Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

001308129 001__ 1308129
001308129 003__ SzGeCERN
001308129 005__ 20211212101501.0
001308129 0248_ $$aoai:cds.cern.ch:1308129$$pcerncds:CERN$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT
001308129 0247_ $$2DOI$$a10.1140/epjc/s10052-011-1555-z
001308129 035__ $$9arXiv$$aoai:arXiv.org:1102.4455
001308129 035__ $$9Inspire$$a890364
001308129 037__ $$9arXiv$$aarXiv:1102.4455$$chep-ex
001308129 037__ $$aCERN-PH-EP-2010-056
001308129 041__ $$aeng
001308129 088__ $$aCERN-PH-EP-2010-056
001308129 084__ $$2CERN Library$$aPH-EP-2010-056
001308129 100__ $$aAbdallah, J.$$uParis U., VI-VII
001308129 245__ $$aSearch for single top quark production via contact interactions at LEP2
001308129 260__ $$c2011
001308129 269__ $$aGeneva$$bCERN$$c09 Sep 2010
001308129 300__ $$a22 p
001308129 500__ $$9arXiv$$aComments: 22 pages, 8 figures, version as Accepted for publication by Eur. Phys. J. C
001308129 520__ $$aSingle top quark production via four-fermion contact interactions associated to flavour-changing neutral currents was searched for in data taken by the DELPHI detector at LEP2. The data were accumulated at centre-of-mass energies ranging from 189 to 209 GeV, with an integrated luminosity of 598.1 pb^-1. No evidence for a signal was found. Limits on the energy scale Lambda, were set for scalar-, vector- and tensor-like coupling scenarios.
001308129 520__ $$9arXiv$$aSingle top quark production via four-fermion contact interactions associated to flavour-changing neutral currents was searched for in data taken by the DELPHI detector at LEP2. The data were accumulated at centre-of-mass energies ranging from 189 to 209 GeV, with an integrated luminosity of 598.1 pb^-1. No evidence for a signal was found. Limits on the energy scale Lambda, were set for scalar-, vector- and tensor-like coupling scenarios.
001308129 540__ $$aarXiv nonexclusive-distrib. 1.0$$barXiv$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
001308129 540__ $$3Preprint$$aCC-BY-3.0
001308129 542__ $$3Preprint$$dCERN$$g2010
001308129 595__ $$aCERN EDS
001308129 595__ $$aLANL EDS
001308129 595__ $$aCERN-PH-EP
001308129 595__ $$agiva
001308129 65017 $$2SzGeCERN$$aParticle Physics - Experiment
001308129 693__ $$aCERN LEP$$eDELPHI
001308129 693__ $$aCERN LEP$$eDELPHI
001308129 690C_ $$aCERN
001308129 690C_ $$aARTICLE
001308129 695__ $$9LANL EDS$$ahep-ex
001308129 700__ $$aAbreu, P.$$uLIP, Lisbon
001308129 700__ $$aAdam, W.$$uVienna, OAW
001308129 700__ $$aAdzic, P.$$uDemocritos Nucl. Res. Ctr.
001308129 700__ $$aAlbrecht, T.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aAlemany-Fernandez, R.$$uCERN
001308129 700__ $$aAllmendinger, T.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aAllport, P.P.$$uLiverpool U.
001308129 700__ $$aAmaldi, U.$$uMilan Bicocca U.$$uINFN, Milan Bicocca
001308129 700__ $$aAmapane, N.$$uTurin U.$$uINFN, Turin
001308129 700__ $$aAmato, S.$$uRio de Janeiro Federal U.
001308129 700__ $$aAnashkin, E.$$uPadua U.$$uINFN, Padua
001308129 700__ $$aAndreazza, A.$$uINFN, Milan$$uMilan U.
001308129 700__ $$aAndringa, S.$$uLIP, Lisbon
001308129 700__ $$aAnjos, N.$$uLIP, Lisbon
001308129 700__ $$aAntilogus, P.$$uParis U., VI-VII
001308129 700__ $$aApel, W.D.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aArnoud, Y.$$uLPSC, Grenoble
001308129 700__ $$aAsk, S.$$uCERN
001308129 700__ $$aAsman, B.$$uStockholm U.
001308129 700__ $$aAugustin, J.E.$$uParis U., VI-VII
001308129 700__ $$aAugustinus, A.$$uCERN
001308129 700__ $$aBaillon, P.$$uCERN
001308129 700__ $$aBallestrero, A.$$uTurin U.$$uINFN, Turin
001308129 700__ $$aBambade, P.$$uOrsay, LAL
001308129 700__ $$aBarbier, R.$$uLyon, IPN
001308129 700__ $$aBardin, D.$$uDubna, JINR
001308129 700__ $$aBarker, G.J.$$uWarwick U.
001308129 700__ $$aBaroncelli, A.$$uINFN, Rome3$$uRome III U.
001308129 700__ $$aBattaglia, M.$$uCERN
001308129 700__ $$aBaubillier, M.$$uParis U., VI-VII
001308129 700__ $$aBecks, K.H.$$uWuppertal U.
001308129 700__ $$aBegalli, M.$$uRio de Janeiro State U.
001308129 700__ $$aBehrmann, A.$$uWuppertal U.
001308129 700__ $$aBen-Haim, E.$$uParis U., VI-VII
001308129 700__ $$aBenekos, N.$$uNatl. Tech. U., Athens
001308129 700__ $$aBenvenuti, A.$$uBologna U.$$uINFN, Bologna
001308129 700__ $$aBerat, C.$$uLPSC, Grenoble
001308129 700__ $$aBerggren, M.$$uParis U., VI-VII
001308129 700__ $$aBertrand, D.$$uBrussels U., IIHE
001308129 700__ $$aBesancon, M.$$uDAPNIA, Saclay
001308129 700__ $$aBesson, N.$$uDAPNIA, Saclay
001308129 700__ $$aBloch, D.$$uStrasbourg, IPHC
001308129 700__ $$aBlom, M.$$uNIKHEF, Amsterdam
001308129 700__ $$aBluj, M.$$uWarsaw, Inst. Nucl. Studies
001308129 700__ $$aBonesini, M.$$uMilan Bicocca U.$$uINFN, Milan Bicocca
001308129 700__ $$aBoonekamp, M.$$uDAPNIA, Saclay
001308129 700__ $$aBooth, P.S.L.$$uLiverpool U.
