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tralino decays in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and de-

termine their observability at the LHC. We concentrate on scenarios which feature two light

scalar Higgs bosons (one of them is SM-like with a mass of 125GeV and a singlet-like lighter

one) with a very light (singlet-like) pseudoscalar Higgs in the mass range 2mτ < ma0
1
< 2mb.

We consider neutralino-chargino pair production and the subsequent decay χ̃0
2,3 → χ̃0

1a
0
1,

which leads to topologies involving multi-leptons and missing transverse energy. We deter-

mine a set of selection cuts that can effectively isolate the signal from backgrounds of the

Standard Model or the Minimal Supersymmetric Standard Model. We also exemplify the

procedure with a set of benchmark points, for which we compute the expected number of

events and signal strength for LHC with 8TeV center of mass energy. We show that this

signal can already be probed for some points in the NMSSM parameter space.
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1 Introduction

The Next-to-Minimal Supersymmetric Standard Model (NMSSM) (see, e.g., ref. [1] for a

review) is a well motivated extension of the MSSM. In the NMSSM a new singlet superfield

Ŝ is included in order to provide a dynamical mechanism by which the Higgsino mass

parameter, µ, is naturally of the order of the electroweak (EW) scale, thereby addressing the

so-called “µ problem” [2]. The NMSSM leads to a very interesting Higgs phenomenology,

due to the presence of an extra scalar Higgs and a pseudoscalar Higgs. These states can

be very light without violating current collider constraints, provided that they are mostly

singlet-like. Moreover, within the NMSSM a new contribution to the tree level Higgs

mass [3–7], coming from the λŜĤuĤd term in the superpotential, makes it easier to obtain

a relatively heavy Standard Model (SM) like Higgs boson while reducing somehow the

fine-tuning [8–18]. This is favoured by the LHC observation of a Higgs boson with a mass

in the 2σ range 124 − 126.8GeV (124.5 − 126.9GeV) by ATLAS (CMS) [19–22]. It has

also been shown that in some regions of the parameter space another light, singlet-like,

Higgs (h01) can also be present, with a mass around 98GeV [23–27], motivated by the small

excess in the LEP search for e+e− → Zh, h → bb̄ [28–30], or even lighter [26, 31–35].

Some of these scenarios also present a very light pseudoscalar Higgs boson, a01, [26, 27,

31–34], which is very appealing from the point of view of LHC signatures. For example, in

ref. [26] we investigated how a very light pseudoscalar in the mass range 2mτ < ma0
1
< 2mb

could be probed in multilepton decays of the scalar Higgses, h01, 2 → a01a
0
1 → 4ℓ+ET/ (where

ℓ = e, µ, and hadronically-decaying τ , τh and /ET denotes the missing transverse energy),

and showed how the pseudoscalar mass can be reconstructed. Another remarkable effect

of a light pseudoscalar is that it can be copiously produced in the decays of neutralinos

χ̃0
2,3 → χ̃0

1a
0
1, constituting a characteristic NMSSM signature [35–39]. It should be noted

that these scenarios are extremely sensitive to the Higgs properties and therefore very

affected by the recent experimental constraints. For example, the latest measurements of

the SM-like Higgs (hSM) [21, 22] forbid a sizable contribution to non-SM decay modes, such

as hSM → a01a
0
1, hSM → h01h

0
1/h

0∗
1 or hSM → χ̃0

1χ̃
0
1, and therefore motivates the reanalysis

of the phenomenology associated to neutralino decays.
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In this work we concentrate on scenarios which feature two light scalar Higgses (one

of them SM-like with a mass of approximately 125GeV and a singlet-like lighter one)

with a very light singlet-like pseudoscalar (in the mass range 2mτ < ma0
1
< 2mb). We

carry out a systematic search for regions of the NMSSM parameter space in which the

branching ratio BR(χ̃0
2,3 → χ̃0

1a
0
1) is sizable. For the range of masses considered, the

pseudoscalar predominantly decays into a pair of taus, a01 → τ+τ−, leading to an abundance

of leptons in the final state. Therefore, the resulting LHC phenomenology features multi-

lepton signals with missing transverse energy in the decay chains after neutralino/chargino

pair production, χ̃0
2,3χ̃

±
1 → ℓ+ℓ−ℓ±+ET/ , χ̃0

3χ̃
±
1 → 2ℓ+2ℓ−ℓ±+ET/ , and χ̃0

i χ̃
0
j → n(ℓ+ℓ−)+ET/ ,

with n = 2, 3, 4 and i, j = 2, 3.

Multi-lepton final states have always been considered an important probe for super-

symmetry (SUSY) searches in colliders [40–70]. The unusual source of leptons (a01 → τ+τ−)

considered in this work within the context of the NMSSM with a pair of light scalar Higgses

requires the modification of conventional search strategies. In this paper, we define a set of

event selection cuts that will allow the studied signal to be distinguished from the SM and

MSSM backgrounds. All the recent experimental bounds on the Higgs sector are included,

as well as the constraints on the masses of supersymmetric particles and low-energy ob-

servables. We also take into account bounds on the neutralino relic abundance and on its

elastic scattering cross-section off quarks.

The paper is organised as follows. In section 2, we present the results of a scan in

the NMSSM parameter space, applying the most recent experimental constraints on Higgs

sector and low-energy observables as well as constraints from dark matter searches. We

also determine the regions of interest for our analysis. In section 3, we describe the collider

phenomenology of the signal and define a set of effective event selection cuts for background

suppression. We further estimate the relevant backgrounds and the signal significance of the

resulting signatures for some selected benchmark points. Finally, we present our concluding

remarks in section 4.

2 Light Higgs scenarios in the NMSSM and choice of benchmark points

The Z3 invariant NMSSM superpotential (see e.g., [1]) reads

W = W ′
MSSM − ǫabλŜĤ

a
d Ĥ

b
u +

1

3
κŜ3, (2.1)

where W ′
MSSM is the MSSM superpotential [71] without the bilinear ǫabµĤ

a
d Ĥ

b
u term, with

ǫ12 = 1. Ĥu, Ĥd are two SU(2)-doublet Higgs superfields and Ŝ is a new superfield,

singlet under the SM gauge group. The superpotential incorporates two new couplings,

λ and κ. The Lagrangian contains new soft SUSY-breaking terms, which include the

trilinear parameters Aλ and Aκ, and the soft mass parameter for the singlet, mS . After

EW symmetry breaking takes place, the neutral components of the Higgs fields Hu,d and

the singlet S acquire non-vanishing vacuum expectation values, vu,d and vs, respectively.

