endpoint. The flavor-subtracted l±γ invariant mass distribution is
shown in Fig. 7.3(b) for the GMSB2 scenario for 7.5 fb−1 of GEANT4-based simulated MC data.
As for the other invariant mass combinations the sharp endpoint as well as the linear vanishing are
smeared out and can be fitted by a connection of linear functions convoluted with a Gaussian. The
fit result is also shown in the figure.

The functions used to fit the invariant mass distributions are parameterized such that the endpoints are
free fit parameters and their statistical uncertainties can be read off directly from the fit results. The sys-
tematic uncertainties from binning effects, starting values of the fit and choice of the fit ranges dominate
the systematic uncertainties from variations of the electromagnetic energy scale. Both have been added
in quadrature to obtain the total uncertainty on the measured endpoints. The values obtained in the fits
and the uncertainties are listed in Tab. 7.1 together with their expected values for the GMSB2 scenario.
It can be observed that the expected endpoint values can be reproduced within their uncertainties.

These fit results are used as input for a global GMSB fit in Chap. 8. Additionally, the four measured
endpoints can be used to calculate directly the masses m χ̃0

1
, mχ̃0

2
and ml̃R of the three supersymmetric par-

ticles involved in the investigated decay chain. The Eqs. 7.2, 7.4 and 7.6 can be exploited in a numerical
χ2 minimization to extract the particle masses from the combination of endpoints. The χ 2 is defined as

χ2 =
4

∑
k=1

(mmax
k − tmax

k (mχ̃0
1
,mχ̃0

2
,ml̃R))

2

σ 2
k

, (7.7)

where mmax
k and σk denote the fit value and its uncertainty, respectively. The theoretical expressions for

the endpoints are denoted tmax
k . The fit is stable for large variations (∼±50%) of the starting values of the

fit. The results of this calculation together with the true values for the GMSB2 scenario are also listed
in Tab. 7.1. Again, the values obtained from this analysis agree with the expected values within their
uncertainties. In summary, it can be concluded that for this analysis of the GMSB2 scenario the masses
of the supersymmetric particles can be determined within a precision of a few percent with 7.5 fb−1.
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Observable expected value [GeV] fitted value [GeV]
Mmax

l+l− 106.4 108.0±4.3
Mmax

l+l−γ 191.6 189.6±3.8
Mnear,max

l±γ 107.9 104.4±3.7
Mfar,max

l±γ 158.3 161.9±3.9
mχ̃0

1
118.8 114.0±9.5

mχ̃0
2

225.5 222.5±6.3
ml̃R 160.5 154.1±8.0

Table 7.1: Expected and fitted values of the kinematic endpoints and supersymmetric particle masses in
the GMSB2 scenario for 7.5 fb−1.

7.1.3 Measurement of endpoints involving leptons and jets
In the last section only the decay of the χ̃0

2 with the resulting final state particles has been investigated.
Similar to the studies of the mSUGRA models [18] the jets of the final state arising from the initial squark
or gluino decay can also be used to constrain the squark and gluino mass scale by combining them with
the final state leptons from the χ̃0

2 and l̃R decays:

q̃ → χ̃0
2 q → l̃±R l∓q → χ̃0

1 l+l−q. (7.8)

The following three endpoints of invariant mass distributions involving jets and leptons can be recon-
structed:

1) As in the case of the final state photon of the previous section, the jet can be combined with the
two leptons to form the l+l−q invariant mass. The endpoint of this distribution is given by [122]

Mmax
llq = max

[(m2
q̃/g̃ −m2

χ̃0
2

)
·
(

m2
χ̃0

2
−m2

χ̃0
1

)

m2
χ̃0

2

,

(
m2

q̃/g̃ −m2
l̃R

)
·
(

m2
l̃R
−m2

χ̃0
1

)

m2
l̃R

, (7.9)

(
m2

q̃/g̃m2
l̃R
−m2

χ̃0
2
m2

χ̃0
1

)
·
(

m2
χ̃0

2
−m2

l̃R

)

m2
χ̃0

2
m2

l̃R

] 1
2

,

where mq̃/g̃ is the mass of the decaying squark or gluino, respectively. However, the type of the
initial colored particle cannot be determined from the reconstructed jet and the distribution is a
combination of the distributions of all squark and gluino decays.8) In the GMSB2 scenario studied
here, the different squark types have similar masses e.g. mũL = 987.3 GeV, mũR = 944.5 GeV,
md̃L

= 990.3 GeV and md̃R
= 941.0 GeV, while the gluino mass is given by mg̃ = 735.6 GeV. In

principal, the different squark flavor contributions can be separated by combining reasonable fitting
functions for each of the contributions that contain the corresponding endpoint as a free parameter.
However, due to the smallness of the differences of the squark masses, the limited statistics and
the experimental resolution, such a decomposition in terms of the squark flavor is not possible in
the present analysis.
In the calculation of the invariant mass of Eq. (7.10) it is assumed that the colored particle aris-
ing from the initial squark/gluino decay produces one of the two jets with the highest transverse

8)The possibility of b-tagging or top quark reconstruction is not considered here.
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Figure 7.4: (a) ml+l−q invariant mass distribution in the GMSB1 scenario for 100 fb−1 of data simulated
with a fast simulation. The flavor background from the signal is also shown. (b) Flavor subtracted m l+l−q
invariant mass distribution in the GMSB2 scenario for 7.5 fb−1.

momentum in the event due to the large mass difference between the squarks/gluino and the sec-
ond lightest neutralino. Since a maximum value is expected for the distribution, the jet giving the
lower invariant mass is used.9) Figure 7.4(a) shows the expected invariant mass distribution (black
data points) for the GMSB1 scenario for 100 fb−1 of data simulated with a fast detector simulation
together with the flavor background (red data points). The distribution features a long tail with an
endpoint around 800 GeV from all the squark decays and a separate endpoint for the contribution
of the gluino decays and possibly wrongly assigned l+l−q combinations which is clearly visible
for smaller masses. In the following analysis it is assumed that the second contribution is mainly
due to decaying gluinos to interpret the endpoint in terms of a gluino mass. Figure 7.4(b) shows
the flavor-subtracted l+l−q invariant mass distribution for the GMSB2 scenario for 7.5 fb−1. To
determine the endpoints of the two contributions the shape of the tails is parameterized with two
linear functions convoluted with a Gaussian resolution function [18]. The result of the fit is also
shown in the figure. The endpoint of the squark contribution is determined to be (810±60) GeV,
while the endpoint of the gluino contribution given by the first part of the linear functions is de-
termined to be (530± 50) GeV. As can be seen from the distributions these values (and also the
following in this section) are quite uncertain with the given statistics and will not be used in the
global fits of Chap. 8. The value for the squark measurement is in good agreement with the end-
point Mmax

llq = 797.4 GeV expected from Eq. (7.10) using a weighted averaged squark mass scale
mq̃ = 965.1 GeV, where the weights are given by the production fractions of the individual squark
flavors.10) The value for the gluino contribution differs by around 2σ from the expected value of
Mmax

llq = 595.0 GeV, which shows that the assumption of a pure contribution from gluino decays is
oversimplifying.

2) + 3) The jet used for the reconstruction of the l+l−q invariant mass can also be combined with only
9)This assumption may probably produce a shift to lower values in the distribution, if the other of the two jets arises from the

initial squark/gluino decay. This can be seen in what is called the gluino contribution in the distribution. Since this contribution
has a smaller invariant mass than the squark contribution due to the lower gluino mass, the gluino contribution is contaminated
with wrong l+l−q combinations.

10)The weights w are given by w(ũL,R) = 1
3 and w(d̃L,R) = 1

6 from the generator information.
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one of the two leptons. The corresponding two results for the invariant lq mass are denoted m low
lq

and mhigh
lq depending on their values (i.e. mlow

lq < mhigh
lq ). For the invariant lq mass distributions

endpoints are expected at [123]

Mhigh,max
lq = max

[(
Mmax

lnearq
)2

,
(
Mmax

lfarq
)2
] 1

2
, (7.10)

Mlow,max
lq = min

[
(
Mmax

lnearq
)2

,

(
m2

q̃/g̃ −m2
χ̃0

2

)
·
(

m2
l̃R
−m2

χ̃0
1

)

2 ·m2
l̃R
−m2

χ̃0
1

] 1
2

, (7.11)

with

(
Mmax

lnearq
)2

=

(
m2

q̃/g̃ −m2
χ̃0

2

)
·
(

m2
χ̃0

2
−m2

l̃R

)

m2
χ̃0

2

, (7.12)

(
Mmax

lfarq
)2

=

(
m2

q̃/g̃ −m2
χ̃0

2

)
·
(

m2
l̃R
−m2

χ̃0
1

)

m2
l̃R

. (7.13)

Figure 7.5(a) shows the expected mlow
lq distribution (black data points) for the GMSB1 scenario

for 100 fb−1 of data simulated with a fast simulation together with the flavor background (red
data points). As in the case of the mllq distribution, two contributions are visible. The long tail is
expected to come from jets arising from squark decays (using the averaged mass scale the endpoint
is expected at Mlow,max

lq = 523.5 GeV), while the endpoint at lower values of the invariant mass is
assumed to come from gluino decays (expected for the GMSB2 scenario at M low,max

lq = 390.6 GeV).
The flavor-subtracted distribution for the GMSB2 scenario for 7.5 fb−1 is shown in Fig. 7.5(b)
together with the fit result using the same fitting function as for Fig. 7.4(b). The gluino endpoint
is determined to be (330± 40) GeV, while for the squark endpoint (480± 50) GeV is obtained.
Again, the gluino value differs by about 2σ from the expected value.
The expected mhigh

lq distribution for the GMSB1 scenario is shown in Fig. 7.6(a) (black data points)
for 100 fb−1 of data simulated with a fast simulation together with the flavor background (red data
points). The situation is similar to the mlow

lq distribution and the gluino endpoint is expected at
Mhigh,max

lq = 491.6 GeV, while the average squark mass scale leads to Mhigh,max
lq = 658.9 GeV. The

fit result shown in Fig. 7.6(b) for the GMSB2 scenario for 7.5 fb−1 leads to endpoints for the gluino
and squark contributions of (450± 60) GeV and (670± 60) GeV, respectively, which agree with
the expected values.