001308129 700__ $$aBorisov, G.$$uLancaster U.
001308129 700__ $$aBotner, O.$$uUppsala U.
001308129 700__ $$aBouquet, B.$$uOrsay, LAL
001308129 700__ $$aBowcock, T.J.V.$$uLiverpool U.
001308129 700__ $$aBoyko, I.$$uDubna, JINR
001308129 700__ $$aBracko, M.$$uLjubljana U.
001308129 700__ $$aBrenner, R.$$uUppsala U.
001308129 700__ $$aBrodet, E.$$uOxford U.
001308129 700__ $$aBruckman, P.$$uCracow, INP
001308129 700__ $$aBrunet, J.M.$$uCollege de France
001308129 700__ $$aBuschbeck, B.$$uVienna, OAW
001308129 700__ $$aBuschmann, P.$$uWuppertal U.
001308129 700__ $$aCalvi, M.$$uMilan Bicocca U.$$uINFN, Milan Bicocca
001308129 700__ $$aCamporesi, T.$$uCERN
001308129 700__ $$aCanale, V.$$uINFN, Rome2$$uRome U., Tor Vergata
001308129 700__ $$aCarena, F.$$uCERN
001308129 700__ $$aCastro, N.$$uLIP, Lisbon
001308129 700__ $$aCavallo, F.$$uBologna U.$$uINFN, Bologna
001308129 700__ $$aChapkin, M.$$uSerpukhov, IHEP
001308129 700__ $$aCharpentier, Ph.$$uCERN
001308129 700__ $$aChecchia, P.$$uPadua U.$$uINFN, Padua
001308129 700__ $$aChierici, R.$$uCERN
001308129 700__ $$aChliapnikov, P.$$uSerpukhov, IHEP
001308129 700__ $$aChudoba, J.$$uCERN
001308129 700__ $$aChung, S.U.$$uCERN
001308129 700__ $$aCieslik, K.$$uCracow, INP
001308129 700__ $$aCollins, P.$$uCERN
001308129 700__ $$aContri, R.$$uGenoa U.$$uINFN, Genoa
001308129 700__ $$aCosme, G.$$uOrsay, LAL
001308129 700__ $$aCossutti, F.$$uTrieste U.$$uINFN, Trieste
001308129 700__ $$aCosta, M.J.$$uValencia U.$$uValencia U., IFIC
001308129 700__ $$aCrennell, D.$$uRutherford
001308129 700__ $$aCuevas, J.$$uOviedo U.
001308129 700__ $$aD'Hondt, J.$$uBrussels U., IIHE
001308129 700__ $$ada Silva, T.$$uRio de Janeiro Federal U.
001308129 700__ $$aDa Silva, W.$$uParis U., VI-VII
001308129 700__ $$aDella Ricca, G.$$uTrieste U.$$uINFN, Trieste
001308129 700__ $$aDe Angelis, A.$$uUdine U.$$uINFN, Udine
001308129 700__ $$aDe Boer, W.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aDe Clercq, C.$$uBrussels U., IIHE
001308129 700__ $$aDe Lotto, B.$$uUdine U.$$uINFN, Udine
001308129 700__ $$aDe Maria, N.$$uTurin U.$$uINFN, Turin
001308129 700__ $$aDe Min, A.$$uPadua U.$$uINFN, Padua
001308129 700__ $$ade Paula, L.$$uRio de Janeiro Federal U.
001308129 700__ $$aDi Ciaccio, L.$$uINFN, Rome2$$uRome U., Tor Vergata
001308129 700__ $$aDi Simone, A.$$uINFN, Rome3$$uRome III U.
001308129 700__ $$aDoroba, K.$$uWarsaw, Inst. Nucl. Studies
001308129 700__ $$aDrees, J.$$uWuppertal U.
001308129 700__ $$aEigen, G.$$uBergen U.
001308129 700__ $$aEkelof, T.$$uUppsala U.
001308129 700__ $$aEllert, M.$$uUppsala U.
001308129 700__ $$aElsing, M.$$uCERN
001308129 700__ $$aEspirito Santo, M.C.$$uLIP, Lisbon
001308129 700__ $$aFanourakis, G.$$uDemocritos Nucl. Res. Ctr.
001308129 700__ $$aFassouliotis, D.$$uAthens U.$$uDemocritos Nucl. Res. Ctr.
001308129 700__ $$aFeindt, M.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aFernandez, J.$$uCantabria Inst. of Phys.
001308129 700__ $$aFerrer, A.$$uValencia U.$$uValencia U., IFIC
001308129 700__ $$aFerro, F.$$uGenoa U.$$uINFN, Genoa
001308129 700__ $$aFlagmeyer, U.$$uWuppertal U.
001308129 700__ $$aFoeth, H.$$uCERN
001308129 700__ $$aFokitis, E.$$uNatl. Tech. U., Athens
001308129 700__ $$aFulda-Quenzer, F.$$uOrsay, LAL
001308129 700__ $$aFuster, J.$$uValencia U.$$uValencia U., IFIC
001308129 700__ $$aGandelman, M.$$uRio de Janeiro Federal U.
001308129 700__ $$aGarcia, C.$$uValencia U.$$uValencia U., IFIC
001308129 700__ $$aGavillet, Ph.$$uCERN
001308129 700__ $$aGazis, E.$$uNatl. Tech. U., Athens
001308129 700__ $$aGokieli, R.$$uCERN$$uWarsaw, Inst. Nucl. Studies
001308129 700__ $$aGolob, B.$$uLjubljana U.
