FLASY 2013

July 2nd, 2013

LHCb Overview

Jörg Marks, Heidelberg University on behalf of the LHCb collaboration

LHC – b and c Quark Production

The LHC is also a heavy flavour factory $\sigma(\sqrt{s} = 7 \, TeV, \, pp \rightarrow c\bar{c}X) \approx 6 \, mb$ Phys. Lett. B 694, 209 (2010) $\sigma(\sqrt{s} = 7 \, TeV, \, pp \rightarrow b\bar{b}X) \approx 0.3 \, mb$ Nucl. Phys. B 871, (2013)

LHC – b and c Quark Production

The LHC is also a heavy flavour factory $\sigma(\sqrt{s} = 7 \, TeV, \, pp \rightarrow c\bar{c}X) \approx 6 \, mb$ Phys. Lett. B 694, 209 (2010) $\sigma(\sqrt{s} = 7 \, TeV, \, pp \rightarrow b\bar{b}X) \approx 0.3 \, mb$ Nucl. Phys. B 871, (2013)

• $b\overline{b} / c\overline{c}$ pairs are mainly produced in forward / backward direction

LHCb \rightarrow forward spectrometer

LHCb Detector

LHCb Detector

Jörg Marks

LHCb - Trigger Overview

Hardware Trigger based on VELO, Calorimeter- and Muonsystem

- Select on p_T objects: $h, \mu, \mu\mu, e^{\pm}, \gamma, \pi^0$
- Obtain p-p interaction and multiplicity info
- Two level software trigger based on partly / fully reconstructed objects with all detector information
 - Confirm L0 trigger using reconstr. and combined detector info
 - Select on a single track with high p_T and displaced vertices using VELO
 - Use reconstructed objects for exclusive and inclusive selections with clear signature
- In 2012 wrote 5 kHz to storage thanks to storing up to 25 % of data locally

Operations in 2011 / 2012

▶ p-p at 3.5 / 4 TeV

\blacktriangleright p-Pb at $\sqrt{s_{NN}} = 5$ TeV in 2013

- LHCb operates with high efficiency
- Take data at constant instantaneous luminosity rate: $\mathcal{L} \approx 4 \times 10^{32} \, cm^{-2} s^{-1}$

(factor 2 larger than design luminosity)

- Visible pp interactions per bunch crossing
 - μ = 1.7 (50 ns bunch spacing)

11

LHCb Physics Program

- Search for evidence of physics beyond the Standard Model in CP violation and rare decays of charm and beauty hadrons
 - Indirect search, probe large mass scales via the study of virtual quantum loops of new particles
- Only a few recent LHCb physics results can be covered here
 - Spectroscopy and production of heavy quarks Quantum numbers of X(3872), J/ψ / Υ production, and D mass measurement
 - Mixing and CP violation in the $B (B^+, B^0, B_s^0)$ system
 - Δm_s , $\Delta \Gamma_s$, ϕ_s and CPV measurements, γ measurement LHCb-CONF-2013-006
 - Mixing and CP violation in the D system (mixing in WS $D^0 \rightarrow K\pi$ and ΔA_{CP})
 - Rare decays $(B^0 \to K^* \mu \mu, B^0_s \to \phi \mu \mu)$ $B^0_{(s)} \to \mu \mu$ arXiv:1211.2674
 - Soft QCD physics, pA and Ap results LHCb-CONF-2012-034, LHCb-CONF-2013-008
 - Electroweak physics

LHCb results are available in more than 125 papers submitted to journals and 110 conference contributions. https://cds.cern.ch/collection/LHCb%20Papers?In=en

https://cds.cern.ch/collection/LHCb%20Conference%20Contributions?In=en

LHCb Physics Program

- Search for evidence of physics beyond the Standard Model in CP violation and rare decays of charm and beauty hadrons
 - Indirect search, probe large mass scales via the study of virtual quantum loops of new particles
- Only a few recent LHCb physics results can be covered here
 - Spectroscopy and production of heavy quarks Quantum numbers of X(3872), J/ψ / Υ production, and D mass measurement
 - Mixing and CP violation in the $B(B^+, B^0, B_s^0)$ system $\Delta m_s, \Delta \Gamma_s, \phi_s$ and CPV measurements, γ measurement LHCb-CONF-2013-006
 - Mixing and CP violation in the D system (mixing in WS $D^0 \rightarrow K\pi$ and ΔA_{CP})
 - Rare decays $(B^0 \to K^* \mu \mu, B^0_s \to \phi \mu \mu)$ $B^0_{(s)} \to \mu \mu$ arXiv:1211.2674
 - Soft QCD physics, pA and Ap results LHCb-CONF-2012-034, LHCb-CONF-2013-008
 - Electroweak physics