Consequently, an effective term µ = λvs is generated which is naturally of the order of

the EW scale. In terms of the field content, the singlet mixes with the doublet Higgs

– 2 –
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states, giving rise to three CP-even (h01, h
0
2, h

0
3) and two CP-odd (a01, a

0
1) states, whereas

the singlino mixes with the neutralinos, inducing a fifth eigenstate (χ̃0
1, . . . , χ̃

0
5), with

interesting implications for dark matter searches (see, e.g., refs. [72–79]).

We have carried out a scan with a reduced set of the NMSSM parameters defined at

the EW scale, which are detailed in table 1. The scan is performed with nmssmtools

3.2.1 [80–82], linked with MultiNest 2.9 [83, 84] to explore the parameter space effi-

ciently. We impose the grand unification relation for the gaugino soft masses, which implies

M1 = 1/2M2 = 1/6M3. Fixed values are used for the trilinear parameters, At = 1800GeV,

Ab = 1000GeV, and Aτ = −1600GeV, as well as for the soft scalar masses of sleptons and

squarks, M
L̃i

= Mẽci
= 300GeV and M

Q̃i
= Mũc

i
= M

d̃ci
= 1000GeV, respectively, where

the index i runs over the three families.

We consider the most recent experimental limits on sparticle masses [85–88] derived

for simplified SUSY model. For first two generation of squarks we set an optimized lower

bound of 1TeV consistent with refs. [87, 88]. In the same way, the lower limit on light-

est stop mass is set to be mt̃1
> 650GeV, while for the lightest sbottom we impose

m
b̃1

> 700GeV [87, 88]. Regarding the gluino mass, we consider mg̃ > 1.2TeV, which

holds when the lightest supersymmetric particle (LSP) has non-vanishing mass, and can

be independent of squark masses [87]. The situation is far more complicated with EW neu-

tralinos and charginos depending on modes of decay and mLSP. Thus, for lighter chargino

we stick to the LEP lower limit of 94 GeV [89]. The lightest neutralino, if light enough,

is constrained by its contributions to the invisible Z and Higgs bosons decays. We also

take into account experimental bounds on low energy observables [90–104] together with

cosmological constraints on the dark matter abundance [105, 106] and limits on its spin-

independent elastic cross section with quarks from direct detection experiments [107–111].

Regarding the Higgs sector we impose the presence of a SM-like Higgs, which in our case

corresponds to the second lightest mass state, in the range 123GeV≤ mh0
2
≤ 127GeV. For

the reduced signal strength of the Higgs to di-photon mode, Rγγ , we use 0.23 ≤ Rγγ ≤ 1.31,

the latest CMS results at 2σ [22].1 The remaining reduced signal strengths are also con-

strained within their respective 2σ ranges according to the CMS results of ref. [22] (see

refs. [21, 113] for the equivalent ATLAS results). A bound on the branching ratio for

invisible Higgs decay [114–121] i.e., BR(hSM → χ̃0
1χ̃

0
1) has also been considered in our

analysis. Notice that imposing these measurements indirectly entails a strong bound on

the non-standard decay modes of the SM-like Higgs boson [118], which in our case affects

BR(h02 → h01h
0
1) and BR(h02 → a01a

0
1).

Some low-energy observables also have an important impact in the allowed regions

of the NMSSM. We have implemented the recent measurement of the branching ratio of

the Bs → µ+µ− process by the LHCb [97] and CMS [98] collaboration, which collectively

yields 1.5 × 10−9 < BR(Bs → µ+µ−) < 4.3 × 10−9 at 95% CL [99]. For the b → sγ

decay, we require the 2σ range 2.89 × 10−4 < BR(b → sγ) < 4.21 × 10−4, which takes

into account theoretical and experimental uncertainties added in quadrature [95, 122–

125]. We also impose 0.85 × 10−4 <BR(B+ → τ+ντ ) < 2.89 × 10−4 [94]. We do not

1For ATLAS the same limit including all systematics is 0.95 ≤ Rγγ ≤ 2.55 [112, 113].
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Parameter Range

tanβ 3− 20

λ 0.1− 0.7

κ 0.01− 0.6

Aλ 0− 1000

Aκ −100− 100

µ 110− 300

M1 200− 500

Table 1. Ranges of variation in the seven parameters used in the scan. Masses and trilinear terms

are given in GeV units. All the parameters are defined at the EW scale.

impose any constraint on the SUSY contribution to the muon anomalous magnetic moment,

aSUSY
µ . As already emphasized in refs. [126, 127], the regions of the parameter space

that lead to a 125GeV Higgs generally result in a small aSUSY
µ which is in tension with

experimental results using e+e− experimental data [100, 104]. However, if tau data is used,

the discrepancy is smaller [103].

We finally require the lightest neutralino to be the LSP and set an upper bound on

its relic abundance, Ωχ̃0
1
h2 < 0.13, consistent with the latest Planck results [106]. We also

impose limits on the spin-independent neutralino-nucleon scattering cross section using the

most recent experimental results [107–111].

In our scan, we have built a likelihood function, whose parameters are the neutralino

relic density andmh0
2
, which are taken as gaussian probability distribution functions around

the measured values with 2σ deviations. The lightest pseudoscalar mass is also incorporated

in the likelihood in such a way that masses below ma0
1
< 20GeV are favoured (although

heavier masses are not excluded). This likelihood function is used by MultiNest 2.9 to

generate Markov Chain Monte Carlo (MCMC) chains and find regions of the parameter

space which maximize the likelihood. Using MultiNest allows us to explore the parameter

space of the model more efficiently, since relatively few evaluations are needed to converge

to regions which maximize the likelihood.

In figure 1, we show the scatter plot corresponding to different combinations of the

input parameters that pass all the experimental constraints. We distinguish two scenarios

according to the masses of the Higgs sector. Blue dots correspond to points in the parameter

space with mh0
1
> mh0

2
/2, while the green ones are those with mh0

1
< mh0

2
/2. Since

we are interested in neutralino/chargino pair production and its final decay through the

χ̃0
2,3 → χ̃0

1a
0
1 decay channels, we have denoted with darker colours the points for which

BR(χ̃0
2 → χ̃0

1a
0
1) > 0.5 or BR(χ̃0

3 → χ̃0
1a

0
1) > 0.5. On top of this, points in which the mass

of the lightest pseudoscalar is lighter than 10GeV are represented by means of black circles.