Similar to the invariant mass measurements involving photons, the endpoints obtained from the distri-
butions involving jets can be used to determine the gluino mass and the average squark mass scale in a χ 2

fit using Eq. (7.7). Since the theoretical endpoints also depend on the masses of the χ̃0
2 , the χ̃0

1 and the l̃R,
the photon endpoints also enter the fit. The squark mass scale is determined to be m q̃ = (950±50) GeV,
while for the gluino mass one obtains mg̃ = (650±50) GeV. The measured squark mass scale is in good
agreement with the theoretical value, while the gluino mass value differs by around 2σ from the expec-
tation, which again shows that the assumption of a pure gluino contribution to the endpoints at lower
invariant masses is oversimplifying.

In summary, the measurement of kinematic endpoints involving leptons and jets can be used to deter-
mine an average mass scale of the initially produced supersymmetric particles. However, the uncertain-
ties related to the assignment of the measured endpoints to the initially produced type of squark or gluino
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Figure 7.5: (a) lqlow invariant mass distribution in the GMSB1 scenario for 100 fb−1 of data simulated
with a fast simulation. The flavor background from the signal is also shown. (b) Flavor-subtracted lq low

invariant mass distribution in the GMSB2 scenario for 7.5 fb−1.
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Figure 7.6: (a) lqhigh invariant mass distribution in the GMSB1 scenario for 100 fb−1 of data simulated
with a fast simulation. The flavor background from the signal is also shown. (b) Flavor-subtracted lqhigh

invariant mass distribution in the GMSB2 scenario for 7.5 fb−1.
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Cgrav 1 10 20 30 40 55 70
τχ̃0

1
[ns] − 0.37 1.48 3.34 5.93 11.2 18.2

Table 7.2: Values of Cgrav and the resulting χ̃0
1 lifetime τχ̃0

1
as used in the generation of the signal samples

for the measurement of the neutralino lifetime.

Cgrav 10 20 30 40 55 70 Bgr.
Events 4132 3600 2842 2215 1441 1054 606

Table 7.3: Number of selected signal and background events for 1fb−1.

resulting from the smallness of the squark mass differences in the GMSB model, the small statistics and
the limited experimental resolution, prevents a precise determination of the squark and gluino masses.
The endpoints involving jets are therefore not used in the global GMSB fits of Chap. 8.

7.2 Neutralino lifetime determination
The parameters of the underlying GMSB model are not fully determined by the measurements of parti-
cle masses alone. As an example, the gravitino coupling Cgrav determines the NLSP lifetime, while the
particle masses (except the one from the gravitino) do not depend on Cgrav. This lifetime can be deter-
mined using different experimental techniques. In this section a method based on the timing information
of the ECal (see Sect. 5.3.2) is presented and its performance is tested in certain benchmark scenarios.
Additionally, two alternative methods based on the reconstruction of the photon η-direction in the ECal
and considering kinematic constraints in final states with additional leptons are studied.

7.2.1 Datasets
For the analysis of the determination of the neutralino lifetime additional GMSB1-like scenarios are
investigated. They only differ in their values of Cgrav, while the other parameters are again fixed to the
GMSB1 values.11) According to Eq. (2.70) the different values of Cgrav lead to different lifetimes of the
neutralino. The values of Cgrav and the corresponding lifetimes τχ̃0

1
for which event samples have been

generated are listed in Tab. 7.2.12) The scenarios with Cgrav = 1, Cgrav = 30 and Cgrav = 55 correspond to
the GMSB1, GMSB2 and GMSB3 scenarios used in the last sections, respectively. All scenarios except
GMSB1 have non-pointing photons in the final state.

7.2.2 Method using the photon clustertime
As described in Sect. 6.3 a non-vanishing lifetime of the neutralino leads to a delayed signal of the photon
cluster in the ECal as shown in Fig. 6.17(a) for the GMSB3 scenario. A determination of the size of the
delay allows the measurement of the χ̃0

1 lifetime τχ̃0
1

and Cgrav assuming the other GMSB parameters to
be known.13)

11)Λ = 90 TeV, Mmess = 500 TeV, tanβ = 5, N5 = 1 and sign(µ) = +.
12)For all samples 5000 events have been generated and passed through a full GEANT4 detector simulation.
13)The χ̃0

1 lifetime cannot be measured directly, since only neutral particles are involved in the neutralino decay and no sec-
ondary vertices can be measured. Additionally, the initial state of the interaction is not known, such that e.g. the neutralino boost
cannot directly be used in the calculation of a lifetime. This can only be done at a lepton collider for direct χ̃0

1 production [124].
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The same event preselection as for the estimation of the discovery potential for non-pointing photon
scenarios (Sect. 6.3) is used for this lifetime measurement.14) The number of remaining background
events as well as the number of selected signal events for the various benchmark scenarios from Tab. 7.2
are listed in Tab. 7.3 together with the corresponding Cgrav values for 1fb−1. It can be observed that the
number of selected signal events decreases with increasing Cgrav. While the production cross section of
supersymmetric particles is constant in these scenarios, the photon identification efficiency drops with
increasing Cgrav and an increasing number of χ̃0

1 decay outside the inner detector volume also leading to
a decreased number of identified photons.

A combined fit of the background and signal contribution in the distribution of the clustertime τcluster
of the leading photon (see Fig. 6.17(b) for the GMSB3 scenario) is then performed to determine the size
of the delay of the photon cluster. Due to the different kinematics the shapes of the background and
signal distributions are different: As shown in Fig. 7.7(a), the background is best modelled by the sum
of two Gaussian functions. To reduce the number of free fit parameters the means of the Gaussians are
chosen to be identical and the fit results for the widths of the Gaussians are (0.320± 0.057) ns for the
Gaussian describing the tails of the distribution and (0.146± 0.011) ns for the Gaussian describing the
peak.

The signal distribution is best described by a Landau distribution.15) Figure 7.7(b) shows the fit
result for the GMSB3 scenario. The width of the distribution is determined to be (0.232 ± 0.008) ns
from the fit. With the assumption that the τcluster resolution is independent of the underlying background
process16) the number of free fit parameters of the combined fit can be reduced by an independent data-
driven determination of the shape of the background contribution using a clean sample of Standard Model
events, e.g. data from the process Z0 → e+e−.17) Figure 7.8(a) shows the τcluster distribution of a sample
of simulated Z0 → e+e− events18) that is again described by the sum of two Gaussian functions with
the widths determined to be (0.295± 0.002) ns for the Gaussian describing the tails of the distribution
and (0.1527 ± 0.0003) ns for the Gaussian describing the peak. These values agree with the values
obtained from the fit of the complete Standard Model background and are used in the following to fix the
parameters for the Standard Model background contribution in the combined fit.

Once the parameters of the background contribution are fixed, four free parameters remain in the
combined fit of signal and background. These are the mean and the width of the Landau contribution
and the total number of signal and background events. As an example, Fig. 7.8(b) shows the clustertime
distribution of the leading photon for the GMSB3 scenario and the background together with the fit
result which nicely describes the combined distribution. The blue dashed line shows the fit result of the
background contribution, while the red dashed line shows the fit result for the signal contribution. The
Landau width is determined to be (0.241± 0.013) ns from the fit which agrees with the value obtained
from fitting the GMSB3 signal distribution alone.19) Additionally, the number of signal and background

14)Again, the unbiased photon identification is used, see Sect. 5.3.
15)Possibly the exact signal distribution can be calculated from the complete matrix element of the initial squark/gluino decay

and using a model of the detector geometry. Nevertheless, assumptions about the geometrical acceptance and thus about the
underlying model would have to be made to determine the lifetime directly in a fit. This model dependent step is done via a
calibration curve in the present analysis. Additionally, other parameterizations of the signal shape have been tested, such as
convolutions of exponential functions with Gaussians or Crystal Ball functions. However, it turns out that the signal is best
described by a Landau function.

16)This neglects the energy dependence of the clustertime resolution of the ECal, as shown in Fig. 5.11(b). Since the energy
dependence for energies above ∼ 50 GeV is small, this assumption is justified.

17)In this process possible additional background from machine effects or soft interactions like beam-gas events have to be
studied in detail.

18)The events have been selected using a medium electron identification (see Sect. 5.1.4) and a cut on the invariant mass mee
of the electron pair of 80 GeV< mee <100 GeV. However, no dedicated Z0 → e+e− analysis has been performed.

19)For the determination of the χ̃0
1 lifetime both, the mean and the width of the Landau signal contribution could be used in

principle. However, the performance of mean-based methods leads to larger uncertainties due to the closeness of the Landau
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Figure 7.7: Distribution of the measured clustertime after the preselection for 1 fb−1 for (a) the Standard
Model background and (b) the GMSB3 signal. The result of a fit to the MC data is also shown.

events can be determined in the fit and are given by 1391±76 and 696±71, respectively. A comparison
with the values given in Tab. 7.3 shows that the number of signal events is obtained accurately, while the
number of fitted background events differs slightly more than 1 σ from the expectation.