LHCb results are available in more than 125 papers submitted to journals and 110 conference contributions. https://cds.cern.ch/collection/LHCb%20Papers?In=en https://cds.cern.ch/collection/LHCb%20Conference%20Contributions?In=en

FLASY2013: LHCb Overview 13

Selected results

Production and Spectroscopy

Quantum Numbers of X(3872)

10 years after the discovery of X(3872) two possible spin states remain $J^{PC} = 1^{++}$ or $J^{PC} = 2^{-+}$

► Determine J^{PC} in a 5 d angular correlation analysis of $B^+ \to X(3872)K^+$, $X(3872) \to \pi^+\pi^- J/\psi$, $J/\psi \to \mu^+\mu^-$ arXiv: 1302.6269($\int \mathcal{L} = 1fb^{-1}$)

→ $J^{PC}(X(3872)) = 1^{++}$, exclude 2^{-+} with > 8σ

The state $\eta_{c2}(1^1D_2)$ is excluded, favour unconventional interpretations $\chi_{c1}(2^3P_1)$, $D^{*0}\overline{D}^0$ molecule, tetra quarks or charmonium-molecules

D Meson Mass Measurements

Interpreting X(3872) as $D^{*0}D^0$ molecule E_B is determined by D mass measurements: $E_B = 0.16 \pm 0.26 MeV/c^2$

- ▶ Mass measurements in the D system arXiv: 1304.6865 $(\int \mathcal{L} = 1fb^{-1})$
 - Determine D^0 mass in $D^0 \to K^+ K^- K^- \pi^+$ $M(D^0) = 1864.75 \pm 0.15 (\text{stat}) \pm 0.11 (\text{sys}) \text{ MeV/c}^2$
 - Mass difference measurements $M(D^+) - M(D^0) = 4.76 \pm 0.12 (\text{stat}) \pm 0.07 (\text{sys}) \text{ MeV/c}^2$

 $M(D_s^+) - M(D^+) = 98.68 \pm 0.03(\text{stat}) \pm 0.04(\text{sys}) \text{ MeV/c}^2$

Derive a significantly more precise D_s^+ mass $M(D_s^+) = 19684.19 \pm 0.20 \pm 0.14 \pm 0.08 \ MeV/c^2$

• Dominant syst. uncertainty on the mass is due to the momentum scale of 0.03 % D^0 mass $: 0.09 \,\mathrm{MeV/c^2}$ mass difference $: 0.04 \,\mathrm{MeV/c^2}$

J/ψ and Υ Production in pp Collisions

 $> J/\psi, \ \Upsilon \text{ production with } J/\psi \to \mu^+\mu^- \text{ and } \Upsilon(nS) \to \mu^+\mu^- \text{ at } \sqrt{s} = 8TeV$ $2.0 < y < 4.5, \ p_T(J/\psi) < 14 \ GeV/c, \ p_T(\Upsilon) < 15 \ GeV/c$ arXiv: 1304.6977

Jörg Marks

J/ψ and Υ Production in pp Collisions

 $> J/\psi$, Υ production with $J/\psi \rightarrow \mu^+\mu^-$ and $\Upsilon(nS) \rightarrow \mu^+\mu^-$ at $\sqrt{s} = 8TeV$ 2.0 < y < 4.5, $p_T(J/\psi) < 14 \ GeV/c$, $p_T(\Upsilon) < 15 \ GeV/c$ arXiv: 1304.6977

Selected results

Mixing and CP violation in the B_(s) System

Mixing Formalism in Neutral Mesons

Neutral mesons (K, D, B, B_s) are created as flavor eigenstates of the strong interaction. They can mix through weak $|B_s^0\rangle \xrightarrow{\overline{b}} < \overline{S} = \overline{S} |\overline{B}_s^0\rangle$ interactions.