In the (λ, κ) plane (top left panel), points with a lighter h01 (green points) are found

in the region of small values of κ, as in these areas their singlet component is sizable and

collider constraints can be avoided. Similarly, very light pseudoscalars accumulate towards

small values of κ, and Aκ, as it can be seen in the top right panel, where the (κ, Aκ) plane

is represented. The presence of a very light pseudoscalar Higgs in the NMSSM requires a

– 4 –
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Figure 1. Scatter plot of the allowed regions in the different parameters used as inputs for the scan

after all experimental constraints are included. Blue dots represent points for which mh0
1
> mh0

2
/2,

whereas green dots are those in which mh0
1
< mh0

2
/2. Darker points correspond to solutions for

which BR(χ̃0
2 → χ̃0

1a
0
1) > 0.5 or BR(χ̃0

3 → χ̃0
1a

0
1) > 0.5. On top of this, black circles correspond to

points with ma0
1
< 10GeV.

tuning of some of the parameters so that either the U(1)R or U(1)PQ symmetry of the model

is recovered and then this light pseudoscalar would correspond to the pseudo-Goldstone

boson of the symmetry [74, 128]. In our scan, the smaller values of the pseudoscalar mass

are obtained when κ, Aκ → 0, for which the U(1)PQ symmetry is quasi-restored [128].

In the (µ, M2) plane (bottom left panel), we can observe that in general the µ param-

eter is small. For most of the points, the hierarchical structure µ <∼ M1 < M2 is obtained.

One should note that if gaugino universality at the grand unified theory scale is assumed,

all points below M2 < 400GeV are excluded by the LHC lower limit on gluino mass. How-

ever, we have verified that if the universality relation between M2 and M3 is broken (setting

– 5 –
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Figure 2. Higgsino fraction of χ̃0
2 (left) and χ̃0

3 (right) as a function of their mass. The colour code

is the same as in figure 1.

M3 high so that mg̃ ≥ 1.2TeV [87]) viable points for M2 ≤ 400GeV can be obtained. This

is a consequence of the fact that gluino mass usually appears in higher order calculations.

The lightest neutralino χ̃0
1 is therefore mostly singlino (as a consequence of the small-

ness of the κ parameter) but with a Higgsino admixture, which helps to raise its mass and

increases for the points with mh0
1
> mh0

2
/2. The points with a sizable BR(χ̃0

2,3 → χ̃0
1a

0
1)

occur for small values of the µ parameter since this leads to Higgsino-like χ̃0
2,3 and χ̃±

1 .

Although M2 is generally large in the scenario with heavier h01, it can be as small as

∼ 300GeV in the cases with mh0
1
< mh0

2
/2. Since this also implies a small M1, the second

and third lightest neutralinos can also have a non-negligible bino composition. The Hig-

gsino fractions of χ̃0
2 and χ̃0

3 are plotted as a function of their mass in figure 2, where we

observe that a large population of points in the parameter space favours Higgsino-like χ̃0
2,3.

Finally, in the (Aλ, tanβ) plane, we can see that small values of tanβ (. 12) are

preferred for the range used in Aλ. This is useful in order to avoid constraints on some

flavour observables, such as BR(B0
s → µ+µ−).

In figure 3, we represent the resulting BR(χ̃0
2,3 → χ̃0

1a
0
1) as a function of the mass

difference mχ̃0
2,3

− (mh0
1
+mχ̃0

1
). The alternative decay χ̃0

2,3 → χ̃0
1h

0
1 is kinematically open

for mχ̃0
2,3

− (mh0
1
+ mχ̃0

1
) > 0. When this happens, it generally dominates the neutralino

decay width and we obtain small values for BR(χ̃0
2,3 → χ̃0

1a
0
1). This is a consequence of a

relative sign in the corresponding couplings for our choice of signs for λ and κ [35]. In the

scenario with mh0
1
< mh0

2
/2, this condition is particularly constraining since the CP-even

Higgs is lighter, and for this reason we obtain less viable points in this scenario (green

points). Still, we found some solutions featuring BR(χ̃0
2 → χ̃0

1a
0
1) > 0.5, even when the

pseudoscalar is very light. On the contrary, points with heavy h01 (blue points) are more

easily obtained.

As stated earlier, the presence of light a01, h
0
1, and χ̃0

1 can induce non-standard Higgs

decays. This is particularly important in the regions of the parameter space with mh0
1
<

– 6 –
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Figure 3. Left: Br(χ̃0
2 → χ̃0

1a
0
1) as a function of mχ̃0

2
− (mχ̃0

1
+mh0

1
). Right: Br(χ̃0

3 → χ̃0
1a

0
1) versus

mχ̃0
3
− (mχ̃0

1
+mh0

1
). The colour code is the same as in figure 1.

mh0
2
/2 (green points in our plots), since such a light singlet h01 is typically associated with a

light singlino-like χ̃0
1. Thus, all three decay modes h02 → χ̃0

1χ̃
0
1, h

0
1h

0
1, a

0
1a

0
1 remain kinemat-

ically open for this scenario. In the left plot of figure 4 we have represented the resulting

BR(h02 → h01h
0
1, a

0
1a

0
1) versus BR(h02h

0
2 → χ̃0

1χ̃
0
1). The two contributions BR(h02 → h01h

0
1)

and BR(h02 → a01a
0
1) are plotted separately in the right plot of figure 4. The constraints on

the reduced signal strengths of the h02 decays imply an indirect bound BR(h02 → h01h
0
1)+

BR(h02 → a01a
0
1)+BR(h02h

0
2 → χ̃0

1χ̃
0
1) . 0.55. This upper value is relatively high since we

are allowing 2σ deviations in all the reduced signal strengths (and in particular on Rbb).

Notice also that both BR(h02 → h01h
0
1) and BR(h02 → a01a

0
1) can be sizable and typically

dominate over the invisible decay h02 → χ̃0
1χ̃

0
1.