001308129 700__ $$aGomez-Ceballos, G.$$uCantabria Inst. of Phys.
001308129 700__ $$aGoncalves, P.$$uLIP, Lisbon
001308129 700__ $$aGraziani, E.$$uINFN, Rome3$$uRome III U.
001308129 700__ $$aGrosdidier, G.$$uOrsay, LAL
001308129 700__ $$aGrzelak, K.$$uWarsaw, Inst. Nucl. Studies
001308129 700__ $$aGuy, J.$$uRutherford
001308129 700__ $$aHaag, C.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aHallgren, A.$$uUppsala U.
001308129 700__ $$aHamacher, K.$$uWuppertal U.
001308129 700__ $$aHamilton, K.$$uOxford U.
001308129 700__ $$aHaug, S.$$uOslo U.
001308129 700__ $$aHauler, F.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aHedberg, V.$$uLund U.
001308129 700__ $$aHennecke, M.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aHoffman, J.$$uWarsaw, Inst. Nucl. Studies
001308129 700__ $$aHolmgren, S.O.$$uStockholm U.
001308129 700__ $$aHolt, P.J.$$uCERN
001308129 700__ $$aHoulden, M.A.$$uLiverpool U.
001308129 700__ $$aJackson, J.N.$$uLiverpool U.
001308129 700__ $$aJarlskog, G.$$uLund U.
001308129 700__ $$aJarry, P.$$uDAPNIA, Saclay
001308129 700__ $$aJeans, D.$$uOxford U.
001308129 700__ $$aJohansson, E.K.$$uStockholm U.
001308129 700__ $$aJonsson, P.$$uLyon, IPN
001308129 700__ $$aJoram, C.$$uCERN
001308129 700__ $$aJungermann, L.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aKapusta, F.$$uParis U., VI-VII
001308129 700__ $$aKatsanevas, S.$$uLyon, IPN
001308129 700__ $$aKatsoufis, E.$$uNatl. Tech. U., Athens
001308129 700__ $$aKernel, G.$$uLjubljana U.
001308129 700__ $$aKersevan, B.P.$$uLjubljana U.
001308129 700__ $$aKerzel, U.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aKing, B.T.$$uLiverpool U.
001308129 700__ $$aKjaer, N.J.$$uCERN
001308129 700__ $$aKluit, P.$$uNIKHEF, Amsterdam
001308129 700__ $$aKokkinias, P.$$uDemocritos Nucl. Res. Ctr.
001308129 700__ $$aKourkoumelis, C.$$uAthens U.
001308129 700__ $$aKouznetsov, O.$$uDubna, JINR
001308129 700__ $$aKrumstein, Z.$$uDubna, JINR
001308129 700__ $$aKucharczyk, M.$$uCracow, INP
001308129 700__ $$aLamsa, J.$$uIowa State U.
001308129 700__ $$aLeder, G.$$uVienna, OAW
001308129 700__ $$aLedroit, F.$$uLPSC, Grenoble
001308129 700__ $$aLeinonen, L.$$uStockholm U.
001308129 700__ $$aLeitner, R.$$uCharles U.
001308129 700__ $$aLemonne, J.$$uBrussels U., IIHE
001308129 700__ $$aLepeltier, V.$$uOrsay, LAL
001308129 700__ $$aLesiak, T.$$uCracow, INP
001308129 700__ $$aLiebig, W.$$uWuppertal U.
001308129 700__ $$aLiko, D.$$uVienna, OAW
001308129 700__ $$aLipniacka, A.$$uStockholm U.
001308129 700__ $$aLopes, J.H.$$uRio de Janeiro Federal U.
001308129 700__ $$aLopez, J.M.$$uOviedo U.
001308129 700__ $$aLoukas, D.$$uDemocritos Nucl. Res. Ctr.
001308129 700__ $$aLutz, P.$$uDAPNIA, Saclay
001308129 700__ $$aLyons, L.$$uOxford U.
001308129 700__ $$aMacNaughton, J.$$uVienna, OAW
001308129 700__ $$aMalek, A.$$uWuppertal U.
001308129 700__ $$aMaltezos, S.$$uNatl. Tech. U., Athens
001308129 700__ $$aMandl, F.$$uVienna, OAW
001308129 700__ $$aMarco, J.$$uCantabria Inst. of Phys.
001308129 700__ $$aMarco, R.$$uCantabria Inst. of Phys.
001308129 700__ $$aMarechal, B.$$uRio de Janeiro Federal U.
001308129 700__ $$aMargoni, M.$$uPadua U.$$uINFN, Padua
001308129 700__ $$aMarin, J.C.$$uCERN
001308129 700__ $$aMariotti, C.$$uCERN
001308129 700__ $$aMarkou, A.$$uDemocritos Nucl. Res. Ctr.
001308129 700__ $$aMartinez-Rivero, C.$$uCantabria Inst. of Phys.
001308129 700__ $$aMasik, J.$$uPrague, Inst. Phys.
001308129 700__ $$aMastroyiannopoulos, N.$$uDemocritos Nucl. Res. Ctr.
001308129 700__ $$aMatorras, F.$$uCantabria Inst. of Phys.
001308129 700__ $$aMatteuzzi, C.$$uMilan Bicocca U.$$uINFN, Milan Bicocca
001308129 700__ $$aMazzucato, F.$$uPadua U.$$uINFN, Padua
001308129 700__ $$aMazzucato, M.$$uPadua U.$$uINFN, Padua
001308129 700__ $$aMc Nulty, R.$$uLiverpool U.
001308129 700__ $$aMeroni, C.$$uINFN, Milan$$uMilan U.
001308129 700__ $$aMigliore, E.$$uTurin U.$$uINFN, Turin
001308129 700__ $$aMitaroff, W.$$uVienna, OAW
001308129 700__ $$aMjoernmark, U.$$uLund U.