The time evolution is obtained by

$$i\frac{\partial}{\partial t} \begin{pmatrix} B_s^0(t) \\ \bar{B}_s^0(t) \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix} \end{bmatrix} \begin{pmatrix} B_s^0(t) \\ \bar{B}_s^0(t) \end{pmatrix}$$

 \succ The physical eigenstates are B_L^s and B_H^s :

$$|B_{L,H}^{s}\rangle = p|B_{s}^{0}\rangle \mp q|\bar{B}_{s}^{0}\rangle$$
$$|B_{L,H}^{s}(t)\rangle = e^{-i(M_{L,H} - i\Gamma_{L,H}/2)t}|B_{L,H}^{s}(t=0)\rangle$$

 \succ Define mass and lifetime differences of B_L^s and B_H^s :

$$x = \frac{\Delta M}{\Gamma} = \frac{M_H - M_L}{\Gamma} \qquad y = \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_H - \Gamma_L}{2\Gamma}$$

$$\Gamma = \frac{\Gamma_L + \Gamma_H}{2}$$

$B_s - \overline{B}_s$ Oscillation in $B_s \to D_s^- \pi^+$

Measure time dependent decay rate of $B_s \to D_s^- \pi^+$ and $\bar{B}_s \to D_s^+ \pi^-$

▷ Select 34 k $B_s \rightarrow D_s \pi$ candidates with 5 D_s decay modes in 1 fb⁻¹

$$D_s^- \to \phi(K^+K^-)\pi^-$$

$$D_s^- \to K^{*0}(K^+\pi^-)K^-$$

$$D_s^- \to K^+K^-\pi^- \text{ non - resonant}$$

$$D_s^- \to K^-\pi^+\pi^-$$

$$D_s^- \to \pi^-\pi^+\pi^-$$

- Background separation in B_s mass
- Flavour tagging at production
- Flavour at decay from final state

Δm_s Measurement

 \blacktriangleright Perform unbinned max. likelihood fit in B_s mass and decay time

•
$$PDF \propto \left[e^{-\Gamma t} \cdot \left(\cosh\left(\frac{\Delta\Gamma}{2}t\right) \pm D\cos(\Delta m t) \right) \right] \otimes R(\sigma_t)$$
 event-by-event
• Mean decay time resolution 44 fs

Mean decay time resolution 44 fs

Fit results

Largest systematic uncertainty contributions: z - and p scale

resolution

- Most precise measurement of Δm_s to date
- Good agreement with current world average and SM

 $\Delta m_s = 17.768 \pm 0.023 \, (stat) \pm 0.006 \, (syst) \ ps^{-1}$

CPV Measurements in the B System

The only source of CP violation in SM is a single complex phase in the CKM matrix.

CP violation in mixing, $q/p \neq 1$

$$a_{sl}^{s} = \frac{\Gamma(B_{s}^{0} \to D_{s}^{-}\mu^{+}) - \Gamma(\bar{B}_{s}^{0} \to D_{s}^{+}\mu^{-})}{\Gamma(B_{s}^{0} \to D_{s}^{-}\mu^{+}) + \Gamma(\bar{B}_{s}^{0} \to D_{s}^{+}\mu^{-})} \approx 1 - |q/p|^{2} \quad \text{LHCb-CONF-2012-022} \text{ not discussed here}$$

 \succ CP violation in decay, $\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f})$

- Asymmetries in B^0_d , $B^0_s \to K\pi$ decays arXiv:1304.6173
- Asymmetries in $B \rightarrow h^+ h^- h^+$ decays arXiv:1306.1246
- CP violation in interference of mixing and decay
 - $\phi_s^{c\bar{c}s}$ in $B_s^0 \to J/\psi\phi$ and $B_s^0 \to J/\psi\pi\pi$ arXiv:1304.2600
 - $\phi_s^{s\bar{s}s}$ in $B_s^0 \to \phi\phi$ arXiv:1303.7125 not discussed here

CPV in Charmless 2-body B Decays

- ➤ The interference between $b \to u$ tree and $b \to d(s)$ penguin processes gives access to direct CP violation in $B^0_{(s)} \to K\pi$ decays
 - Measure the asymmetries

$$A_{CP} = \frac{N_{\bar{B}\to\bar{f}} - N_{B\to f}}{N_{\bar{B}\to\bar{f}} + N_{B\to f}} \qquad B \to f = \begin{pmatrix} B^0 \to K^+\pi^-\\ B^0_s \to K^-\pi^+ \end{pmatrix}$$

- First measurements in $B^0 \to K^+ \pi^-$ by BABAR and Belle (2004)
- Test Standard Model prediction in a model independent way by