Since the fitted Landau width has no direct functional relationship to the neutralino lifetime, a cali-
bration curve derived from MC simulations of GMSB models with different neutralino lifetimes has to
be used to determine the relationship between the Landau width and τ χ̃0

1
. The scenarios listed in Tab. 7.2

are used and the fitting procedure described above is applied to each of the samples, i.e. a value for the
Landau width is obtained for each Cgrav value. Figure 7.9 shows the fit results as a function of Cgrav and
the decay length cτχ̃0

1
20) for the unbiased photon identification (closed symbols) and, for comparison,

the ATLAS standard photon identification (open symbols). The error bars represent the fit uncertainties
from the Landau fit to the individual samples. A calibration curve can be obtained by fitting the empirical
function

y(x) = p1 ·
(

1− e−p2·(x−p3)
)

(7.14)

to these values, where p1, p2 and p3 are free fit parameters. They are given by p1 = (0.284±0.017) ns,
p2 = 0.039±0.005 and p3 = 4.024±0.518 for the unbiased photon identification. The resulting calibra-
tion curve is superimposed (solid line) in Fig. 7.9 together with its uncertainty21) (dashed lines) which,
for a given measurement of the Landau width, results in an uncertainty for Cgrav and cτχ̃0

1
. This uncer-

tainty is called systematic uncertainty in the following.22) For illustration the inner radius of the ECal in
the χ̃0

1 rest frame is highlighted by the dashed line. After a steep increase of the calibration curve at small

mean to the background contribution and the stronger correlation of the Landau mean with the fitted total number of background
events. For this reason only the width of the Landau distribution is exploited in the following for the determination of the χ̃0

1
lifetime.

20)In the following only the Cgrav value rather than cτχ̃0
1

will be investigated. The general parameter dependence of the method
will be discussed in the next section.

21)The error bands are calculated by using the correlation matrix from the fit of the calibration curve to obtain new shifted
data points. Two new calibration curves are fitted to the new data points using Eq. (7.14).

22)Note that this uncertainty can be reduced by simulating higher MC statistics that can be used in the production of the
calibration curve.
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Figure 7.8: (a) Distribution of the measured clustertime for a sample of Z0 → e+e− events. The result of
a fit of the sum of two Gaussian functions to the data is also shown. (b) Result of a combined signal and
background fit of the clustertime distribution for the GMSB3 scenario.

values of Cgrav, a saturation effect is visible for both photon identification methods, resulting from the
decreasing photon identification efficiency and the increasing number of χ̃0

1 decaying outside the inner
detector volume. As expected, the unbiased photon identification yields a better performance as the sat-
uration starts at larger values of Cgrav leading to a larger range of possible lifetime measurements. Also
the uncertainties in the projection of a possible Landau width measurement on the Cgrav axis are smaller.
It should be noted that one cannot trust the calibration curve for Cgrav < 10, since in these regions it is
very difficult to distinguish the signal from the background due to the smallness of the measured Landau
width. Therefore the fit provides no reliable information about the lifetime in this region.

In addition, the uncertainties of possible measurements of the Landau width for two different example
values of Cgrav are indicated in Fig. 7.9, each for 30pb−1, 100pb−1 and 1fb−1 of data. The upper
value of the uncertainty on the corresponding Cgrav value, resulting from the projection of the width
measurement on the exponential fit function (called statistical uncertainty in the following), increases
strongly for larger values of Cgrav due to the saturation effect. In Fig. 7.10(a) the resulting statistical
uncertainties on Cgrav are shown as a function of the integrated luminosity for two example values of
Cgrav. The result of the saturation effect is clearly visible from the increased uncertainty at lower values
of integrated luminosity for larger values of Cgrav. Depending on the lifetime value realized in nature,
this measurement might only be possible with at least 1fb−1 of well understood data.

As a possible source of a systematic uncertainty, the influence of the size of the Standard Model
background contribution on the fit result has been studied by artificially scaling the background con-
tribution by scale factors x = 2 and x = 0.5. Figure 7.10(b) shows the ratios of the determined values
of the Landau widths with and without scaling factor and therefore indicates the stability of the width
measurement. Since the measured widths with scaling factor differ only by around 1% from the widths
measured without scaling factor, the resulting uncertainty on the Cgrav determination is negligible.

The reconstructed Cgrav values for the benchmark scenarios from Tab. 7.2 are compared to the true
values in Tab. 7.4. The statistical uncertainties are estimated for 1 fb−1 of data and the systematic uncer-
tainties are a result of the limited MC statistics and the uncertain theoretical description of the clustertime
distribution used for the production of the calibration curve.23) It can be observed that the measured val-

23)Both sources of systematic uncertainties are implicitly given by the fit uncertainties of the Landau fits during production
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Cgrav,theo Cgrav,meas ± stat.± sys.
10 10.6±0.2

0.2±0.2
0.2

20 19.9±0.6
0.6±0.5

0.4
30 32.9±1.6

1.5±1.2
1.1

40 44.2±3.4
3.0±2.6

2.2
55 53.6±8.2

6.2±4.7
3.5

70 57.5±13.8
8.9 ±5.9

4.3

Table 7.4: Method using the clustertime: Comparison of true and measured Cgrav values for 1fb−1.

ues agree with their true values within the uncertainties. As expected, the relative uncertainties increase
with increasing Cgrav due to the saturation effect of the calibration curve.

7.2.3 Dependence of the clustertime method on GMSB parameters
The method using the clustertime described in the last section neglects that the neutralino lifetime is not
only a function of Cgrav, but depends also on other GMSB parameters, see Eq. (2.70). Therefore the Cgrav
value can in principal only be determined with the calibration curve in Fig. 7.9 when the other parameters
are already known. Also the transformation between the Cgrav value and the corresponding decay length,
as shown in Figs. 7.9 and 7.10(b) is only valid for the special case of GMSB1-like scenarios. In addition,
the other GMSB parameters influence the mass spectrum and therefore the kinematics of the decay chain.
This could in turn alter the clustertime distribution, since τcluster depends in principal on the boost and
the angle distributions of the decaying neutralino.

These reasons result in two consequences: First, only the neutralino lifetime itself can be measured
with a calibration curve when the other GMSB parameters are unknown. And second, it has to be
investigated, if a general calibration curve independent of other GMSB parameters can be produced at
all.

To study the parameter dependence of the calibration curve, additional samples of GMSB events have
been produced24) in a wide range of the GMSB parameter space reasonable for this study considering
experimental and theoretical constraints:

• N5 = 1 and tanβ < 35 ensure a neutralino NLSP.

• Λ < 200 TeV for having a reasonable cross section and to fulfil cosmological bounds [72].

• Λ > 90 TeV to fulfil Tevatron limits, as discussed in Sect. 2.3.4.

• Mmess > Λ to fulfil theory constraints [23].

• Mmess ≤ 1000 TeV to ensure that enough neutralinos decay inside the detector.

Table 7.5 summarizes the parameter values of the additional samples and the resulting lifetimes. For
each sample only the parameters which differ from the GMSB3 scenario parameters are listed.

Following the procedure described above the signal Landau width has been determined in a fit of
the clustertime distribution for each event sample. The results are shown in Fig. 7.11 as a function of
of the calibration curve.

24)For each scenario 5000 events have been generated and passed through a full GEANT4 detector simulation. A fast simu-
lation cannot be used for a wide parameter scan, since a simulation of long-lived neutralinos is in principal not possible with
ATLFAST.
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Sample τχ̃0
1

[ns] Sample τχ̃0
1

[ns]
sign(µ) = - 9.47 tanβ = 20, Cgrav = 25 2.19

Λ = 120 TeV 4.31 Λ = 120 TeV, Cgrav = 45 2.87
Λ = 180 TeV 1.11 Mmess = 750 TeV, Cgrav = 15 1.90

tanβ = 20 10.61 Mmess = 1000 TeV, Cgrav = 13 2.55
Mmess = 300 TeV 3.85 Mmess = 300 TeV, Cgrav = 50 3.18
Mmess = 350 TeV 5.35 Cgrav = 25 2.32
Mmess = 400 TeV 7.07 Cgrav = 35 4.54
Mmess = 450 TeV 9.03 Cgrav = 45 7.51
Mmess = 550 TeV 13.63 Cgrav = 50 9.26
Mmess = 750 TeV 25.57 Cgrav = 60 13.34

Table 7.5: GMSB parameters and resulting χ̃0
1 lifetimes of the event samples used to study the GMSB

parameter dependence of the clustertime method. Only the listed parameters differ from the GMSB3
scenario.

τ theo
χ̃0

1
[ns] τmeas

χ̃0
1

± stat.± syst.[ns]
0.37 0.35±0.03

0.03±0.08
0.12

1.5 1.6±0.1
0.1±0.1

0.1
3.3 3.6±0.3

0.2±0.1
0.1

5.9 5.7±0.8
0.6±0.3

0.2
11.2 8.2±5.4

1.8±1.1
0.6

Table 7.6: Comparison of the expected and measured values of the χ̃0
1 lifetime for 1 fb−1 using the

clustertime method.

the χ̃0
1 lifetime. The red data points represent the samples already used in Fig. 7.9. The same satura-

tion effect is visible due to the decreasing photon identification efficiency and the increasing number
of neutralinos decaying outside the inner detector volume. The data points can again be fitted with the
empirical function (7.14) and the fit result is also shown in the figure.25) The fit parameters are given
by p1 = (0.254± 0.006) ns, p2 = 0.336± 0.021 and p3 = −0.507± 0.053. From the small spread of
the measured Landau widths of the various scenarios in this figure it can be concluded that indeed τ χ̃0

1
has the strongest effect on the Landau width and the dependence of the calibration curve on the particle
masses is small. This result gives confidence that the determination of the signal Landau width of the
clustertime distribution can indeed be used to determine the χ̃0

1 lifetime in the studied GMSB parameter
regions.