001308129 700__ $$aMoa, T.$$uStockholm U.
001308129 700__ $$aMoch, M.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aMoenig, K.$$uCERN
001308129 700__ $$aMonge, R.$$uGenoa U.$$uINFN, Genoa
001308129 700__ $$aMontenegro, J.$$uNIKHEF, Amsterdam
001308129 700__ $$aMoraes, D.$$uRio de Janeiro Federal U.
001308129 700__ $$aMoreno, S.$$uLIP, Lisbon
001308129 700__ $$aMorettini, P.$$uGenoa U.$$uINFN, Genoa
001308129 700__ $$aMueller, U.$$uWuppertal U.
001308129 700__ $$aMuenich, K.$$uWuppertal U.
001308129 700__ $$aMulders, M.$$uNIKHEF, Amsterdam
001308129 700__ $$aMundim, L.$$uRio de Janeiro State U.
001308129 700__ $$aMurray, W.$$uRutherford
001308129 700__ $$aMuryn, B.$$uAGH-UST, Cracow
001308129 700__ $$aMyatt, G.$$uOxford U.
001308129 700__ $$aMyklebust, T.$$uOslo U.
001308129 700__ $$aNassiakou, M.$$uDemocritos Nucl. Res. Ctr.
001308129 700__ $$aNavarria, F.$$uBologna U.$$uINFN, Bologna
001308129 700__ $$aNawrocki, K.$$uWarsaw, Inst. Nucl. Studies
001308129 700__ $$aNemecek, S.$$uPrague, Inst. Phys.
001308129 700__ $$aNicolaidou, R.$$uDAPNIA, Saclay
001308129 700__ $$aNikolenko, M.$$uStrasbourg, IPHC$$uDubna, JINR
001308129 700__ $$aOblakowska-Mucha, A.$$uAGH-UST, Cracow
001308129 700__ $$aObraztsov, V.$$uSerpukhov, IHEP
001308129 700__ $$aOliveira, O.$$uLIP, Lisbon
001308129 700__ $$aOlshevski, A.$$uDubna, JINR
001308129 700__ $$aOnofre, A.$$uLIP, Lisbon
001308129 700__ $$aOrava, R.$$uHelsinki Inst. of Phys.$$uHelsinki U.
001308129 700__ $$aOsterberg, K.$$uHelsinki Inst. of Phys.$$uHelsinki U.
001308129 700__ $$aOuraou, A.$$uDAPNIA, Saclay
001308129 700__ $$aOyanguren, A.$$uValencia U.$$uValencia U., IFIC
001308129 700__ $$aPaganoni, M.$$uMilan Bicocca U.$$uINFN, Milan Bicocca
001308129 700__ $$aPaiano, S.$$uBologna U.$$uINFN, Bologna
001308129 700__ $$aPalacios, J.P.$$uLiverpool U.
001308129 700__ $$aPalka, H.$$uCracow, INP
001308129 700__ $$aPapadopoulou, Th.D.$$uNatl. Tech. U., Athens
001308129 700__ $$aPape, L.$$uCERN
001308129 700__ $$aParkes, C.$$uGlasgow U.
001308129 700__ $$aParodi, F.$$uGenoa U.$$uINFN, Genoa
001308129 700__ $$aParzefall, U.$$uCERN
001308129 700__ $$aPasseri, A.$$uINFN, Rome3$$uRome III U.
001308129 700__ $$aPasson, O.$$uWuppertal U.
001308129 700__ $$aPeralta, L.$$uLIP, Lisbon
001308129 700__ $$aPerepelitsa, V.$$uValencia U.$$uValencia U., IFIC
001308129 700__ $$aPerrotta, A.$$uBologna U.$$uINFN, Bologna
001308129 700__ $$aPetrolini, A.$$uGenoa U.$$uINFN, Genoa
001308129 700__ $$aPiedra, J.$$uCantabria Inst. of Phys.
001308129 700__ $$aPieri, L.$$uINFN, Rome3$$uRome III U.
001308129 700__ $$aPierre, F.$$uDAPNIA, Saclay
001308129 700__ $$aPimenta, M.$$uLIP, Lisbon
001308129 700__ $$aPiotto, E.$$uCERN
001308129 700__ $$aPodobnik, T.$$uLjubljana U.
001308129 700__ $$aPoireau, V.$$uCERN
001308129 700__ $$aPol, M.E.$$uRio de Janeiro, CBPF
001308129 700__ $$aPolok, G.$$uCracow, INP
001308129 700__ $$aPozdniakov, V.$$uDubna, JINR
001308129 700__ $$aPukhaeva, N.$$uDubna, JINR
001308129 700__ $$aPullia, A.$$uMilan Bicocca U.$$uINFN, Milan Bicocca
001308129 700__ $$aRadojicic, D.$$uOxford U.
001308129 700__ $$aRebecchi, P.$$uCERN
001308129 700__ $$aRehn, J.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aReid, D.$$uNIKHEF, Amsterdam
001308129 700__ $$aReinhardt, R.$$uWuppertal U.
001308129 700__ $$aRenton, P.$$uOxford U.
001308129 700__ $$aRichard, F.$$uOrsay, LAL
001308129 700__ $$aRidky, J.$$uPrague, Inst. Phys.
001308129 700__ $$aRivero, M.$$uCantabria Inst. of Phys.
001308129 700__ $$aRodriguez, D.$$uCantabria Inst. of Phys.
001308129 700__ $$aRomero, A.$$uTurin U.$$uINFN, Turin
001308129 700__ $$aRonchese, P.$$uPadua U.$$uINFN, Padua
001308129 700__ $$aRoudeau, P.$$uOrsay, LAL
001308129 700__ $$aRovelli, T.$$uBologna U.$$uINFN, Bologna
001308129 700__ $$aRuhlmann-Kleider, V.$$uDAPNIA, Saclay
001308129 700__ $$aRyabtchikov, D.$$uSerpukhov, IHEP
001308129 700__ $$aSadovsky, A.$$uDubna, JINR
001308129 700__ $$aSalmi, L.$$uHelsinki Inst. of Phys.$$uHelsinki U.