 $B_{(s)} \to K\pi$ Signal

Results - CPV in $B_{(s)} \rightarrow K\pi$

Raw asymmetry measurements

Results after correcting for detection and production asymmetries

- $A_{CP}(B_s^0 \to K^-\pi^+) = 0.27 \pm 0.04 \,(stat) \pm 0.01 \,(sys)$ Significance = $6.5 \,\sigma$ (first observation)
- $A_{CP}(B^0 \to K^+\pi^-) = -0.08 \pm 0.007 \,(stat) \pm 0.003 \,(sys)$ significance = $10.5 \,\sigma$
- $\Delta = -0.02 \pm 0.05 \pm 0.04 \quad
 ightarrow$ compatible with SM expectation

ϕ_s Measurement in $B_s \to J/\psi \phi$

- $> B_s^0 \to J/\psi\phi \text{ is a tree dominated decay with a weak phase}$ $\phi_D = arg(V_{cs}V_{cb}^*) \qquad \qquad B_s^0 \frac{s}{\overline{b}}$
- Access the CP violating phase via the interfering amplitudes of $B_s^0 \to J\psi\phi$ and $B_s^0 \to \bar{B}_s^0 \to J\psi\phi$
 - $\phi_{J/\psi\phi} \equiv \phi_s = \phi_D 2 \phi_M \underbrace{\equiv}_{\text{in SM}} \phi_s^{SM}$
 - Get ϕ_s^{SM} from global fit ignoring penguin contribution, CKM fitter, arXiv:1106.4041 $\phi_s^{SM} = 0.0364 \pm 0.0016 \ rad$
- Access new physics contributions by deviations from SM $\phi_s = \phi_s^{SM} + \Delta \phi_s$, $\Delta \phi_s = arg(M_{12}/M_{12}^{SM})$

CPV and $\Delta \Gamma_s$ in $B_s \rightarrow J/\psi \phi$

> Need an angular analysis to statistically separate CP eigenstates

- $\begin{array}{l} \phi \rightarrow K^{+}K^{-} \text{ in P wave } \rightarrow \text{CP-even, CP-odd} \\ \phi \rightarrow K^{+}K^{-} \text{ in S wave } \rightarrow \text{CP-odd} \\ \text{depending on rel. orbital} \\ \text{momentum of } J/\psi \text{ and } \phi \end{array} \text{ helicity angles } \Omega = (\theta_{\mu}, \theta_{K}, \phi_{h}) \\ \hline \text{Use an sWeight-based method to determine in an max. likelihood fit} \\ \text{to } \frac{d^{4}\Gamma(B_{s}^{0} \rightarrow J\psi KK)}{dt \, d\Omega} \text{ the physics quantities } \phi_{s}, \ \Delta\Gamma_{s}, \ \Gamma_{s}, \ \dots \end{array}$
 - Key ingredients to t dependent flavour tagged angular analysis
 - probability of getting the initial B flavour wrong
 - decay time measurement
 - event by event decay time resolution
 - knowledge of Δm_s

Jörg Marks

CPV and $\Delta \Gamma_s$ in $B_s \rightarrow J/\psi \phi$

Need an angular analysis to statistically separate CP eigenstates

- Key ingredients to t dependent flavour tagged angular analysis
- probability of getting the initial B flavour wrong $\overset{59}{_{\odot}}$
- decay time measurement
- event by event decay time resolution
- knowledge of Δm_s

CPV and $\Delta \Gamma_s$ in $B_s \rightarrow J/\psi \phi$

Need an angular analysis to statistically separate CP eigenstates

- Key ingredients to t dependent flavour tagged angular analysis
- probability of getting the initial B flavour wrong $\frac{50}{20}$
- decay time measurement
- event by event decay time resolution
- knowledge of Δm_s

CPV and $\Delta \Gamma_s$ in $B_s \rightarrow J/\psi \phi$

> Need an angular analysis to statistically separate CP eigenstates

- Key ingredients to t dependent flavour tagged angular analysis
- probability of getting the initial B flavour wrong $\hat{\mathbf{p}}_{\mathbf{k}}^{\text{pr}}$
- decay time measurement
- event by event decay time resolution
- knowledge of Δm_s

Results - ϕ_s , $\Delta\Gamma_s$ in $B_s o J/\psi \phi$

This measurement superceeds previous LHCb results.

Final state rescattering between 2 or more decay channels with the same flavour quantum numbers could enhance CP asymmetries.