For the GMSB1-like scenarios used in the last section Tab. 7.6 summarizes the measured values
of the χ̃0

1 lifetime for 1 fb−1 using the calibration of Fig. 7.11 as well as the expected values. The
systematic uncertainties again reflect the limited MC statistics and the uncertain theoretical description
of the clustertime distribution used for the production of the calibration curve. It can be seen that the
true values of the lifetime can be reproduced with good precision by the measurements. As expected,
the relative uncertainties again increase with increasing lifetimes due to the saturation effect. The results
obtained from this calibration curve are used in the global GMSB fit performed in Chap. 8 in order to
constrain the underlying GMSB model.

25)Again, one cannot trust the calibration curve for τχ̃0
1
≤ 0.5 ns, since the fit provides no reliable information in this region.
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1
from event samples generated in a large part of the GMSB parameter space. The red points indicate

the samples also used in Fig. 7.9.

7.2.4 Method using the photon direction

The decay of neutralinos with a non-vanishing lifetime leads to photon clusters not pointing back to the
primary interaction vertex. As detailed in Sect. 5.3.3, this leads to a displaced intersection point zcluster
of the z-axis with the projected photon path with respect to the primary interaction vertex. Alternatively
to the delayed arrival time of the photon cluster, as described in Sect. 7.2.2, the reconstructed zcluster can
be used to determine the neutralino lifetime.

The zcluster distributions of the leading photon for the example GMSB3 scenario and the main Stan-
dard Model backgrounds (t t̄ and W± production) are shown in Fig. 7.12(a) after the preselection dis-
cussed in Sect. 6.3 for 1 fb−1. As expected, the GMSB3 signal leads to larger values of |zcluster|, while
the Standard Model background events are distributed around zero with a width of ∼ 75 mm. Similarly
to the method using the clustertime, the widths of the zcluster distributions of various GMSB scenarios
with differing neutralino lifetimes can be used to construct a calibration curve using a combined fit of
the signal and background.

Again the different kinematics of signal and background processes lead to different distribution
shapes: the background is best modelled by the sum of two Gaussian functions, while for the signal
a Breit-Wigner function has been used.26) For a reduction of the number of free parameters in the fit,
the zcluster resolution can be measured from real data in clean Standard Model processes like Z 0 → e+e−
events.27) Once the parameters of the background contribution are fixed, four free parameters remain in
the fit: the width and mean of the signal distribution as well as the number of signal and background
events. Figure 7.12(b) shows the combined distribution which is nicely described by the fit result. The
individual contributions of the fit function for the signal (red dashed line) and background (blue dashed
line) are also shown. The Breit-Wigner width for the signal contribution is given by (682± 35) mm. It

26)As in the case of the clustertime method the modelling of the signal distribution with a Breit-Wigner function is just
empirically motivated. Possibly an exact function can be calculated from the full matrix element of the squark/gluino decay.
In this case additional assumptions about the geometrical acceptance and the underlying model would have to be made and the
possible advantages would have to be studied in detail.

27)In this process possible additional background from machine effects or soft interactions like beam-gas events have to be
studied in detail.
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Figure 7.12: Method using the photon direction: (a) zcluster distribution of the leading photon and (b)
result of the combined signal and background fit of the zcluster distribution for the GMSB3 scenario and
the Standard Model background after the preselection for 1 fb−1.

turns out that the relative normalization of the signal and background contributions cannot be reproduced
as accurately as in the case of the clustertime method, since the two distributions have the same mean and
a similar shape. For this reason, the zcluster variable is not suited for a GMSB cross-section measurement
with non-pointing photons. However, it can still be exploited for the determination of the neutralino
lifetime, since similar to the method using the clustertime the procedure is stable against significant
variations of the background contribution as discussed below.

To obtain a calibration curve using the Breit-Wigner width of the zcluster distribution the combined
fitting procedure is performed with the GMSB1-like scenarios listed in Tab. 7.2 and for each Cgrav value
a value for the signal width is determined. The results are shown in Fig. 7.13(a) as a function of Cgrav and
the decay length cτχ̃0

1
. Again, the empirical function (7.14) is used to fit the widths and the parameters are

given by p1 = (777±37) mm, p2 = 0.056±0.007 and p3 = 6.40±0.35. The calibration curve shows the
same behaviour as the one obtained from the clustertime method, including the saturation effect due to
the decreasing photon identification efficiency and the increasing number of neutralinos decaying outside
the inner detector volume.

As for the method using the clustertime, the influence of the size of the Standard Model background
contribution on the fit result has been studied by artificially scaling the background contribution by scale
factors x = 2 and x = 0.5. The ratios of the fitted Breit-Wigner widths with and without scaling factor
are shown in Fig. 7.13(b). Again, the measured widths depend only slightly on the scaling factor and
therefore the resulting uncertainty on the Cgrav determination is considered to be negligible.

With the calibration curve the Cgrav values and the corresponding uncertainties can be calculated.
Table 7.7 shows the results for some example scenarios. The zcluster method is able to reproduce the true
values of Cgrav with statistical as well as systematic uncertainties slightly larger than the method using
the clustertime (see Tab. 7.4).

Due to the reasons discussed in Sect. 7.2.3 the calibration curve in Fig. 7.13(a) is again only valid
for the GMSB1-like scenarios under study. Therefore the same fitting procedure as described above
has been applied to the GMSB scenarios listed in Tab. 7.5 covering a larger region of the parameter
space. The resulting Breit-Wigner widths for all samples are shown in Fig. 7.14 (the samples used for
the calibration curve in Fig. 7.13(a) are indicated with red data points). The data points can be fitted
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Figure 7.13: Method using the photon direction: (a) fitted signal Breit-Wigner width as a function of
Cgrav for the unbiased photon identification. (b) Influence of the background normalization on the deter-
mination of the Breit-Wigner width.

Cgrav,theo Cgrav,meas ± stat.± syst.
10 10.6±0.1

0.1±0.2
0.2

20 20.4±0.7
0.7±0.5

0.5
30 32.5±2.3

2.0±1.6
1.4

40 41.9±5.1
4.0±3.4

2.6
55 44.7±8.6

5.8±4.2
3.1

Table 7.7: Method using the photon direction: Comparison of true and measured Cgrav values.

using the empirical function (7.14) and the resulting calibration curve shows the same behaviour as the
one in Fig. 7.11, although the saturation sets in for smaller values of τ χ̃0

1
.28) The fit parameters are given

by p1 = (704± 14) mm, p2 = 0.494 ± 0.031 and p3 = −0.155± 0.032. The spread of the measured
Breit-Wigner widths is again small in this figure and it can be concluded that τ χ̃0

1
has the strongest effect

on the results and that the dependence of the calibration curve on the particle masses is small. Therefore
the neutralino lifetime can be determined with the calibration method using the photon direction in the
studied GMSB parameter regions.

Table 7.8 summarizes the reconstructed χ̃0
1 lifetimes obtained from the calibration curve in Fig. 7.14

as well as the expected values for the GMSB1-like scenarios listed in Tab. 7.2. The statistical uncer-
tainties are estimated for 1 fb−1. The systematic uncertainties again reflect the limited MC statistics and
the uncertain theoretical description of the zcluster distribution used for the production of the calibration
curve. The expected values can be reproduced with good precision by the measurement with uncer-
tainties slightly larger than for the method using the clustertime. As expected, the relative uncertainties
increase with increasing lifetimes due to the saturation effect. Since this method does not perform as well
as the method using the clustertime, the obtained results are not used in the global GMSB fit in Chap. 8,
but the zcluster method is considered a possible way to cross check the results of the clustertime method.

28)Again, one cannot trust the calibration curve for τχ̃0
1
≤ 0.5 ns, since the fit provides no reliable information in this region.
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points indicate the samples also used in Fig. 7.13(a).

τ theo
χ̃0

1
[ns] τmeas

χ̃0
1

± stat.± syst.[ns]
0.37 0.36±0.02

0.02±0.02
0.02

1.5 1.6±0.1
0.1±0.1

0.1
3.3 3.5±0.4

0.4±0.2
0.1

5.9 5.7±2.5
1.1±0.8

0.5
11.2 6.8±in f

1.9±1.9
0.9

Table 7.8: Comparison of the expected and measured values of the χ̃0
1 lifetime for 1 fb−1 using the zcluster

method.

7.2.5 Method using kinematic constraints in events with additional leptons
The decay time of the individual neutralinos can also be measured directly event by event in events with
additional leptons in the final state [125]. Since the neutralino as well as its decay products leave no track
information in the inner detector and the boost of the neutralino is unknown, additional information from
the decay chain in Fig. 6.3(b) has to be used. As discussed in the following, the momentum of the second
lepton in the decay chain as well as the masses of the lightest neutralino and the right-handed slepton are
needed as information. For the decay of the lightest neutralino the following three equations hold:

~vχ̃ tD +~vγ (τcluster − tD) =~xγ , (7.15)

where ~vχ̃ and ~vγ are the velocities of the neutralino and the photon, respectively (with |~vγ | = c). τcluster
and tD are the measured clustertime in the calorimeter and the neutralino decay time in the laboratory
frame, respectively. ~xγ are the coordinates of the barycenter of the photon cluster in the calorimeter. It can
be seen that these equations describe the vector sum of the paths of the decaying neutralino and the final
state photon by comparing these equations to Fig. 5.8. The equations contain five unknown parameters:
the three components of the χ̃0

1 velocity, the χ̃0
1 decay time, as well as the φ -direction of the photon

momentum, which cannot be measured with the ATLAS calorimeter due to the coarse resolution in this
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direction in the first compartment. Therefore, additional equations are needed in order to solve (7.15) for
the neutralino decay time and to obtain the neutralino four-momentum to transform the decay time in the
laboratory system to the decay time in the neutralino rest frame. The following kinematic constraints
can be exploited:

p2
G̃ = 0, (7.16)

(
pG̃ + pγ

)2
= m2

χ̃0
1
, (7.17)

(
pG̃ + pγ + pl

)2
= m2

l̃R , (7.18)

p2
χ̃0

1
= m2

χ̃0
1
, (7.19)

where pG̃ is the momentum of the gravitino (assumed to be massless), p χ̃0
1

is the neutralino momentum
and ml̃R is the mass of the slepton which decays to the χ̃0

1 and a lepton with the momentum pl . In the
following analysis it is assumed that m l̃R and mχ̃0

1
are known, e.g. from measurements following Sect. 7.1

(see Tab. 7.1 for the results). The Eqs. (7.16)- (7.18) are simply invariant mass constraints that can be
derived by using the decay chain shown in Fig. 6.3(b). Equation (7.19) holds for on-shell particles,
which is a good assumption for the long-lived neutralinos. Together with Eq. (7.15) these equations form
effectively six equations with six unknowns: the χ̃0

1 four-momentum, the φ -direction of the photon and
the χ̃0

1 decay time in the laboratory frame. Solving these equations allows to calculate the decay time t ′D
of the individual neutralinos in the neutralino rest frame.