Finally, in figure 5, we represent the values of the lightest CP-even Higgs mass versus

the lightest CP-odd Higgs mass. Notice that there is a large population of points in a square

region in the upper right corner. This area satisfies mh0
1
> mh0

2
/2 and ma0

1
> mh0

2
/2, and

therefore, h01 and a01 do not alter the branching ratios of the SM-like Higgs. Outside of

this region the constraints on the properties of a SM-like h02 are very stringent. When we

demand a very light pseudoscalar and a sizable BR(χ̃0
2,3 → χ̃0

1a
0
1), two classes of scenarios

are left, those with mh0
1
∼ 100GeV and others with mh0

1
. 60GeV.

In order to proceed with the collider analysis, we have chosen two points in the parame-

ter space which are representative of the different patterns of the Higgs spectrum considered

in our work. In particular, the benchmark point BP1 corresponds to an example in which

the lightest CP-even Higgs has a mass mh0
1
∼ 98GeV, whereas the other benchmark point

BP2 illustrates a case with mh0
1
< mh0

2
/2. The input values of the NMSSM parameters

defining these points are given in table 2, together with the corresponding mass spectrum.2

2Out of convenience, the value of the top trilinear parameter At in these benchmark points is slightly

different from the fixed one used for the scan. However, this does not affect our conclusions.
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B
R

(h

-210
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1

)1
0a1

0 a→
2

0BR(h
-210 -110 1

) 10 h 10
 h

→ 20
B

R
(h

-210

-110

1

Figure 4. Left: scatter plot of BR(h0
2 → h0

1h
0
1)+BR(h0

2 → a01a
0
1) versus BR(h0

2 → χ̃0
1χ̃

0
1). Right:

scatter plot of BR(h0
2 → h0

1h
0
1) versus BR(h0

2 → a01a
0
1). The colour code is the same as in figure 1

but here we only consider the scenario with mh0
1
< mh0

2
/2.

Figure 5. Lightest CP-even Higgs mass versus the lightest CP-odd Higgs mass. The color code

is the same as in figure 1.

These points are similar to those studied in a previous analysis [26] in the context of scalar

Higgs decays h → a01a
0
1. It should be noted that in order to obtain such a light a01 the input

parameters have to be carefully tuned.

In both benchmark points (BP1, BP2) the lightest neutralino, χ̃0
1 is mainly singlet-like

(56.2%, 66.9%) with a sizable Higgsino composition (43.3%, 30.5%). Regarding χ̃0
2,3 and

χ̃±
1 , they are mostly Higgsino and light (due to the smallness of the µ parameter and the

relatively large values of M1 and M2), and thus their productions are greatly enhanced.

The pair production of Higgsino-like χ̃0
2, χ̃

0
3, and χ̃±

1 can lead to multi-lepton final states

through decay chains in which very light pseudoscalars are produced. More specifically, in

– 8 –



J
H
E
P
0
2
(
2
0
1
4
)
0
4
8

BP1 BP2

tanβ 5 5

λ, κ 0.285, 0.114 0.286, 0.0844

Aλ, Aκ 660, 13.8 820, 14.35

M
L̃i
, Mẽci

300, 300 300, 300

M
Q̃i
, Mũc

i
, M

d̃ci
1000, 1000, 1000 1000, 1000, 1000

µ 123.0 123.5

M1, M2, M3 480, 960, 2880 250, 500, 1500

Aτ , Ab, At −1600, 1000, 1850 −1600, 1000, 1250

mh0
1
, mh0

2
, mh0

3
97.7, 125.5, 662.4 62.0, 125.6, 739.6

ma0
1
, ma0

2
6.3, 660.8 7.6, 738.4

mh± , mχ̃±

1

, mχ̃±

2

664.3, 122.6, 965.2 738.8, 118.1, 522.3

mχ̃0
1
, mχ̃0

2
, mχ̃0

3
84.4, 136.0, 140.9 63.8, 125.3, 139.0

mt̃1
, mt̃2

, m
b̃1
, m

b̃2
644.0, 1048.5, 858.7, 861.3 950.6, 1134.9, 1037.0, 1038.6

mτ̃1 , mτ̃2 296.5, 309.5 296.5, 309.5

mg̃ 2768.4 1496.0

Table 2. Model parameters that define our choice of benchmark points and resulting spectrum.

The top-quark pole mass is set to 173.5GeV and mb
MS(mb) = 4.18GeV. All the masses are given

in GeV.

BP1 BP2

Br(χ̃±
1 → ℓ±νℓχ̃

0
1) 0.11 0.11

Br(χ̃0
2 → χ̃0

1a
0
1) 1.00 1.00

Br(χ̃0
3 → χ̃0

1a
0
1), Br(χ̃

0
3 → χ̃0

2a
0
1) 0.98, 0.0 0.76, 0.20

Br(a01 → τ+τ−) 0.93 0.92

Table 3. Relevant branching fractions for multi-lepton search channels in the two benchmark

points.

the scenarios under study, the second and third lightest neutralinos decay as, χ̃0
2, 3 → χ̃0

1+a01,

χ̃0
3 → χ̃0

2 + a01 → χ̃0
1 + 2a01, and for the range of masses considered (2mτ < ma0

1
< 2mb),

the lightest pseudoscalar predominantly decays into a pair of taus, a01 → τ+τ−. Notice

that this differs from conventional analysis, in which sleptons or Z intermediate states are

involved in lepton production. On the other hand, the lighter chargino, χ̃±
1 , mainly decays

through slepton or sneutrino mediated standard modes into χ̃0
1 ℓ

± νℓ. The corresponding

branching ratios for these processes can be found in table 3, where we can observe that

they are sizable in both benchmark points.
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BP1 BP2

σχ̃0
3
χ̃0
1
+ σχ̃0

3
χ̃0
2
+ σχ̃0

3
χ̃0
3

185.8 491.9

σχ̃0
3
χ̃±

1

437.2 729.1

σχ̃0
2
χ̃0
1
+ σχ̃0

2
χ̃0
2

309.8 4.3

σχ̃0
2
χ̃±

1

727.2 648.7

Table 4. Cross sections in fb calculated with Herwig++ for the direct production of neutralino

and chargino pairs at the 8TeV LHC for our choice of benchmark points.