Selected results

Mixing and CP violation in Charm

D Mixing in $D^0 \to K\pi$ Decays

Event classes - flavour tagging at production and decay

Time evolution of the WS decay rate

assume CP conservation and
$$|x| \ll 1$$
; $|y| \ll 1$
 $T_{WS}(t) \propto e^{-\Gamma t} \left(\underbrace{R_D}_{P} + \underbrace{\sqrt{R_D} y' \Gamma t}_{4} + \underbrace{\frac{x'^2 + y'^2}{4} (\Gamma t)^2}_{4} \right)$
DCS Interference Mixing
 $\delta_{K\pi}$ is the strong phase between CF and DCS

amplitudes (
$$D^0 \rightarrow K\pi$$
)
 $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$
 $y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$ $y'^2 + x'^2 = x^2 + y^2$

Mixing in t-dependent WS $D^0 \rightarrow K\pi$

Mixing in t-dependent WS $D^0 \rightarrow K\pi$

Jörg Marks

CPV in D Decays

In the Standard Model CP violating effects are predicted to be small ($\sim 10^{-3}$)

- Access CP violation through asymmetry measurements $A_{CP}(f;t) \equiv \frac{\Gamma(D^{0}(t) \to f) \Gamma(\bar{D}^{0}(t) \to f)}{\Gamma(D^{0}(t) \to f) + \Gamma(\bar{D}^{0}(t) \to f)} = \underbrace{a_{CP}^{dir}(f)}_{\mathsf{CPV in decay}} + \underbrace{\frac{t}{\tau} a_{CP}^{ind}}_{\mathsf{CPV in mixing + interfer.}}$ CP eigenstate $M_{\mathsf{CPV in decay}} = \underbrace{u_{CP}^{+}(f)}_{\mathsf{CPV in mixing + interfer.}} + \underbrace{u_{CP}^{+}(f)}_{\mathsf{CPV in mixing + interfer.}}$
- ► Measure time integrated A_{CP} difference for $f = K^+K^-$ and $f = \pi^+\pi^-$

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = [a_{CP}^{dir}(K^+K^-) - a_{CP}^{dir}(\pi^+\pi^-)] + \frac{\Delta < t >}{\tau} a_{CP}^{ind}$$

- Measurements with 2 independent data samples in $\int \mathcal{L} = 1 f b^{-1}$
 - $D^{*+} \rightarrow D^0 \pi^+$ decays: published, $\int \mathcal{L} = 0.6 f b^{-1}$: arXiv:1112.0938 update preliminary, $\int \mathcal{L} = 1 f b^{-1}$: LHCb-CONF-2013-003 - $B \rightarrow D^0 \mu^- \nu_\mu X$ decays: arXiv:1303.2614

► ΔA_{CP} measurements in $D^+ \rightarrow \phi \pi^+$ and $D_s^+ \rightarrow K_s^0 \pi^+$ are compatible with 0 arXiv:1303.4906, not discussed here

Results - ΔA_{CP} in $D^0 \rightarrow h^+ h^-$

LHCb results

• *D** tagged sample (preliminary)

 $\Delta A_{CP} = (-0.34 \pm 0.15 \, (stat) \pm 0.10 \, (sys)) \ \%$

• μ tagged sample

 $\Delta A_{CP} = (+0.49 \pm 0.30 \, (stat) \pm 0.14 \, (sys)) \%$

HFAG averages

$$a_{CP}^{ind} = (-0.010 \pm 0.162) \%$$

 $\Delta a_{CP}^{dir} = (-0.329 \pm 0.121) \%$

Selected results

Rare Decays

 $\rightarrow s l^+ l^-$ Decays

 $b \rightarrow sl^+l^-$ FCNC processes give access to physics contributions beyond SM

- - Angular definition θ_l, θ_K, ϕ

• Diff. branching fraction $B^0 \to K^* \mu^+ \mu^-$

$$B^0 \rightarrow K^* \mu^+ \mu^-$$
 Angular Observables

Unbinned maximum likelihood fits to the differential decay rate

First measurement of $A_{FB}(q_0^2)$, consitent with leading order SM expectation

 $B_s \rightarrow \phi \mu^+ \mu^-$ Decays

 $B^0_s o \phi(K^+K^-)\mu^+\mu^-$ decays are treated similar to $B^0 o K^*\mu^+\mu^-$