The event preselection of Sect. 6.3 has been applied and additionally at least one reconstructed lepton
(electron or muon) with pT,e > 10 GeV or pT,µ > 5 GeV, respectively, and |η | < 2.5 has been required.
In case of several leptons in the event, the lepton forming the smaller invariant mass with the leading
photon is chosen, since this is more likely the lepton of the slepton decay, as discussed for the inter-
pretation of Fig. 7.3(b). With this event selection the Standard Model background is negligible. Since
this selection degrades the signal selection efficiency significantly compared to the selections used for
the methods using the clustertime or the reconstructed photon direction in the last sections, additional
GMSB1-like samples with 20 000 events each have been simulated with Cgrav = 10, 20, 30, 40, 50, 60
and 70, corresponding to τχ̃0

1
= 0.37 ns, 1.5 ns, 3.3 ns, 5.9 ns, 9.3 ns, 13.3 ns and 18.2 ns, respectively.

To obtain a solution for the Eqs. (7.15)- (7.19) a χ2 minimization approach has been developed29)

where the observables on the right-hand sides of the equations are treated as the main sources of uncer-
tainties:30)

χ2 =
neq

∑
k=1

(rhsk − lhsk)
2

σ 2
k

, (7.20)

where neq is the number of equations, rhsk and lhsk are their right- and left-hand sides, respectively,
and σk are the uncertainties on the neutralino and slepton masses as well as on the coordinates of the
barycenter of the photon cluster in the ECal.31)

For a good fit performance a reasonable choice for the starting values of the free fit parameters is
important, especially for the direction of the neutralino momentum and the φ -direction of the photon.
From Figs. 5.8 and 5.12 can be derived that the direction of the neutralino momentum can be estimated
by the direction of the photon assuming that the photon originates from the primary interaction vertex and

29)The χ2 minimization has been compared to other numerical procedures to solve the equations and has been found to
perform best.

30)This assumption is justified, since the uncertainties on the neutralino and slepton masses are by far larger than the uncer-
tainties on the lepton and photon momenta.

31)Since the masses are measured in GeV, i.e. c = 1, the coordinates of the barycenter are measured in ns, as is the clustertime.
The uncertainty on the coordinates of the barycenter are then assumed to be 0.05 ns.
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Figure 7.15: Method using kinematic constraints in events with additional leptons: (a) Distributions of
the χ2

min values and (b) distributions of the calculated neutralino β χ̃0
1

for 10 fb−1.

the φ -direction of the photon can be estimated by its φ -direction again assuming the photon to originate
from the primary interaction vertex.

Since the equations to solve are quadratic equations, but only a single solution can be found with
a χ2 minimization procedure, additional cuts on the quality of the fit have been imposed by rejecting
unrealistic high reconstructed neutralino decay times (tD > 20 ns) and large χ2

min values (χ2
min > 5). The

χ2
min distributions for all samples are shown in Fig. 7.15(a) for 10 fb−1. It can be observed that the

distributions peak at small χ 2
min values, which shows that the fitting procedure works for most events.

Figure 7.15(b) shows the distributions of the reconstructed β χ̃0
1

values of the neutralinos for all samples
for 10 fb−1. As expected, the distributions peak at 1 and the larger the Cgrav value, the fewer neutralinos
are reconstructed due to the limited detector size and the longer neutralino lifetime.

The distributions of the calculated neutralino decay time t ′D in the neutralino rest frame are shown in
Fig. 7.16 for 10 fb−1. As expected from the exponential decay law, the distributions for all values of Cgrav
decrease towards higher values of t ′D. Again, for larger Cgrav values less neutralinos are reconstructed. It
can be observed that the widths of the t ′D distributions increase with increasing neutralino lifetime.

Figure 7.17 shows the distributions of the ratios of the reconstructed values and the expected values
for the variables Eχ̃0

1
, βχ̃0

1
, φγ and t ′D for the GMSB scenario with Cgrav = 50 to estimate the accuracy of

the neutralino reconstruction. The maximum of the distributions is expected to be at 1. The expected
values of the variables are obtained from the generator information by matching a reconstructed photon
to a photon on generator level and this photon to the corresponding neutralino on generator level. It
can be observed that all distributions have a maximum at a ratio of 1 and that E χ̃0

1
, βχ̃0

1
and φγ can be

reconstructed quite accurately, while the uncertainty on t ′D is larger.
The widths of the t ′D distributions could in principle be exploited to determine τ χ̃0

1
without any depen-

dence on the other GMSB parameters. However, the shapes of the theoretical t ′D distributions are altered
by detector efficiency and geometrical acceptance effects which cannot be calculated analytically. For
this reason, a calibration procedure similar to those discussed before, relying on GEANT4-based sim-
ulated MC events, has been applied for the determination of τ χ̃0

1
. A Landau function32) is fitted to the

32)Again, different functions to parameterize the shape of the distributions have been investigated and the Landau function
has been found to describe the data best.
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Figure 7.16: Distributions of the calculated neutralino decay time in the neutralino rest frame for 10 fb−1.
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1
.

τ theo
χ̃0

1
[ns] τmeas

χ̃0
1

± stat.± syst.[ns]
0.37 0.58±0.42

0.39±0.67
0.38

1.5 1.3±0.6
0.5±0.7

0.4
3.3 3.8±1.4

1.1±1.2
0.7

5.9 6.8±4.4
2.2±3.5

1.3
9.3 16.7±in f

5.4±
in f
7.5

13.3 10.3±in f
4.4±

in f
2.9

Table 7.9: Method using kinematic constraints: Comparison of true and measured values of τ χ̃0
1

for
10 fb−1.

distributions in Fig. 7.16 and the resulting Landau widths are shown in Fig. 7.18 as a function of τχ̃0
1
.

Since the same behaviour of the shape of the distributions as for the other lifetime determination methods
can be observed, the data points are fitted with the empirical function (7.14) and the resulting parameters
are p1 = 0.839±0.030, p2 = 0.222±0.095 and p3 = −6.81±2.77. Again a saturation effect is visible
due to the effects discussed above. The fit uncertainties depend on the number of simulated events used
in the production and on the uncertain modelling of the t ′D distribution by a Landau function.

The neutralino lifetime and its statistical and systematic uncertainties can be derived using the cali-
bration curve and the results for the additionally produced MC samples are listed in Tab. 7.9 for 10 fb−1

together with the expected values. It can be observed that the method is able to reproduce the true values
within the given uncertainties. Compared to the clustertime method the uncertainties are significantly en-
hanced. As a result, the range of possible τχ̃0

1
measurements is reduced. For this reason, these results are

not used in the global fit of the GMSB model in Chap. 8. However, the method provides the opportunity
of an additional cross-check of the results obtained from other methods.



Chapter 8

Determination of underlying GMSB
parameters

Once a signature has been discovered at the LHC that could potentially be described by an underlying
supersymmetric model, it is important to study its parameters and its compatibility with the data. Both
aspects can be investigated by a global fit of the model to all observables measured in the experiment. In
such a fit one obtains an estimate of the compatibility of the model in the form of a p-value and at the same
time one obtains the values for the free parameters of the model that describe the data best. Especially
for the study of supersymmetric models like mSUGRA or GMSB the fitting package Fittino [126, 127]
has been developed. The basic ideas and functionalities of Fittino will be introduced in the following.
The observables measured in Chap. 7 will then be used as input for a fit of the GMSB model in order to
investigate to what extend the underlying parameters of the model used in the simulation of the events
can be recovered. In addition, it will be analyzed, if the correct interpretation of the measurements in
terms of the types of the involved particles can be distinguished from alternative interpretations.

8.1 The fitting package Fittino
Fittino is a program implemented in C++ written for comparing supersymmetric models with measured
observables and for extracting the parameters of the Lagrangian. No a priori knowledge of the parameters
is assumed, but can be used if desired. During the fitting procedure all correlations among parameters and
all influences of loop-induced effects are taken into account. The theory predictions for the observables
are obtained by using an independent theory code, which is interfaced to Fittino via the Les Houches
Accord [95]. In this analysis the program SPheno [128] is used, but in principal also other theory codes
can be implemented. SPheno allows the computation of all relevant particle masses, cross sections,
branching ratios and widths, especially for the GMSB model. The formulas for the calculation of the
observables (e.g. the endpoints of invariant mass distributions as discussed in Sect. 7.1) using these
SPheno quantities are implemented in the Fittino code.1)

For the fitting procedure different algorithms are implemented in Fittino and the user can choose
among them depending on the type of analysis to be performed. As an example, the χ 2 surface in the
parameter space can be scanned using Markov Chains that can be used in a Bayesian or in a frequentist
interpretation. In this analysis a Simulated Annealing approach has been chosen. In this method the χ 2

surface in the parameter space is treated as a potential. Once a starting point in the parameter space is
1)The formulas used for the endpoint predictions are functions of the particle masses and therefore depend on the type of the

particles, e.g. the prediction of the di-lepton edge assumes that a χ̃0
2 decays to a l̃ and a lepton. It is not known a priori, if this

is really the case in the measured events. Therefore the fit always assumes a certain interpretation of the measured observables
and it has to be tested, if alternative interpretations can be distinguished (see Sect. 8.2.3).
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Observable theoretical value (ISAJET) measured value vISAJET − vSPheno
Mmax

l+l− 106.4 GeV 108.0±4.3 GeV -2.0 GeV
Mmax

l+l−γ 191.6 GeV 189.6±3.8 GeV -2.1 GeV
Mnear,max

l±γ 107.9 GeV 104.4±3.7 GeV -7.2 GeV
Mfar,max

l±γ 158.3 GeV 161.9±3.9 GeV 2.5 GeV
τχ̃0

1
3.3 ns 3.6±0.3 ns 0.6 ns

Table 8.1: Measured and predicted values of the observables used in the global GMSB fit.

chosen, a temperature is defined, which sets the probability of a movement upwards in the potential using
a Boltzmann distribution. Such a movement results in a χ 2 larger than for the parameter setting in the
step before. In the process of Simulated Annealing the temperature is reduced step by step, where the
reduction factor can be chosen by the user. This allows to escape from local minima in the χ 2 surface in
early stages of the annealing process.