001308129 700__ $$aSalt, J.$$uValencia U.$$uValencia U., IFIC
001308129 700__ $$aSander, C.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aSavoy-Navarro, A.$$uParis U., VI-VII
001308129 700__ $$aSchwickerath, U.$$uCERN
001308129 700__ $$aSekulin, R.$$uRutherford
001308129 700__ $$aSiebel, M.$$uWuppertal U.
001308129 700__ $$aSisakian, A.$$uDubna, JINR
001308129 700__ $$aSmadja, G.$$uLyon, IPN
001308129 700__ $$aSmirnova, O.$$uLund U.
001308129 700__ $$aSokolov, A.$$uSerpukhov, IHEP
001308129 700__ $$aSopczak, A.$$uLancaster U.
001308129 700__ $$aSosnowski, R.$$uWarsaw, Inst. Nucl. Studies
001308129 700__ $$aSpassov, T.$$uCERN
001308129 700__ $$aStanitzki, M.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aStocchi, A.$$uOrsay, LAL
001308129 700__ $$aStrauss, J.$$uVienna, OAW
001308129 700__ $$aStugu, B.$$uBergen U.
001308129 700__ $$aSzczekowski, M.$$uWarsaw, Inst. Nucl. Studies
001308129 700__ $$aSzeptycka, M.$$uWarsaw, Inst. Nucl. Studies
001308129 700__ $$aSzumlak, T.$$uAGH-UST, Cracow
001308129 700__ $$aTabarelli, T.$$uMilan Bicocca U.$$uINFN, Milan Bicocca
001308129 700__ $$aTegenfeldt, F.$$uUppsala U.
001308129 700__ $$aTimmermans, J.$$uNIKHEF, Amsterdam
001308129 700__ $$aTkatchev, L.$$uDubna, JINR
001308129 700__ $$aTobin, M.$$uLiverpool U.
001308129 700__ $$aTodorovova, S.$$uPrague, Inst. Phys.
001308129 700__ $$aTome, B.$$uLIP, Lisbon
001308129 700__ $$aTonazzo, A.$$uMilan Bicocca U.$$uINFN, Milan Bicocca
001308129 700__ $$aTortosa, P.$$uValencia U.$$uValencia U., IFIC
001308129 700__ $$aTravnicek, P.$$uPrague, Inst. Phys.
001308129 700__ $$aTreille, D.$$uCERN
001308129 700__ $$aTristram, G.$$uCollege de France
001308129 700__ $$aTrochimczuk, M.$$uWarsaw, Inst. Nucl. Studies
001308129 700__ $$aTroncon, C.$$uINFN, Milan$$uMilan U.
001308129 700__ $$aTurluer, M.L.$$uDAPNIA, Saclay
001308129 700__ $$aTyapkin, I.A.$$uDubna, JINR
001308129 700__ $$aTyapkin, P.$$uDubna, JINR
001308129 700__ $$aTzamarias, S.$$uDemocritos Nucl. Res. Ctr.
001308129 700__ $$aUvarov, V.$$uSerpukhov, IHEP
001308129 700__ $$aValenti, G.$$uBologna U.$$uINFN, Bologna
001308129 700__ $$aVan Dam, P.$$uNIKHEF, Amsterdam
001308129 700__ $$aVan Eldik, J.$$uCERN
001308129 700__ $$avan Remortel, N.$$uAntwerp U.
001308129 700__ $$aVan Vulpen, I.$$uCERN
001308129 700__ $$aVegni, G.$$uINFN, Milan$$uMilan U.
001308129 700__ $$aVeloso, F.$$uLIP, Lisbon
001308129 700__ $$aVenus, W.$$uRutherford
001308129 700__ $$aVerdier, P.$$uLyon, IPN
001308129 700__ $$aVerzi, V.$$uINFN, Rome2$$uRome U., Tor Vergata
001308129 700__ $$aVilanova, D.$$uDAPNIA, Saclay
001308129 700__ $$aVitale, L.$$uTrieste U.$$uINFN, Trieste
001308129 700__ $$aVrba, V.$$uPrague, Inst. Phys.
001308129 700__ $$aWahlen, H.$$uWuppertal U.
001308129 700__ $$aWashbrook, A.J.$$uLiverpool U.
001308129 700__ $$aWeiser, C.$$uKIT, Karlsruhe, EKP
001308129 700__ $$aWicke, D.$$uCERN
001308129 700__ $$aWickens, J.$$uBrussels U., IIHE
001308129 700__ $$aWilkinson, G.$$uOxford U.
001308129 700__ $$aWinter, M.$$uStrasbourg, IPHC
001308129 700__ $$aWitek, M.$$uCracow, INP
001308129 700__ $$aYushchenko, O.$$uSerpukhov, IHEP
001308129 700__ $$aZalewska, A.$$uCracow, INP
001308129 700__ $$aZalewski, P.$$uWarsaw, Inst. Nucl. Studies
001308129 700__ $$aZavrtanik, D.$$uNova Gorica U.
001308129 700__ $$aZhuravlov, V.$$uDubna, JINR
001308129 700__ $$aZimine, N.I.$$uDubna, JINR
001308129 700__ $$aZintchenko, A.$$uDubna, JINR
001308129 700__ $$aZupan, M.$$uDemocritos Nucl. Res. Ctr.