• Differential branching fraction $B_s^0 o \phi \mu^+ \mu^-$ in bins of q^2

Summary

- LHCb, the forward spectrometer at the LHC, enters the high precision domain of flavour physics as demonstrated here with selected results
- Standard Model still holds its ground, LHCb does not observe tensions in the numerous measurements performed
- Measurements presented here use mainly the 2011 dataset, 30 % of the full dataset, so many more exciting results from LHCb are expected

Back up

Differential
$$\mathcal{B}(\Lambda_b^0 \to \Lambda \mu^+ \mu^-)$$

 \blacktriangleright Determine the differential branching fraction of $\Lambda_b^0 \to \Lambda \mu^+ \mu^-$ in 6 bins of $q^2 \equiv m(\mu^+\mu^-)^2$ arXiv: 1304.0000

Total branching fraction

 $dB(\Lambda\mu\mu)/dq^2 [10^{-7}(GeV^2/c^4)^{-1}]$ 0.5 10 15 $q^2 [GeV^2/c^4]$

LHCb

- Significant signal only for $q^2 > m_{J/\psi}^2$
- Good agreement with SM prediction

 $\mathcal{B}(\Lambda_b^0 \to \Lambda \mu^+ \mu^-) = (0.96 \pm 0.16 \, (stat) \pm 0.13 \, (syst) \pm 0.21 \, (norm)) \times 10^{-6}$

- $\succ B_s^0 \rightarrow \phi \phi \text{ proceeds via a gluonics penguin decay } (b \rightarrow s\bar{s}s) \text{ with a small weak phase in SM, } \phi_s^{s\bar{s}s} \approx 0.01$
- \blacktriangleright Analysis is similar to $B_s^0 \to J\psi\phi$ with $\Gamma_s, \Delta\Gamma_s$ fixed to values obtained

[-2.46, -0.76] rad @ 68% C.L.sys. uncertainties included

$$B_s \rightarrow \phi \mu^+ \mu^-$$
 Angular Observables

Unbinned maximum likelihood fits to the differential decay rate

First measurements, consitent with leading order SM expectation

$$B^0_{(s)} \rightarrow \mu^+ \mu^-$$
 Decays

> Small branching ratio predictions for $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ in SM $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.23 \pm 0.27) \times 10^{-9}$ **Deviations probe physics** $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.07 \pm 0.10) \times 10^{-10}$ beyond SM

6000

Analysis strategy

- $\int_{2011} \mathcal{L} = 1.0 f b^{-1} + \int_{2012} \mathcal{L} = 1.1 f b^{-1}$
- Classification of candidates in 2-D space of $m(\mu^+\mu^-)$ and a BDT
- Calibrate expectations using control channels
- Use normalisation channels
- Simultaneous unbinned likelihood fit to 15 BDT bins

$$\sum_{g=1}^{3} \frac{5800}{5600}$$

arXiv:1211.2674

First Evidence for $B_s ightarrow \mu^+ \mu^-$

→ Observe 3.5 σ access of $B_s^0 \to \mu^+ \mu^-$ candidates compared to background $(p - value \ bck. \ only: 5 \cdot 10^{-4})$

•
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 3.2^{+1.5}_{-1.2} \times 10^{-9}$$

The results are consistent with SM expectations

► $B^0 \to \mu^+ \mu^-$ candidates are compatible with background expectation • $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 9.4 \times 10^{-10} @ 95\% C.L.$

These measurements superceed previous LHCb results

γ Measurement in $B \rightarrow DK$ Decays

 $\blacktriangleright \text{ Determine } \gamma \text{ from combining different methods using LHCb data}$ (see arXiv: 1305.2050) $\int \mathcal{L} = 1fb^{-1}$ $\gamma = arg(\frac{V_{ud}V_{ub}^*}{V_{ud}V_u^*})$

(Two-body GLW/ADS) : $B \rightarrow Dh, D \rightarrow hh$ [Phys. Lett. B712 (2012) 203] (Four-body ADS) : $B \rightarrow Dh, D \rightarrow K\pi\pi\pi$ [LHCb-PAPER-2012-055; arXiv:1303.4646] (GGSZ) : $B \rightarrow Dh, D \rightarrow K_{s}hh$ [Phys. Lett. B718 (2012) 43]

Preliminary update using 3 fb⁻¹ of data for GGSZ LHCB-CONF-2013-006

• Most precise measurement to date $\gamma = (67 \pm 12)^\circ @~68\%~CL$