The Simulated Annealing procedure with the following MINUIT fit is repeated several times with
varied values of the input observables obtained from the measurements. The variations are done within
the uncertainties of each measurement. With this procedure one obtains a distribution of each free fit
parameter as well as a distribution of the minimal χ 2 values. If a given parameter is e.g. Gaussian
distributed one can obtain the mean value by a fit that coincides with the χ 2 value obtained from the
MINUIT minimization for the central values of the input observables. In addition, the uncertainty on the
parameter estimation can be taken from the width of the Gaussian distribution, such that all correlations
between the parameters are taken into account correctly. The χ 2

min distribution has to be investigated in
order to validate that the model describes the data at all.2) The number of degrees of freedom in the
global fit can be obtained from a fit to this χ 2

min distribution.

8.2 Fitting a GMSB model to observables
The Simulated Annealing procedure as described above is used to fit a GMSB model to the observables
investigated in Chap. 7 for the GMSB2 scenario: the invariant mass edges involving photons and leptons,
as described in Sect. 7.1.2, and the measurement of the neutralino lifetime using the clustertime method,
as described in Sect. 7.2.3. The kinematic endpoints in the invariant mass distributions involving jets
are not used in the fit, since the uncertainties on their measurement are found to be too large and the
interpretation of the results is too uncertain (see the discussion in Sect. 7.1.3). All input observables of
the fit are summarized in Tab. 8.1. In total, five observables are used in the fit.

8.2.1 Expectations and fitting performance
Before using the measured values of the observables listed in Tab. 8.1 for a global GMSB fit, the fit is
performed with the theoretical values of the observables as input to investigate the principal functionality
and performance of the fit and the expectations for every single free fit parameter. The SPheno predictions
have been used as input and an uncertainty of 1% for each observable has been assumed. The χ 2

min
distribution and the central values of the GMSB parameters and their uncertainties are obtained using
400 repeated toy fits. For each toy fit, the χ 2 is minimized and the resulting distributions of the GMSB
parameter values at the χ 2 minimum are used to determine the central values and the corresponding

2)This is of course more important in studies of real data where the underlying model is not a priori known and the p-value
of the model has to be calculated. In the present MC analysis this step only serves to validate that the fitting procedure works.
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Figure 8.1: (a) χ2
min distribution and (b) correlation between the Mmess and Cgrav parameters as obtained

from the toy fits of a GMSB model to the theoretical values of the input observables assuming an uncer-
tainty on the observables of 1%.

uncertainty. The starting values of the fit have been chosen to be the expected values of the GMSB2
parameters.3)

Since the sparticle masses depend linearly on Λ, it is expected that this parameter can be determined
accurately in the fit. On the other hand, Mmess enters only logarithmically in the calculation of the
masses, such that the measurement of the masses alone are not able to constrain Mmess. In addition,
Cgrav cannot be constrained with the mass measurements. However, due to the quadratic dependence,
the measurement of the neutralino lifetime can be used to constrain the product Mmess ·Cgrav, but not the
individual parameters alone (see Eq. (2.70)). In addition, no constraint on tan β is expected from the
fit since all measured observables depend only weakly on it. The parameters N5 and sign(µ) are fixed
to N5 = 1 and sign(µ) = +.4) In summary the fit has four free model parameters: Λ, Mmess, tanβ and
Cgrav. Since Mmess and Cgrav enter the lifetime as a product and are otherwise not contrained (apart from
the logarithmic dependence of the masses on Mmess), one expects a strong correlation between these
parameters and a χ2 distribution in the fit with more than one degree of freedom assuming five input
observables.

The distribution of the χ 2
min values as obtained from the toy fits is shown in Fig. 8.1(a) together with

a fitted χ2 distribution. The number of degrees of freedom as given by the fit is 1.98±0.23. This shows
that the free fit parameters are not all completely uncorrelated, since five observables and four free fit
parameters are used. Figure 8.1(b) shows the correlation between Mmess and Cgrav, which is almost 100%
and which explains the observed χ 2 distribution.

The distribution of the Λ parameter as obtained in the toy fits is shown in Fig. 8.2(a) for two choices
of the starting values for the toy fit parameters. The blue curve shows the resulting Gaussian fitted
to the Λ distribution obtained from setting the starting values to the theoretical values (Λ = 90 TeV,
Mmess = 500 TeV and Cgrav = 30 in the case of GMSB2). One obtains Λ = (89.72± 0.55) TeV, which

3)The parameters of the Simulated Annealing procedure, such as the temperature and its reduction factor, have been opti-
mized in order to guarantee a smooth scanning of the parameter space independent of the starting values of the fit.

4)It has been found in [127] that sign(µ) = + is preferred over sign(µ) = − in many supersymmetric models by fitting the
model to the existing electroweak precision observables and low-energy observables. N5 is set to 1, since in large regions of the
parameter space this is necessary to have photons in the final state.



118 8 Determination of underlying GMSB parameters

 [GeV]Λ
80 85 90 95 100

310×

Nu
m

be
r o

f t
oy

 fi
ts

0

100

200

300

 [GeV]Λ
80 85 90 95 100

310×

Nu
m

be
r o

f t
oy

 fi
ts

0

100

200

300

(a)

 [GeV]messM
200 400 600 800 1000

310×

Nu
m

be
r o

f t
oy

 fi
ts

0

50

100

150

 [GeV]messM
200 400 600 800 1000

310×

Nu
m

be
r o

f t
oy

 fi
ts

0

50

100

150

(b)

Figure 8.2: (a) Λ distribution and (b) Mmess distribution as obtained from the toy fits of a GMSB model
to the theoretical values of the input observables assuming an uncertainty on the observables of 1%. Two
different sets of starting values have been used for the toy fits.

shows that Λ can be recovered precisely as expected, since the true value is given by Λ = 90 TeV. The
red curve displays the resulting Gaussian fitted to the Λ distribution obtained from arbitrarily changing
the starting values to Λ = 130 TeV, Mmess = 300 TeV and Cgrav = 60. One can observe, that the resulting
Λ values are stable against such variations. One obtains Λ = (89.95±0.38) TeV from the red curve.

The toy fit results for the Mmess parameter are shown in Fig. 8.2(b) for the same two choices of the
starting values for the fit parameters. It can be observed from the blue curve that Mmess is recovered in
the toy fits with the given uncertainty. However, the red curve shows that the results strongly depend
on the choice for the starting values, i.e. Mmess cannot be constrained by the measured observables,
as expected. Figure 8.3(a) shows the same situation for the Cgrav parameter with the same starting value
settings. Again, the results obtained from the toy fits depend on the starting values, as expected. However,
due to the quadratic dependence of the neutralino lifetime, the product Mmess ·Cgrav can be constrained.
Figure 8.3(b) shows the distributions of Mmess ·Cgrav obtained from the toy fits with both settings of the
starting values and it can be observed that the result is stable. One obtains Mmess ·Cgrav = (1.494 ±
0.020) · 107 GeV from the blue Gaussian and Cgrav = (1.501± 0.020) · 107 GeV from the red Gaussian.
These values agree well with the theoretical expectation given by Mmess ·Cgrav = 1.5 ·107 GeV.

Finally, no constraint on tanβ can be derived (the expected value is tanβ = 5). Figure 8.4 shows the
distribution of the tanβ values obtained from setting the starting values of the toy fits to the true values.
One can clearly observe that the distribution has no Gaussian shape and that the determination of a most
probable value for tan β is not possible.

8.2.2 Determination of GMSB parameters from realistic measurements

When using the observables listed in Tab. 8.1 with the measured values and uncertainties as input for
the toy fits, one has to avoid certain sources of biases in the results. Due to the different treatment of
some theoretical effects, the programs ISAJET and SPheno slightly differ in the theoretical calculation of
the observables, leading to different results. Since ISAJET was used to generate the corresponding MC
events in the GMSB2 scenario, while SPheno is used in the global fit, the measured observables have
to be shifted towards their SPheno prediction. These differences in the predictions of both programs,
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Figure 8.3: (a) Cgrav distribution and (b) Mmess ·Cgrav distribution as obtained from the toy fits of a GMSB
model to the theoretical values of the input observables assuming an uncertainty on the observables of
1%. Two different sets of starting values have been used for the toy fits.
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Figure 8.4: tanβ distribution as obtained from the toy fits of a GMSB model to the theoretical values of
the input observables assuming an uncertainty on the observables of 1%.
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Figure 8.5: (a) χ2
min distribution and (b) Λ distribution as obtained from the toy fits of a GMSB model to

the measured values of the input observables and their uncertainties.

vSPheno −vISAJET, are also listed in Tab. 8.1 and can additionally be used as an estimate for the theoretical
uncertainties of the observables.