The signals of interest are therefore

χ̃0
2, 3χ̃

±
1 → ℓ+ℓ−ℓ± + ET/ ,

χ̃0
3χ̃

±
1 → 2ℓ+2ℓ−ℓ± + ET/ ,

χ̃0
3χ̃

0
1 → 2ℓ+2ℓ− + ET/ ,

χ̃0
2, 3χ̃

0
2, 3 → 2ℓ+2ℓ− + ET/ ,

χ̃0
2χ̃

0
3 → 3ℓ+3ℓ− + ET/ ,

χ̃0
3χ̃

0
3 → 4ℓ+4ℓ− + ET/ . (2.2)

The missing energy is associated to the lightest neutralino χ̃0
1 and the neutrinos from τ or

χ̃±
1 decays. Since BR(a01 → τ+τ−) ∼ 1, the fraction of lepton flavors in eq. (2.2) is related

to that of tau decays.3

Notice that in principle one can also consider neutralino-chargino production from stop

decay. In fact, as it was argued in ref. [38], this could be an important production channel

if gluinos or stops were light, and t̃1 → χ̃0
2t, χ̃

0
3t, χ̃

±
1 b can be enhanced if the Higgsino

components of χ̃0
2, χ̃

0
3, χ̃

±
1 are large. These decay chains can give rise to multilepton sig-

nals accompanied by hadronic jets and missing energy t̃1t̃
∗
1 → nℓ+ + n′ℓ− + n′′ jets + ET/ .

This signal can be important when LHC starts operating at a higher center of mass en-

ergy. However, given the current lower mass bounds on coloured particles from the current

8TeV LHC results, squark or gluino decays are not generally the main production chan-

nels for neutralinos in many points of the parameter space. This statement is generically

true even when squark masses are around 1TeV: although squark pair production can be

significant, the cascade decays are generally suppressed by the corresponding branching

fractions on each step. Thus, contrary to the analysis of ref. [38], we will only consider

neutralino/chargino pair production.

3 Direct production of neutralinos decaying into a light pseudoscalar

In this section, we examine how collider signatures of eq. (2.2) can be detected by using

dedicated object reconstruction schemes and kinematic variables. The sparticle mass spec-

3In principle the longer decay mode like χ̃0
2,3 → χ̃0

1h
0
1 → χ̃0

1a
0
1a

0
1 can also give rise to interesting multi-

lepton final states. In this work, however, we only considered the simplest mode of eq. (2.2) since it already

gives good statistical significance.
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trum and decay widths for the selected benchmark points are calculated with nmssmtools,

whose output is processed with Herwig++ 2.6.3 [129, 130], interfaced with CTEQ6L1

parton distribution functions [131], in order to calculate the production cross-sections.

For the SUSY signals, all possible pair productions of the light neutralinos χ̃0
1,2,3 and the

charginos χ̃±
1 have been considered. The production cross sections for each benchmark point

are given in table 4, where we can observe that the main products are neutralino-chargino

pairs, i.e., χ̃0
2,3χ̃

±
1 , whereas neutralino pairs χ̃0

2,3χ̃
0
2,3 are sub-leading. The differences of the

cross section values are mainly due to the singlet compositions of the light neutralinos. For

instance, the singlino component of χ̃0
2 in BP2 is ∼ 30%, while it is only ∼ 3% in BP1,

which results in a reduced value of the cross section for neutralino-pair production, σχ̃0
2
χ̃0
1,2
,

in BP2.

In order to study the feasibility of observing the proposed signal at the current config-

uration of the LHC, we have generated Monte Carlo (MC) event samples of the NMSSM

signal of direct neutralino pairs, as well as neutralino-chargino pairs, for a proton-proton

collision at the center-of-mass energy of 8TeV using Herwig++. After performing the

parton showering and the hadronization with Herwig++, the generator-level MC events

have been processed with Delphes 3.0.7 [132] using a modified CMS card to obtain the

detector-level data. Jets are formed using the anti-kt jet clustering algorithm [133] with

the distance parameter of 0.5. Then, they are required to have a transverse momentum

pT > 20GeV and a pseudo-rapidity |η| < 2.5 in the analysis. The b-tagging efficiency is

set to be 70% for a jet with pT > 30GeV, while the mis-tagging rates are assumed to be

10% and 1% for the c-jets and the light-flavor jets, respectively.

For choosing isolated lepton candidates (throughout the text, isolated lepton includes

e, µ, and hadronically-decaying τ , τh), the threshold pT of 5GeV is adopted and the scalar

sum of the transverse momenta of whole charged tracks with pT > 0.5GeV lying in a cone

of ∆R = 0.1 around the candidate has been calculated (we will later justify the need for

such a small ∆R). The candidate lepton is accepted as being isolated if the fraction of

the sum to the candidate’s transverse momentum is less than 10%. This isolated lepton

criterion is different from the one used in the ATLAS [134] and CMS [135] analyses to look

for the direct neutralino-chargino pair production. For instance, the CMS analysis selects

the cone size of 0.3 and the transverse momentum fraction less than 15%, in order to pick

up both isolated electrons and muons. A better isolation of the lepton with larger cone size

appears at the cost of reducing the number of isolated leptons. However, we find that the

criteria adopted by the experimental collaborations often fail to capture the signal leptons

since the leptons in the signal of interest are likely to be very close to the other lepton

sharing the same parent pseudoscalar and possess relatively soft transverse momentum.

When adopting the conventional criterion, we found that the signal is almost hidden in

the backgrounds, and for this reason we relax the criterion of the cone size while being

more strict on the fraction value. One can further attempt to tune the parameters for the

signals of each benchmarks, however it is beyond the scope of our work since a concrete

knowledge of the detector performance is necessary for that. Instead of tuning, the fake

leptons originated from the jets are removed by imposing separate cuts.

The isolated lepton chosen by the criterion is discarded if its angular separation to

the adjacent jet with pT > 20GeV is within a range of ∆R < 0.4. Furthermore, the
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Figure 6. Number of (left panel) charged leptons satisfying pT > 10GeV and |η| < 2.4 after

choosing the isolated leptons and (right panel) jets with pT > 20 GeV and |η| < 2.5.

event containing an opposite-sign same-flavor (OSSF) lepton pair with an invariant mass

below 12GeV is rejected to suppress the low-mass continuum backgrounds. This cut also

rejects some signal events due to the low-mass pseudoscalar, however, the signals can still

pass the cut since they can have different-flavor lepton pairs. Then, the event is selected

for the analysis when it has at least one isolated electron or muon with peT > 12GeV

or pµT > 8GeV and |η| < 2.4. Since the efficiency for the tau-jet identification is poor

and our analysis largely relies on leptonic tau decays, we use a conventional criterion for

reconstructing the tau-jets with a cone size of 0.5 and the minimum pT value of 10GeV. In

the analysis, we select only the tau-jet with pT > 15GeV. In figure 6, we show the lepton

and jet multiplicity distributions for both signals and backgrounds. The missing transverse

momentum pT/ is defined as the negative vector sum of the transverse momenta of all the

calibrated calorimetric energy clusters and muon candidates. In SUSY signals, the main

source of the missing energy is the neutrinos from the decays of taus or charginos, as well

as the undetectable neutralino LSP.