001308129 710__ $$gDELPHI Collaboration
001308129 710__ $$5PH-EP
001308129 773__ $$c1555$$pEur. Phys. J. C$$v71$$y2011
001308129 859__ $$fcatherine.zimmermann@cern.ch
001308129 8564_ $$8598600$$s495506$$uhttps://cds.cern.ch/record/1308129/files/CERN-PH-EP-2010-056.pdf
001308129 8564_ $$8608459$$s382524$$uhttps://cds.cern.ch/record/1308129/files/arXiv1102.4455v1.pdf$$yPreprint
001308129 8564_ $$81052082$$s382304$$uhttps://cds.cern.ch/record/1308129/files/arXiv:1102.4455.pdf
001308129 8564_ $$81052087$$s12459$$uhttps://cds.cern.ch/record/1308129/files/fig_like_norm_hadr_207.png$$y00023 Distributions of the discriminant variable $\ln{\mathcal{L}}_R$ for data, expected background and signal after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV: a) hadronic topology; semi-leptonic topology: b) $\Xe$ sample; c) $\mu$ sample; d) \emph{no-id} sample. These distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}). The signal normalisation is arbitrary, but the same in all plots.
001308129 8564_ $$81052090$$s12731$$uhttps://cds.cern.ch/record/1308129/files/fig_like_norm_muao_207.png$$y00025 Distributions of the discriminant variable $\ln{\mathcal{L}}_R$ for data, expected background and signal after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV: a) hadronic topology; semi-leptonic topology: b) $\Xe$ sample; c) $\mu$ sample; d) \emph{no-id} sample. These distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}). The signal normalisation is arbitrary, but the same in all plots.
001308129 8564_ $$81052078$$s13197$$uhttps://cds.cern.ch/record/1308129/files/fig_like_norm_elec_207.png$$y00024 Distributions of the discriminant variable $\ln{\mathcal{L}}_R$ for data, expected background and signal after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV: a) hadronic topology; semi-leptonic topology: b) $\Xe$ sample; c) $\mu$ sample; d) \emph{no-id} sample. These distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}). The signal normalisation is arbitrary, but the same in all plots.
001308129 8564_ $$81052098$$s13416$$uhttps://cds.cern.ch/record/1308129/files/fig_pdf_elec_btag.png$$y00018 Distributions of variables relevant for the semi-leptonic topology after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV In the left column: angle between the lepton and the neutrino; in the right column: $\Xb$-tag of most energetic jet; (a,b) $\Xe$ sample; (c,d) $\mu$ sample; (e,f) \emph{no-id} sample. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots.
001308129 8564_ $$81052075$$s13479$$uhttps://cds.cern.ch/record/1308129/files/fig_like_norm_noid_207.png$$y00026 Distributions of the discriminant variable $\ln{\mathcal{L}}_R$ for data, expected background and signal after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV: a) hadronic topology; semi-leptonic topology: b) $\Xe$ sample; c) $\mu$ sample; d) \emph{no-id} sample. These distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}). The signal normalisation is arbitrary, but the same in all plots.
001308129 8564_ $$81052079$$s14992$$uhttps://cds.cern.ch/record/1308129/files/fig_pdf_muao_btag.png$$y00020 Distributions of variables relevant for the semi-leptonic topology after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV In the left column: angle between the lepton and the neutrino; in the right column: $\Xb$-tag of most energetic jet; (a,b) $\Xe$ sample; (c,d) $\mu$ sample; (e,f) \emph{no-id} sample. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots.
001308129 8564_ $$81052094$$s15380$$uhttps://cds.cern.ch/record/1308129/files/fig_cost.png$$y00001 The differential cross-section $\mathrm{d}\sigma/\mathrm{d}\cos\theta$, normalized to the total cross-section, for the process $\Xe^+\Xe^-\to \Xt\bar \Xc$ without ISR, is shown as a function of the cosine of the polar angle of the $\Xt$ quark, for $m_\Xt=175$~GeV$/c^2$, $\Lambda=1$~TeV, $\sqrt{s}=206$~GeV and the scenarios described in Table~\ref{tab:scenarios}. The shapes of the differential cross-sections for scenarios $a$, $V-a$ and $V+a$ are the same as scenario $V$.
001308129 8564_ $$81052099$$s15540$$uhttps://cds.cern.ch/record/1308129/files/fig_pdf_noid_btag.png$$y00022 Distributions of variables relevant for the semi-leptonic topology after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV In the left column: angle between the lepton and the neutrino; in the right column: $\Xb$-tag of most energetic jet; (a,b) $\Xe$ sample; (c,d) $\mu$ sample; (e,f) \emph{no-id} sample. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots.
001308129 8564_ $$81052072$$s15919$$uhttps://cds.cern.ch/record/1308129/files/fig_pre_muao_anglep.png$$y00009 Distributions of variables relevant for the sequential selection of the semi-leptonic topology after the common preselection are shown at $\langle\sqrt{s}\rangle=206.6$~GeV. $e$ sample: a) missing momentum; b) polar angle of the missing momentum (after applying the cut on the missing momentum distribution); $\mu$ sample: c) lepton polar angle; d) lepton isolation angle; \emph{no-id} sample: e) missing momentum; f) polar angle of the missing momentum (after applying the cut on the missing momentum distribution). The $\XW\XW$, $\Xq\bar\Xq(\gamma)$ and ``others'' labels have the same meaning as in Fig.~\ref{fig:pre.hadr}. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots. The arrows show the applied cuts.
001308129 8564_ $$81052080$$s16535$$uhttps://cds.cern.ch/record/1308129/files/fig_pdf_elec_anglnu.png$$y00017 Distributions of variables relevant for the semi-leptonic topology after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV In the left column: angle between the lepton and the neutrino; in the right column: $\Xb$-tag of most energetic jet; (a,b) $\Xe$ sample; (c,d) $\mu$ sample; (e,f) \emph{no-id} sample. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots.
001308129 8564_ $$81052084$$s16700$$uhttps://cds.cern.ch/record/1308129/files/fig_pdf_muao_anglnu.png$$y00019 Distributions of variables relevant for the semi-leptonic topology after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV In the left column: angle between the lepton and the neutrino; in the right column: $\Xb$-tag of most energetic jet; (a,b) $\Xe$ sample; (c,d) $\mu$ sample; (e,f) \emph{no-id} sample. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots.