The χ2
min distribution as obtained from the toy fits using the measured values for the observables is

shown in Fig. 8.5(a). The number of degrees of freedom as given by a fit of a χ 2 function to the data
points is 2.55±0.21 again reflecting the strong correlation of Mmess and Cgrav. The distribution of the Λ
values obtained from the toy fits is shown in Fig. 8.5(b). It can be observed that the uncertainty on the
Λ value is larger compared to the fit results from the last section, which is due to the larger uncertainties
on the measured observables. The fit of a Gaussian to the distribution leads to Λ = (88.70± 1.23) TeV
agreeing with the expected value of Λ = 90 TeV. Since only Mmess ·Cgrav can be constrained in the fit,
the distribution for this product is shown in Fig. 8.6(a) together with a fitted Gaussian. Again, the width
of the Gaussian is larger than the one obtained in the last section due to the larger uncertainties on the
measured input observables. The fit result is Mmess ·Cgrav = (1.522±0.094) ·107 GeV agreeing with the
expected value of Mmess ·Cgrav = 1.5 ·107 GeV.

As discussed in Sect. 2.3.3, the order parameter of spontaneous supersymmetry breaking F is given
by F = Λ ·Mmess ·Cgrav. This value can easily be obtained from the fit results of each toy fit. Fig-
ure 8.6(b) shows the corresponding distribution together with a fit of a Gaussian. The central value
and its uncertainty are given by F = (1.350± 0.091) · 1012 GeV2 and agree well with the true value of
F = 1.35 · 1012 GeV2. This result shows that from the measurement of the neutralino lifetime, i.e. the
determination of Mmess ·Cgrav, together with the determination of Λ from the measurement of observ-
ables depending on supersymmetric particle masses the fundamental supersymmetry breaking scale can
be explored in a global GMSB fit.

The GMSB parameter space can already be constrained with the existing electroweak precision ob-
servables, as well as with the low-energy observables. This has been shown in [127]. For the present
study the same toy fits as described above have been performed including the observables listed in
Tab. A.35) as in [127] to check, if they have any influence on the results. The corresponding values
have been shifted to their theoretical GMSB predictions in order to avoid a bias in the fit results. The

5)In total 22 additional observables have been used in the fit. The observables giving just lower or upper bounds on their
values have been excluded as well as the constraint on the cosmological parameter Ω. The Standard Model parameters αem,
GF , αs, mZ , mt , mb and mτ have been fixed to their current experimental values [9].
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Figure 8.6: (a) Mmess ·Cgrav distribution and (b) F distribution as obtained from the toy fits of a GMSB
model to the measured values of the input observables and their uncertainties.

calculations in the toy fits have been performed by the so-called Mastercode [129, 130]. Figure 8.7(a)
shows the distribution of the χ 2

min values as obtained from the toy fits. A χ 2 function has been fitted to
the distribution and the number of degrees of freedom in the fit is determined to be 27.86±0.41 agree-
ing roughly with the expectation for 27 observables. For the determination of the GMSB parameters it
has been found that the uncertainties on the parameter determination cannot be decreased by including
the additional observables. As an example, Fig. 8.7(b) shows the distribution of the Λ values as ob-
tained from the toy fits together with a fitted Gaussian function. The central value and its uncertainty are
determined to be Λ = (88.64±1.35) TeV agreeing with the expected value of Λ = 90 TeV.

8.2.3 Alternative data interpretations
During the fit of the GMSB model to the observables listed in Tab. 8.1 it has been assumed implicitly that
the decay chain depicted in Fig. 6.3(b) leads to the measured observables event by event (this is called
the standard interpretation in the following). A priori it is not known, if this is correct. There could
be regions in the GMSB parameter space where a slightly different decay chain leads to a similar final
state and to values for the observables that are the same as those listed in Tab. 8.1. Therefore alternative
interpretations of the data have to be investigated and it has to be tested, if these lead to acceptable
interpretations of the data in terms of a certain set of parameters in the GMSB parameter space.

In principal, there can be a large number of alternative interpretations and they can be constructed
by changing the supersymmetric particle type in the theoretical formulas for the observables, e.g. in the
formulas for the endpoints in invariant mass distributions as discussed in Sect. 7.1. However, the number
of interpretations to be investigated can be reduced by checking wether a certain interpretation leads to
the measured observables. As an example, the mass hierarchy cannot be changed arbitrarily, since this
would lead to different shapes of the invariant mass distributions [18] or even to different final states. In
this analysis two example interpretations are considered:

1. χ̃0
3 interpretation: In the decay chain shown in Fig. 6.3(b) the χ̃0

2 is replaced by the χ̃0
3 , i.e. the

decay chain

q̃ → χ̃0
3 q → l̃±R l∓q → χ̃0

1 l+l−q → G̃γ l+l−q, l = e,µ (8.1)
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Figure 8.7: (a) χ2
min distribution and (b) Λ distribution as obtained from the toy fits of a GMSB model to

the measured values of the input GMSB observables and the existing electroweak precision observables
and low-energy observables as listed in Tab. A.3.

is used to calculate the endpoint of the invariant mass distributions in the toy fits. In this interpre-
tation it is assumed that the χ̃0

3 is produced by squark or gluino decays and that its decay to the χ̃0
2

is suppressed in a certain region of the GMSB parameter space such that the leptons used for the
construction of the invariant mass distributions couple to the χ̃0

3 . All other features of the decay
chain stay the same as in Fig. 6.3(b), e.g. the χ̃0

1 is the NLSP and has a non-vanishing lifetime.
During the toy fits of the χ̃0

3 interpretation the same random seeds as for the fit in the standard
interpretation as discussed above have been used in order to allow the comparison of the resulting
χ2 distributions and to determine which interpretation describes the data best. Figure 8.8(a) shows
the correlation between the χ 2

min values for each toy fit for both interpretations. It can be observed
that the χ2

min values for the χ̃0
3 interpretation are much larger for every toy fit than in the standard

interpretation. Therefore this alternative can be excluded easily.

2. χ̃0
3 , l̃L interpretation: The interpretation of the observables as discussed above can be extended by

substituting the right-handed slepton by a left-handed slepton. In the special case of the GMSB1
benchmark scenario the χ̃0

3 has a larger mass than the left-handed sleptons (see Tab. 6.1) and
therefore the decay chain

q̃ → χ̃0
3 q → l̃±L l∓q → χ̃0

1 l+l−q → G̃γ l+l−q, l = e,µ (8.2)

is possible, although largely suppressed. Nevertheless, there could be regions in the parameter
space where this leads to measured values of the observables as listed in Tab. 8.1. Again, all other
features of the final state are assumed to stay the same as in the standard interpretation. The same
random seeds are used in the χ̃0

3 , l̃L interpretation and the resulting correlation between the χ 2
min

values are shown in Fig. 8.8(b). Again, the alternative interpretation can be excluded easily, since
its χ2

min values are much larger for every toy fit.

The results obtained from the two alternative interpretations analysed here give confidence that wrong
interpretations of the observables can be excluded in the case of GMSB models with photons in the final
state. Nevertheless, a scan over all possible interpretations would be desireable, although this would
require an enormous amount of CPU time with the current setup of Fittino.
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Figure 8.8: Correlations of the χ2
min values of the standard interpretation of the measured observables

and (a) the χ̃0
3 interpretation and (b) the χ̃0

3 , l̃L interpretation as described in the text.

It should be noted that in all toy fits discussed above it has been assumed that the observables can be
described by a GMSB model in at least one interpretation. Also this is a priori unknown. There could
be another probably yet unknown theory which features the same final states as the GMSB model. If the
data cannot be described by a GMSB model, the resulting χ 2

min distributions would be unacceptable for
all possible interpretations in terms of a GMSB model.





Chapter 9

Summary, conclusions and outlook

9.1 Summary and conclusions
With the foreseen start of LHC operation in 2009 a new energy frontier in high energy physics will be
explored in pp collisions. Besides precise tests of the Standard Model and the possible investigation of
the mechanism of electroweak symmetry breaking, the discovery of physics beyond the Standard Model
will be among the most interesting and also most challenging tasks for the LHC experiments. As has
been pointed out in this thesis, the Standard Model can not be the final theory of nature as it comprises
fundamental problems of experimental as well as theoretical character. One of the most intensely in-
vestigated (and probably also most promising) candidates of a theory beyond the Standard Model is the
idea of supersymmetry that predicts new particles that could directly be produced at the LHC, if their
masses are on the TeV scale. Since there exist many different realizations of supersymmetric theories,
measurements of the particle properties are necessary in order to constrain the possible supersymmetric
parameter space.

Gauge mediated supersymmetry breaking provides a possible way to mediate supersymmetry break-
ing that occurs at a high scale to the electroweak scale. These models naturally feature a gravitino LSP,
while the phenomenology is largely determined by the NLSP. This can e.g. be the lightest neutralino as
well as a right-handed slepton or the lightest stau. GMSB models with a neutralino NLSP decaying to
a gravitino and a photon have been investigated in this thesis. Benchmark scenarios have been studied
that feature a neutralino NLSP with vanishing lifetime resulting in final states with photons coming from
the primary interaction vertex as well as scenarios in which the NLSP has a non-vanishing lifetime and
leads to photons being produced at a certain distance to the primary interaction vertex.

In addition to the photons in the final state, large missing transverse energy and multiple high en-
ergetic jets are expected in the pp collisions at the LHC. These final states extend the variety of super-
symmetric final state topologies of mSUGRA-like models studied extensively in the past. The additional
photons provide a handle to reduce the Standard Model background very efficiently leading to an almost
background-free channel for early discoveries of GMSB events at the LHC. In addition, the photons can
be used to measure certain properties of supersymmetric particles, like endpoints in invariant mass dis-
tributions as well as the possibly non-vanishing NLSP lifetime. These measurements can be exploited in
global fits to determine the underlying GMSB parameters.