The main SM backgrounds consist of the EW diboson (WW , WZ, ZZ) and triboson

(WWW , WWZ, ZZZ), resulting in leptonic final states, the dileptonic top-pair, tt̄W/Z,

Drell-Yan (DY), and Z + jet processes. All the background processes except triboson

and tt̄W/Z, for which MadGraph 5 [136] has been used, are generated by Herwig++,

interfaced with Delphes to simulate the detector effects and reconstruct the final-state

objects. We use the measured cross section values in the recent CMS analysis results for

the most important SM background processes of diboson [137, 138] and dileptonic tt̄ [139],

while the values calculated with Herwig++ for the DY and Z + jet and MadGraph for

the triboson and tt̄W/Z processes are used when estimating the backgrounds.

Concerning SUSY backgrounds with conserved R-parity, the dilepton invariant mass

around ma0
1
can be a useful separator. On the other hand, since the singlino like χ̃0

1 can

be very light, large missing transverse energy might no longer be a good discriminator to

R-parity violating models. Especially, non-minimal SUSY models with broken R-parity,
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Figure 7. A kinematic configuration of the signal decay events in the rest frame of χ̃0
2.

e.g., the µνSSM [140, 141] can accommodate similar light scalars, pseudoscalars and neu-

tralinos [142, 143] and hence produces similar final states. However, measurable displaced

vertices for the latter class of models could be useful to distinguish among these construc-

tions. Finally, backgrounds arising either from squark/gluino mediated cascades or from

decays of heavier neutralino-chargino pair can be isolated from the studied signal in terms

of final state lepton and jet multiplicity.

In order to increase the ratio of the signal to the backgrounds, the following basic event

selection cuts are applied.

• At least three isolated leptons, ℓ = e, µ, τh, where τh denotes the τ -jet, and at least

one of them is required to have pT > 20GeV.

• No b-tagged jet.

• For electrons and muons, the invariant mass of the OSSF leptons mOSSF
ℓ+ℓ−

must satisfy

|mOSSF
ℓ+ℓ−

−mZ | > 15GeV to exclude the backgrounds associated with the leptonically-

decaying Z boson.

In the latest ATLAS and CMS studies, the neutralinos and charginos are assumed to

be practically EW gauginos and the decays are mediated by on/off-shell sleptons or EW

gauge bosons like

χ̃0
2 + χ̃±

1 → ℓ±ℓ̃∓(∗)
(
Z(∗) χ̃0

1

)
+ ℓ′±νℓ′χ̃

0
1 → ℓ+ℓ−ℓ′± + ET/ . (3.1)

In order to interpret the search results, simplified SUSY model points are considered

and the missing energy ET/ , the dilepton invariant mass mℓℓ, and the transverse mass

MT ≡
√
(|pℓ

T|+ ET/ )2 − |pℓ
T + pT/ |2 are employed as the main kinematic variables. In our

benchmark scenarios, the final state can be similar to that in the simplified models, how-

ever, the search strategy should be basically different from those studies not only because

of the fact that the Higgsino-like neutralinos χ̃0
3 as well as χ̃0

2 come into play in the SUSY

signal productions, but also because of the existence of the light pseudoscalar that decays

predominantly into a pair of tau leptons. In particular, due to the light pseudoscalar, the

taus are nearly collinear and the visible final state particles become relatively soft since

a portion of tau energy is carried away by the neutrinos. In figure 7, one can see an ex-

ample of the kinematic configuration in the rest frame of χ̃0
2. The kinematic configuration

often results in the failure of reconstructing the τ -jet, while the electron or muon can still
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Figure 8. Distributions of the smallest ∆Rℓ+ℓ′− The basic event selection cuts are applied for both

signals and backgrounds.

have chances to be identified as the isolated lepton. If at least two isolated leptons (e, µ

or τ -jet), sharing the same parent pseudoscalar a01, are successfully identified, their angu-

lar separation ∆Rℓ+ℓ′− ≡
√
(∆φℓ+ℓ′−)

2 + (∆ηℓ+ℓ′−)
2 will turn out to be small and can be

estimated as

∆Rℓ+ℓ′− ∼
4mχ̃0

i
ma0

1

m2
χ̃0
i

−m2
χ̃0
j

, (3.2)

in the case of χ̃0
i → χ̃0

ja
0
1 → χ̃0

jτ
+τ−. Since our basic event selection cuts demand that

there are at least three leptons in the event, all possible combinations of the opposite-sign

leptons are considered, and then the smallest value of ∆Rℓ+ℓ′− is chosen. Both signal and

dominant background distributions are shown in figure 8.

A similar final state can arise in a simplified MSSM with the sparticle mass hierarchy

of mχ̃0
1
< mτ̃ < mχ̃0

2
< mẽ, µ̃. In this case, the taus will be produced by the mediation of

the stau. This corresponds to the tau-dominated scenario in the CMS analysis [135]. For

a comparison, we pick up one MSSM sample point, calculated with softsusy 3.3.5 [144],

whose mass spectrum is the similar as our NMSSM benchmark points except mτ̃ ≈ (mχ̃0
1
+

mχ̃0
2
)/2, and then produce the detector-level events by Herwig++ and Delphes. Since

the mediating stau is a scalar state, the angular separation among the final-state leptons

is not expected to be confined in the small ∆Rℓ+ℓ′− region aside from the error due to the

mis-paired leptons. Figure 8 demonstrates that the condition with the collinear leptons is

not useful in the typical MSSM point.