001308129 8564_ $$81052081$$s17151$$uhttps://cds.cern.ch/record/1308129/files/fig_pre_muao_angiso.png$$y00010 Distributions of variables relevant for the sequential selection of the semi-leptonic topology after the common preselection are shown at $\langle\sqrt{s}\rangle=206.6$~GeV. $e$ sample: a) missing momentum; b) polar angle of the missing momentum (after applying the cut on the missing momentum distribution); $\mu$ sample: c) lepton polar angle; d) lepton isolation angle; \emph{no-id} sample: e) missing momentum; f) polar angle of the missing momentum (after applying the cut on the missing momentum distribution). The $\XW\XW$, $\Xq\bar\Xq(\gamma)$ and ``others'' labels have the same meaning as in Fig.~\ref{fig:pre.hadr}. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots. The arrows show the applied cuts.
001308129 8564_ $$81052074$$s18022$$uhttps://cds.cern.ch/record/1308129/files/fig_pre_elec_pmis.png$$y00007 Distributions of variables relevant for the sequential selection of the semi-leptonic topology after the common preselection are shown at $\langle\sqrt{s}\rangle=206.6$~GeV. $e$ sample: a) missing momentum; b) polar angle of the missing momentum (after applying the cut on the missing momentum distribution); $\mu$ sample: c) lepton polar angle; d) lepton isolation angle; \emph{no-id} sample: e) missing momentum; f) polar angle of the missing momentum (after applying the cut on the missing momentum distribution). The $\XW\XW$, $\Xq\bar\Xq(\gamma)$ and ``others'' labels have the same meaning as in Fig.~\ref{fig:pre.hadr}. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots. The arrows show the applied cuts.
001308129 8564_ $$81052086$$s18127$$uhttps://cds.cern.ch/record/1308129/files/fig_pre_elec_angmis.png$$y00008 Distributions of variables relevant for the sequential selection of the semi-leptonic topology after the common preselection are shown at $\langle\sqrt{s}\rangle=206.6$~GeV. $e$ sample: a) missing momentum; b) polar angle of the missing momentum (after applying the cut on the missing momentum distribution); $\mu$ sample: c) lepton polar angle; d) lepton isolation angle; \emph{no-id} sample: e) missing momentum; f) polar angle of the missing momentum (after applying the cut on the missing momentum distribution). The $\XW\XW$, $\Xq\bar\Xq(\gamma)$ and ``others'' labels have the same meaning as in Fig.~\ref{fig:pre.hadr}. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots. The arrows show the applied cuts.
001308129 8564_ $$81052097$$s20777$$uhttps://cds.cern.ch/record/1308129/files/fig_pdf_hadr_pb.png$$y00014 Distributions of variables relevant for the hadronic topology after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV: a) $\Xb$-tag of the event; b) $\Xb$ jet momentum; c) reconstructed $\XW$ boson mass; d) reconstructed $\Xt$ quark mass. The a), b) and c) distributions were used as PDF to construct the discriminant variable for the hadronic topology. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots.
001308129 8564_ $$81052093$$s20820$$uhttps://cds.cern.ch/record/1308129/files/fig_pre_hadr_logchi2.png$$y00006 Distributions of variables relevant for the sequential selection of the hadronic topology are shown at $\langle\sqrt{s}\rangle=206.6$~GeV: a) ratio between the effective centre-of-mass energy and the centre-of-mass energy; b) thrust; c) $-\ln(y_{4\to3})$; d) $\chi^2/n.d.f.$ of the kinematic fit imposing energy-momentum conservation. The $\XW\XW$, $\Xq\bar\Xq(\gamma)$ and ``others'' labels represent the background contribution from charged-current four-fermion final states generated with WPHACT~\cite{wphact97,wphact03a,wphact03b}, two-fermion final states generated with KK2F~\cite{kk2f} and all the other processes mentioned in Section~\ref{sec:data}, respectively. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots. The arrows show the applied cuts.
001308129 8564_ $$81052085$$s20871$$uhttps://cds.cern.ch/record/1308129/files/fig_pre_hadr_thrust.png$$y00004 Distributions of variables relevant for the sequential selection of the hadronic topology are shown at $\langle\sqrt{s}\rangle=206.6$~GeV: a) ratio between the effective centre-of-mass energy and the centre-of-mass energy; b) thrust; c) $-\ln(y_{4\to3})$; d) $\chi^2/n.d.f.$ of the kinematic fit imposing energy-momentum conservation. The $\XW\XW$, $\Xq\bar\Xq(\gamma)$ and ``others'' labels represent the background contribution from charged-current four-fermion final states generated with WPHACT~\cite{wphact97,wphact03a,wphact03b}, two-fermion final states generated with KK2F~\cite{kk2f} and all the other processes mentioned in Section~\ref{sec:data}, respectively. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots. The arrows show the applied cuts.
001308129 8564_ $$81052091$$s20994$$uhttps://cds.cern.ch/record/1308129/files/fig_pdf_hadr_mw.png$$y00015 Distributions of variables relevant for the hadronic topology after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV: a) $\Xb$-tag of the event; b) $\Xb$ jet momentum; c) reconstructed $\XW$ boson mass; d) reconstructed $\Xt$ quark mass. The a), b) and c) distributions were used as PDF to construct the discriminant variable for the hadronic topology. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots.
001308129 8564_ $$81052076$$s21686$$uhttps://cds.cern.ch/record/1308129/files/fig_rec_hadr_mt.png$$y00016 Distributions of variables relevant for the hadronic topology after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV: a) $\Xb$-tag of the event; b) $\Xb$ jet momentum; c) reconstructed $\XW$ boson mass; d) reconstructed $\Xt$ quark mass. The a), b) and c) distributions were used as PDF to construct the discriminant variable for the hadronic topology. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots.