In this thesis it has been shown that the ATLAS detector has the ability to discover GMSB events with
high significance in large parts of the parameter space covering both prompt and non-pointing final state
photons. For both possibilities selection strategies have been optimized in order to cope with the different
kinematical properties of prompt and non-pointing photons. By using an example benchmark scenario,
it has been demonstrated that the measurement of kinematic endpoints in invariant mass distributions
involving photons and leptons allows the determination of the masses of the two lightest neutralinos as
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well as the mass of the intermediate right-handed slepton with good precision using a small data set. The
measurement and the interpretation of endpoints in invariant mass distributions involving jets is more
involved, but a rough estimate of the squark mass scale as well as of the gluino mass can be obtained.

The topology of the non-pointing photons in the final state can also be used to determine the NLSP
lifetime. Methods have been presented that make use of different variables and approaches. It has been
demonstrated that the delayed arrival time of the electromagnetic cluster of a photon in the calorimeter
as well as its directional information can be exploited. If additional leptons are present in the event,
kinematic constraints can be utilized that incorporate the mass measurements of the supersymmetric
particles. The unbiased non-pointing photon selection provides advantages for this purpose, since it
allows a more efficient identification of photons coming from late decaying neutralinos.

Finally, the mass measurements together with the measurement of the neutralino lifetime have been
used as important input to global fits of the GMSB model. A Simulated Annealing approach has been ap-
plied and the possibility of determining the underlying GMSB parameters has been explored. The effec-
tive supersymmetry breaking scale Λ and the order parameter for spontaneous supersymmetry breaking
F can be determined precisely, while for the measurement of tanβ , as well as for the disentanglement
of Mmess and Cgrav additional observables have to be taken into account. In addition it has been tested,
if the measured observables interpreted in an alternative way might lead to a false parameter determina-
tion. It has been shown for two example scenarios that a wrong assignment of the decay chains leads to
unacceptable χ2

min distributions showing the incompatibility of the interpretation with the data.

9.2 Outlook
The most important issue for first data analysis is to obtain a profound detector understanding. Espe-
cially analyses of supersymmetric scenarios make use of a variety of reconstructed objects like missing
transverse energy, jets, leptons and photons. All aspects of the reconstruction of these objects have to be
understood in order to perform a successful search for supersymmetric events. This includes a detailed
understanding of the Standard Model background that is especially important for the search for GMSB
events. The rates with which jets are misidentified as photons have to be measured and the photon iden-
tification criteria have to be optimized for a GMSB analysis with (non-pointing) photons in the final
state.

For the measurement of the masses of supersymmetric particles it is essential to study the identifica-
tion and reconstruction performance of the ATLAS detector for electrons, muons and photons with first
data. This includes the energy resolutions and scales to obtain reliable results for the invariant mass dis-
tributions. Additionally, studies are needed in order to develop methods to determine the masses of the
charginos, staus and other particles not covered in this thesis. One (possibly very complicated) method
is to completely reconstruct the supersymmetric decay chain with kinematic constraints. As input for a
fit additional observables such as lepton and jet momenta can be used. Due to the large jet multiplicities
in supersymmetric events it might be complicated to cope with the large combinatorics in such a method.
On the other hand, one could again profit from the final state photons in GMSB models with a neutralino
NLSP.

For the determination of the neutralino lifetime it is important to study the timing resolution of the
ECal with first data. This includes the measurement of the resolution with Z 0 → e+e− events to investi-
gate the Standard Model background contribution in the signal sample, as outlined in this thesis. Further-
more, the reconstruction of the neutralino lifetime can potentially profit from photon conversions. As an
example, the direction of the photon can be measured much more precisely if it converts and the result-
ing electron tracks can be reconstructed. Especially the φ direction of the photon can be determined in
this way and the solution of the kinematic constraints equations used in the lifetime measurement would
become much easier. Nevertheless, this might only be possible with larger datasets. Another interesting
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question is, wether the neutralino decay to Z0 bosons can be exploited in order to determine the NLSP
lifetime. If the decay vertex of the lepton pair resulting from the Z 0 decay can be reconstructed effi-
ciently, the decay length of every individual neutralino could be measured directly. Since the branching
ratio of the neutralino decay to Z0 bosons is in general very small in the minimal GMSB model, this is
again only possible with larger datasets.

It has been pointed out that the measurement of tanβ and the disentanglement of Mmess and Cgrav is
not possible with the measured observables presented in this thesis. Therefore, additional work has to
be done to identify observables that depend stronger on tanβ and Mmess or Cgrav. In the GMSB1-like
scenarios the intermediate slepton can also be a stau that potentially could be exploited to get closer
constraints on tanβ , since this parameter enters the stau mixing matrix on tree level.

It might be impossible to measure some of the properties of supersymmetric particles at the LHC.
However, a lepton collider at high energies provides a much cleaner environment and the great advantage
of a known initial state of the particle collisions. Especially the neutralino lifetime determination would
profit from a known initial state and could be determined directly without the need of calibration curves
as discussed in this thesis.





Appendix A

Additional tables

Table A.1 lists the Standard Model background samples used in this thesis. The generator codes, as
described in Sect. 4.1, are indicated as well as the integrated luminosity for each sample. During the
official ATLAS production process cuts on generator level have been applied in order to allow for a
faster simulation of the relevant processes. The details are listed in Tab. A.2.

Process Generator L [pb−1]
multiple jet production PYTHIA ∼ 10−5 −30
semi-leptonic tt̄ HERWIG 597
full-hadronic tt̄ HERWIG 256
Z → e+e− PYTHIA 331
Z → µ+µ− PYTHIA 331
Z → τ+τ− ALPGEN 465
W → eν + 2 partons ALPGEN 873
W → eν + 3 partons ALPGEN 5543
W → eν + 4 partons ALPGEN 14056
W → eν + 5 partons ALPGEN 8500
W → µν + 2 partons ALPGEN 1871
W → µν + 3 partons ALPGEN 48791
W → µν + 4 partons ALPGEN 143219
W → µν + 5 partons ALPGEN 8434
W → τν + 0 parton ALPGEN 1410
W → τν + 1 parton ALPGEN 176
W → τν + 2 partons ALPGEN 882
W → τν + 3 partons ALPGEN 704
W → τν + 4 partons ALPGEN 5321
W → τν + 5 partons ALPGEN 7874
Wγ PYTHIA 2066
Zγ PYTHIA 3875
direct γγ production PYTHIA 454
WW HERWIG 2040
ZZ HERWIG 23827
WZ HERWIG 6117

Table A.1: Event samples of Standard Model background processes used in this thesis.

The electroweak precision observables and the low-energy observables measured by the B-factories,
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Process Generator cuts
tt̄ Nlepton > 0
Z → e+e−,µ+µ− pT,lepton > 10 GeV, |ηlepton| < 2.7
Z → τ+τ− |ηlepton| < 2.7
W → eν ,µν Njet > 0, pT,jet1 > 80 GeV, |ηjet1 | < 5, Emiss

T > 50 GeV
W → τν Njet > 0, pT,jet1 > 80 GeV, |ηjet1 | < 5, Emiss

T > 50 GeV,
Nlepton > 0, pT,lepton > 10 GeV, |ηlepton| < 2.7

W γ , Zγ Nγ > 0, pT,γ > 25 GeV, |ηγ | < 2.7
γγ Nγ > 1, pT,γ > 20 GeV, |ηγ | < 2.7
WW, ZZ, WZ Nlepton > 0, pT,lepton > 10 GeV, |ηlepton| < 2.8

Table A.2: Cuts on generator level imposed during the MC production procedure for the datasets used in
this thesis.

kaon experiments, LEP, SLC and the TeVatron, as well as the measurement of (g−2)µ as used in the toy
fits in Sect. 8.2.2 are listed in Tab. A.3 with their current experimental values and uncertainties.

Observable Experimental Uncertainty Exp. Reference
Value stat syst

BR(B → sγ)/BR(B → sγ)SM 1.117 0.076 0.096 [131]
BR(B → τν)/BR(B → τν)SM 1.15 0.40 [132, 133, 134]
BR(Bs → Xs``)/BR(Bs → Xs``)SM 0.99 0.32 [131]
∆mBs/∆mSM

Bs
1.11 0.01 0.32 [135]

∆mBs /∆mSM
Bs

∆mBd /∆mSM
Bd

1.09 0.01 0.16 [131, 135]

∆εK/∆εSM
K 0.92 0.14 [135]

BR(K → µν)/BR(K → µν)SM 1.008 0.014 [136]
aexp

µ −aSM
µ 30.2×10−10 8.8×10−10 2.0×10−10 [137, 138, 139, 140, 141]

sin2 θeff 0.2324 0.0012 [9]
ΓZ 2.4952 GeV 0.0023 GeV 0.001 GeV [9]
Rl 20.767 0.025 [9]
Rb 0.21629 0.00066 [9]
Rc 0.1721 0.003 [9]
Afb(b) 0.0992 0.0016 [9]
Afb(c) 0.0707 0.0035 [9]
Ab 0.923 0.020 [9]
Ac 0.670 0.027 [9]
Al 0.1513 0.0021 [9]
Aτ 0.1465 0.0032 [9]
Afb(l) 0.01714 0.00095 [9]
σhad 41.540 nb 0.037 nb [9]
mW 80.399 GeV 0.025 GeV 0.010 GeV [4]

Table A.3: Measurements from B-factories, kaon experiments, LEP, SLC and the TeVatron, as well as
the measurement of (g−2)µ as used in the toy fits.
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weilig wäre und mit denen die Zusammenarbeit immer angenehm ist. Insbesondere danke ich
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