Although the mOSSF
ℓ+ℓ−

cut removes the background processes associated with Z bosons

at least partially, Z → τ+τ− → ℓ+ℓ′− + ET/ events can be further reduced by imposing a

cut on dilepton invariant masses for all possible combinations of the isolated leptons (e, µ

and τ -jet), including opposite-sign different-flavor (OSDF) lepton pairs. The left panel of

figure 9 shows a peak structure around the Z boson mass in the background distribution,

while the SUSY signals are populated largely in the region of the small mass value. This

observation encourages us to use selection cuts as follows.
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Figure 9. Distributions of (left panel) dilepton invariant mass for all possible combinations of

opposite-sign isolated leptons and (right panel) the missing energy. Background distributions are

normalized to match the signal distributions. The basic event selection cuts are applied for both

signals and backgrounds.

• If any mℓ+ℓ′− for ℓ, ℓ′ = e, µ, τh satisfies |mℓ+ℓ′− − mZ | < 20GeV, the event is

discarded.

• min∀{ℓ+ℓ′−} {mℓ+ℓ′−} < 10GeV.

The latter cut is set to ensure that at least one pair of leptons originates from the light

pseudoscalar. Since similar cuts on mOSSF
ℓ+ℓ−

have already been imposed in the basic selection

of events, the cut conditions above are practically applied to the OSDF lepton pairs.

As mentioned above, the recent searches for the SUSY signature at the LHC have

employed kinematic variables like the missing energy ET/ and the transverse mass MT as

well as the dilepton invariant mass. Strong cuts on these variables can be validated if a

heavy LSP pair is the main source of the missing energy and the mass gap among sparticles

are large enough so that the visible leptons are very energetic. However, in our benchmark

scenarios, the missing energy can be quite small due to the cancellation between the LSP

and neutrinos. This is one of distinguishing features of the scenario since the neutrinos

from the tau decay are nearly collinear and the sum of the neutrino momenta would cancel

partially the LSP momenta in the rest frame of the heavier neutralino as in figure 7. This

can be checked by seeing the distributions of the MC events shown in the right panel of

figure 9. Still, the ET/ cut should be applied to suppress the backgrounds containing little

missing energies like in the QCD multi-jet processes faking leptons. We here impose rather

a mild cut on the missing energy, ET/ > 30GeV. Moreover, many of the isolated e, µ in the

SUSY signal events are from the tau, which is already quite collinear to the parent light

pseudoscalar, the visible lepton would be soft as discussed above.4 This situation with the

4At least one hard isolated lepton can be produced in the leptonic decay process of the lighter chargino,

i.e., χ̃±

1 → ℓ±νℓχ̃
0
1.
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Figure 10. Distributions of (left panel) transverse mass for one lepton + missing energy and (right

panel) and the MT2 for an opposite-sign lepton pair and missing energy. Background distributions

are normalized to match the signal distributions. The basic event selection cuts are applied for

both signals and backgrounds.

small missing energy and the soft leptons makes the transverse mass variable less efficient

for suppressing the backgrounds without sacrificing the SUSY signal events.

To see the effect, we compute the transverse mass of one lepton, which is not paired

with the other lepton to obtain the OSSF dilepton invariant mass, and the missing energy.

See the left panel of figure 10. Since the signals are populated largely in the smaller region,

we apply an upper cut instead of a lower cut on the transverse mass, MT < 60GeV. Since

the signal contains multiple leptons, we further attempt to use the other collider variable

MT2, which is a generalized transverse mass variable applicable in the case when there are

two invisible particles in the event, for the system of an opposite-sign lepton pair and the

missing energy [145, 146]. Although it does not have any particular correlation with the

sparticle masses in the signal processes, the dileptonic tt̄ and WW backgrounds exhibit the

edges around mW as can be seen in the right panel of figure 10. By definition, the input

trial mass for the invisible particle is necessary to calculate the MT2. We set the invisible

particle to be massless as it is the correct choice for the backgrounds where the neutrino

is the main source of the missing energy. Among several ways of pairing the leptons, we

calculate the MT2 of all possible opposite-sign lepton pairs and choose the smallest value

among them in the event. Then, an upper cut as MT2 < 35GeV is imposed similarly as

MT since the MT2 values of the signal events are small as can be seen in the right panel of

figure 10. In the CMS analysis, the MCT, so-called contransverse mass defined in ref. [147],

has been also used. However, it is claimed that the MCT is equivalent to the MT2 in the

case when the visible and invisible particles are massless [148, 149]. Therefore, we do not

apply the cut on the MCT in our analysis.

In addition, a jet-veto cut which rejects events containing high-pT jets can be applied.

The selection cuts defined in this section seem to be already good enough for suppressing

the leading-order backgrounds considered in this study. However, since we have used the
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Selection cuts BP1 BP2 Diboson Triboson tt̄ tt̄W/Z DY Z + jet

Basic cuts 79.5 140.2 523.6 2.1 991.4 3.0 4966.9 885.6

ET/ > 30GeV 47.2 96.0 302.2 1.8 870.7 2.7 292.7 123.5

min∆Rℓ+ℓ′− < 0.45 45.0 86.8 9.5 0.2 86.7 0.2 16.7 7.7

mℓ+ℓ′− cuts 30.9 55.1 3.1 0.04 25.5 0.03 0.0 0.0

MT < 60GeV 27.9 47.2 2.2 0.02 17.0 0.03 — —

MT2 < 35GeV 24.6 37.3 1.5 0.01 6.2 0.02 — —

Jet-veto 16.4 25.7 1.4 0.01 1.7 — — —

Table 5. Number of events passed the event selection cuts defined in the text at the 20 fb−1

integrated luminosity.

leading-order MC generators to simulate the SM backgrounds as well as the SUSY signals,

a correct modeling of the higher-order processes like tt̄+ jets or WW+ jets could affect

the analysis in the real situation. The effect would not be significant for the SUSY signal

events considered here since they do not have the source of jets in the matrix element

level, except the initial state radiation. In such cases, the jet-veto cut, which rejects events

containing high-pT jets, would be useful to reduce the multi-jet backgrounds. In order to

provide reference values for the dedicated experimental searches, we further see the effect

of the jet-veto cut with the threshold pT value of 40GeV on the signals of neutralinos and

chargino signals on top of the other selection cuts.

To estimate the cut efficiency and the signal significance, we show the number of events

that passed the cumulative event selection cuts discussed up to now in table 5 for both

BP1 and BP2. When all the cuts, including jet-veto condition, are applied, the signal

significance is well above the discovery criterion for both benchmark scenarios. Therefore,

we anticipate that the SUSY signal of this kind of scenarios can be discovered even in

the present 8TeV LHC data by tuning the lepton isolation parameters optimized for the

non-standard lepton signals.