001308129 8564_ $$81052096$$s21871$$uhttps://cds.cern.ch/record/1308129/files/fig_pdf_hadr_btag.png$$y00013 Distributions of variables relevant for the hadronic topology after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV: a) $\Xb$-tag of the event; b) $\Xb$ jet momentum; c) reconstructed $\XW$ boson mass; d) reconstructed $\Xt$ quark mass. The a), b) and c) distributions were used as PDF to construct the discriminant variable for the hadronic topology. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots.
001308129 8564_ $$81052083$$s22135$$uhttps://cds.cern.ch/record/1308129/files/fig_pre_hadr_sprime.png$$y00003 Distributions of variables relevant for the sequential selection of the hadronic topology are shown at $\langle\sqrt{s}\rangle=206.6$~GeV: a) ratio between the effective centre-of-mass energy and the centre-of-mass energy; b) thrust; c) $-\ln(y_{4\to3})$; d) $\chi^2/n.d.f.$ of the kinematic fit imposing energy-momentum conservation. The $\XW\XW$, $\Xq\bar\Xq(\gamma)$ and ``others'' labels represent the background contribution from charged-current four-fermion final states generated with WPHACT~\cite{wphact97,wphact03a,wphact03b}, two-fermion final states generated with KK2F~\cite{kk2f} and all the other processes mentioned in Section~\ref{sec:data}, respectively. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots. The arrows show the applied cuts.
001308129 8564_ $$81052077$$s22408$$uhttps://cds.cern.ch/record/1308129/files/fig_pre_noid_pmis.png$$y00011 Distributions of variables relevant for the sequential selection of the semi-leptonic topology after the common preselection are shown at $\langle\sqrt{s}\rangle=206.6$~GeV. $e$ sample: a) missing momentum; b) polar angle of the missing momentum (after applying the cut on the missing momentum distribution); $\mu$ sample: c) lepton polar angle; d) lepton isolation angle; \emph{no-id} sample: e) missing momentum; f) polar angle of the missing momentum (after applying the cut on the missing momentum distribution). The $\XW\XW$, $\Xq\bar\Xq(\gamma)$ and ``others'' labels have the same meaning as in Fig.~\ref{fig:pre.hadr}. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots. The arrows show the applied cuts.
001308129 8564_ $$81052088$$s23225$$uhttps://cds.cern.ch/record/1308129/files/fig_pdf_noid_anglnu.png$$y00021 Distributions of variables relevant for the semi-leptonic topology after the sequential selection at $\langle\sqrt{s}\rangle=206.6$~GeV In the left column: angle between the lepton and the neutrino; in the right column: $\Xb$-tag of most energetic jet; (a,b) $\Xe$ sample; (c,d) $\mu$ sample; (e,f) \emph{no-id} sample. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots.
001308129 8564_ $$81052089$$s23336$$uhttps://cds.cern.ch/record/1308129/files/fig_pre_hadr_ycut2.png$$y00005 Distributions of variables relevant for the sequential selection of the hadronic topology are shown at $\langle\sqrt{s}\rangle=206.6$~GeV: a) ratio between the effective centre-of-mass energy and the centre-of-mass energy; b) thrust; c) $-\ln(y_{4\to3})$; d) $\chi^2/n.d.f.$ of the kinematic fit imposing energy-momentum conservation. The $\XW\XW$, $\Xq\bar\Xq(\gamma)$ and ``others'' labels represent the background contribution from charged-current four-fermion final states generated with WPHACT~\cite{wphact97,wphact03a,wphact03b}, two-fermion final states generated with KK2F~\cite{kk2f} and all the other processes mentioned in Section~\ref{sec:data}, respectively. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots. The arrows show the applied cuts.
001308129 8564_ $$81052073$$s24946$$uhttps://cds.cern.ch/record/1308129/files/fig_pre_noid_angmis.png$$y00012 Distributions of variables relevant for the sequential selection of the semi-leptonic topology after the common preselection are shown at $\langle\sqrt{s}\rangle=206.6$~GeV. $e$ sample: a) missing momentum; b) polar angle of the missing momentum (after applying the cut on the missing momentum distribution); $\mu$ sample: c) lepton polar angle; d) lepton isolation angle; \emph{no-id} sample: e) missing momentum; f) polar angle of the missing momentum (after applying the cut on the missing momentum distribution). The $\XW\XW$, $\Xq\bar\Xq(\gamma)$ and ``others'' labels have the same meaning as in Fig.~\ref{fig:pre.hadr}. The signal distributions correspond to scenario $SVT$ (see Table~\ref{tab:scenarios}) and their normalisations are arbitrary, but the same in all plots. The arrows show the applied cuts.
001308129 8564_ $$81052095$$s29204$$uhttps://cds.cern.ch/record/1308129/files/fig_sec_eficaz_zoom.png$$y00002 The total cross-section $\sigma_{\Xt\Xc} = \sigma(\Xe^+ \Xe^- \to\Xt\bar \Xc + \bar \Xt \Xc)$ is shown as a function of the centre-of-mass energy, for $m_\Xt=175$~GeV$/c^2$, $\Lambda=1$~TeV and for the scenarios described in Table~\ref{tab:scenarios}. In this scale the cross-sections for scenarios $V-a$ and $V+a$ are indistinguishable from the cross-section for scenario $V$.
001308129 8564_ $$81052092$$s4779$$uhttps://cds.cern.ch/record/1308129/files/fig_fig_feynmeetc2.png$$y00000 The $\Xe\Xe\Xt\Xc$ and $\XZ\Xt\Xc$ vertex contributions to the $\Xe^+\Xe^-\to \Xt\bar \Xc$ process.
001308129 916__ $$sn$$w201046$$ya2011
001308129 960__ $$a13
001308129 961__ $$c20110224$$h0940$$lCER01$$x20101118
001308129 963__ $$aPUBLIC
001308129 970__ $$a000711329CER
001308129 980__ $$aARTICLE
001308129 980__ $$aDELPHI_Papers