Finally, we show the importance of a small ∆R value in table 6. An increase in

∆R drastically reduces the number of signal events, evidencing the need of choosing a

stringent criterion for lepton isolation in order to study this scenario. Notice that this

implies modification of the search strategies usually performed in ATLAS or CMS with a

dedicated criterion for lepton isolation, optimised for the decay processes involving light

pseudoscalar.

4 Conclusions

We have studied potential LHC signatures induced by the presence of very light pseu-

doscalar Higgs boson (in the mass range 2mτ < ma0
1
< 2mb) in neutralino decays in a

scenario with two light scalar Higgses within the context of the NMSSM. More specifically,

– 17 –



J
H
E
P
0
2
(
2
0
1
4
)
0
4
8

Selection cuts
∆R = 0.1 ∆R = 0.2 ∆R = 0.3

BP1 BP2 BP1 BP2 BP1 BP2

Basic cuts 79.5 140.2 36.3 72.5 17.3 38.8

ET/ > 30GeV 47.2 96.0 21.5 48.0 10.2 25.8

min∆Rℓ+ℓ′− < 0.45 45.0 86.8 19.1 41.0 8.5 19.2

mℓ+ℓ′− cuts 30.9 55.1 13.0 24.7 5.9 11.2

MT < 60GeV 27.9 47.2 12.2 22.0 5.5 9.7

MT2 < 35GeV 24.6 37.3 10.0 16.4 4.4 6.9

Jet-veto 16.4 25.7 6.4 11.4 2.9 5.0

Table 6. Variation of the number of events that pass the selection cuts defined in the text at the

20 fb−1 integrated luminosity, for various choices of the isolation criterion, ∆R.

we have considered regions of the NMSSM parameter space which feature a SM-like Higgs

boson in the mass range 123 − 127GeV together with another lighter one, h01, which is

mostly singlet. For the range of masses considered, the pseudoscalar predominantly decays

into a pair of taus, a01 → τ+τ−, leading to an abundance of leptons in the final state.

The resulting LHC phenomenology features multi-lepton signals with missing transverse

energy in the decay chains which originates from neutralino/chargino pair production,

χ̃0
2,3χ̃

±
1 → ℓ+ℓ−ℓ± + ET/ , χ̃0

3χ̃
±
1 → 2ℓ+2ℓ−ℓ± + ET/ , and χ̃0

i χ̃
0
j → n(ℓ+ℓ−) + ET/ , with

n = 2, 3, 4 for i, j = 2, 3.

We have performed a scan in the NMSSM parameter space searching for these condi-

tions and imposing all the recent experimental constraints on the Higgs sector, sparticle

masses and low-energy observables. We have further assumed that the neutralino is a com-

ponent of the dark matter and imposed the observed upper bound on its relic abundance

and on its elastic scattering cross section off quarks. The viable points in the parameter

space feature small values of κ and Aκ and as a consequence, light singlet-like h01 and a01.

On top of this, we have also demanded a sizable BR(χ̃0
2, 3 → χ̃0

1a
0
1), which favours small val-

ues of the µ parameter since this leads to Higgsino-like neutralinos. We have distinguished

between two possible scenarios, depending on whether mh0
1
< mh0

2
/2 or mh0

1
> mh0

2
/2, and

selected two representative benchmark points.

We have then carried out a reconstruction of the signal for the selected benchmark

points. The useful cuts with which the signal can be separated from the background have

been determined. After imposing a set of relevant cuts together with non-standard lepton

lepton separation, the resulting signal to background ratio is statistically significant at the

LHC with 8TeV center-of-mass energy and 20 fb−1 of integrated luminosity. This study

suggests that the analysis of inclusive multilepton searches with missing transverse energy

using the full 8TeV LHC data and the dedicated selection cuts can be used to explore

corners of the NMSSM parameter space with multiple light Higgses.

– 18 –
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[142] J. Fidalgo, D.E. Lopez-Fogliani, C. Muñoz and R.R. de Austri, The Higgs sector of the

µνSSM and collider physics, JHEP 10 (2011) 020 [arXiv:1107.4614] [INSPIRE].

[143] P. Ghosh et al., Probing the µ from ν supersymmetric standard model with displaced

multileptons from the decay of a Higgs boson at the LHC, Phys. Rev. D 88 (2013) 015009

[arXiv:1211.3177] [INSPIRE].

[144] B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra,

Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

[145] C. Lester and D. Summers, Measuring masses of semiinvisibly decaying particles pair

produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].

[146] A. Barr, C. Lester and P. Stephens, m(T2): the truth behind the glamour,

J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].

[147] D.R. Tovey, On measuring the masses of pair-produced semi-invisibly decaying particles at

hadron colliders, JHEP 04 (2008) 034 [arXiv:0802.2879] [INSPIRE].

[148] C.G. Lester, The stransverse mass, m(T2), in special cases, JHEP 05 (2011) 076

[arXiv:1103.5682] [INSPIRE].

[149] C.H. Lally and C.G. Lester, Properties of m(T2) in the massless limit, arXiv:1211.1542

[INSPIRE].

– 27 –

http://dx.doi.org/10.1007/JHEP10(2011)020
http://arxiv.org/abs/1107.4614
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.4614
http://dx.doi.org/10.1103/PhysRevD.88.015009
http://arxiv.org/abs/1211.3177
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3177
http://dx.doi.org/10.1016/S0010-4655(01)00460-X
http://arxiv.org/abs/hep-ph/0104145
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0104145
http://dx.doi.org/10.1016/S0370-2693(99)00945-4
http://arxiv.org/abs/hep-ph/9906349
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9906349
http://dx.doi.org/10.1088/0954-3899/29/10/304
http://arxiv.org/abs/hep-ph/0304226
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0304226
http://dx.doi.org/10.1088/1126-6708/2008/04/034
http://arxiv.org/abs/0802.2879
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.2879
http://dx.doi.org/10.1007/JHEP05(2011)076
http://arxiv.org/abs/1103.5682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5682
http://arxiv.org/abs/1211.1542
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1542

	Introduction
	Light Higgs scenarios in the NMSSM and choice of benchmark points
	Direct production of neutralinos decaying into a light pseudoscalar
	Conclusions

