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We show that the Aharonov-Bohm effect in the nuclear matrix model [1] derives the statistical
nature of nucleons in holographic QCD. For Nc= odd (even), the nucleon is shown to be a fermion
(boson).

The statistics of baryons depends on the number of
colors in QCD; in particular for large Nc QCD, as the
baryons are bound states of Nc quarks, they are fermions
for oddNc, while bosons for evenNc. The nuclear matrix
model [1] derived in holographic QCD offers a simple ef-
fective description of multi-baryon systems, where we can
compute baryon spectra, short-distance nuclear forces,
and even three-body nuclear forces [2]. However, since
the nuclear matrix model has only bosonic variables, it
is natural to ask how the fermionic nature of baryons
comes out from the matrix model. In chiral soliton mod-
els, this question was answered from the properties of
Wess-Zumino term [3].

To identify the statistics (fermionic/bosonic) of nucle-
ons in the nuclear matrix model, we consider a 2π rota-
tion in the target space of the matrix model. The target
space index is carried by XM and wα̇i. The effect on XM

is trivial, since X decouples from the system in the ma-
trix model for a single baryon (k = 1) once the ADHM
constraint is solved. However, since we have a nontriv-
ial gauge field A0, there is a nontrivial effect on the wα̇i

sector. In fact, this gauge field A0 turns out to be re-
sponsible for the statistics of the baryons, as we will see.

In a pion effective lagrangian, it is known that the
Wess-Zumino term is essential for showing the nucleon
statistics, in the picture of solitonic nucleon of the system
[3]. Now, in holographic QCD, this Wess-Zumino term
is known to be from the 4-form Ramond-Ramond flux
in the gravity background in the D4-D8 model of holo-
graphic QCD [4]. In the nuclear matrix model [1], the
Ramond-Ramond flux generates a Chern-Simons term in
1 dimension, which is just a term consisting of a single
gauge field A0. The wα̇i field is charged under the gauge
symmetry, so it is natural to expect that the gauge dy-
namics in this 1 dimension with the Chern-Simons term
gives the nucleon statistics.

In the nuclear matrix model, the terms including the
fundamental field wα̇i, except for the ADHM potential
terms and the mass term, are

S =
λNcMKK

54π

∫
dt D0w̄

α̇
i D0wα̇i +Nc

∫
dt A0 . (1)
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α̇ is a spinor index which is for SU(2) ≃ SO(3) spatial
rotation in the target space. i = 1, · · · , Nf is a flavor
index. This is a one-dimensional gauge theory whose
gauge field is A0. The covariant derivative is defined as
D0wα̇i ≡ ∂0wα̇i − iwα̇iA0. Note that A0 is a gauge field
for U(k) gauge symmetry of the matrix model, so, for
k = 1 (single baryon), A0 does not carry any non-Abelian
index.
Let us make a spatial rotation, for example along the

x3 axis, by an angle 2π. We look at how a wave function
of a baryon transforms under this rotation, and if it ac-
quires a phase nπ with an odd integer n, i.e. it changes
a sign, then the state is determined to be a fermion.
Since wα̇i carries a spinor index of the target space, it

is obvious that the spatial rotation acts for the case of
the rotation around the x3 axis with an angle θ, as

wα̇i → U β̇
α̇ wβ̇i , U = exp

[
i
θ

2
τ3
]
. (2)

Here τ3 is the third component of Pauli matrices. Our
spatial rotation by 2π means that the angle θ moves in
the period 0 ≤ θ ≤ 2π.
As shown in [1], the vacuum of the matrix model for

k = 1 is quite simple,

w =

(
ρ0 0
0 ρ0

)
. (3)

After minimizing the hamiltonian, we obtain a certain
nonzero value for this ρ0. So the spatial rotation (2)
corresponds to a certain path in the target space of wα̇i.
In the following, we would like to compute an Aharonov-
Bohm phase with this path. For that, it is inconvenient
that two nonzero entries in (3) moves simultaneously. So,
we combine a gauge transformation exp[−iθ/2] together
with the spatial rotation (2), so that we find a path

wα̇i → U β̇
α̇ wβ̇i , U =

(
1 0
0 e−iθ

)
. (4)

With this, we find that only the lower-right corner of wα̇i

in (3) rotates. Indeed, the same change of the parame-
terization of the path was used in [3] for the soliton in
the pion effective field theory.
We are interested in a phase change of a baryon wave

function. The argument of the wave function is the mod-
uli of this matrix model, and it is a part of wα̇i configu-
ration space. If we think of the path of wα̇i defined by
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(4), then the phase of the wave function of our concern is
in fact an Aharonov-Bohm (AB) phase, for the path (4),
as if we regard the lower-right entry of the matrix field
wα̇i as a position of a charged particle.
Let us write down the lagrangian for this charged par-

ticle, to compute the AB phase. Writing the lower-right
component of wα̇i as wα̇=2,i=2 = u + iv where u and v
are real, then the relevant part of the matrix model is

S =
λNcMKK

54π

∫
dt |∂t(u+ iv)− iA0(u+ iv)|2 . (5)

It was shown in [1] that solving the equation of motion for
A0, gives A0 = −27π/2λMKKρ

2
0, which is a real constant.

Then the action (5) can be rewritten with conjugate mo-
menta in real coordinates as

S =
1

2M

∫
dt

[
(Pu +A0vM)2 + (Pv −A0uM)2

]
. (6)

Here we have defined the “mass” M of the hypothetical
particle moving in the u-v space as M = λNcMKK/27π.
The expression shows that the particle is in a minimally-
coupled gauge potential in the u-v space, defined by

Ãu ≡ −A0Mv =
Nc

2ρ20
v , Ãv ≡ A0Mu = −

Nc

2ρ20
u . (7)

The magnetic flux made by this gauge potential is con-
stant.

The path of this hypothetical charged particle is given
by (4), which is

u+ iv = ρ0e
−iθ (0 ≤ θ ≤ 2π) (8)

so the circle encloses the area πρ20, in a counter-clockwise
way. The AB phase Φ is given by an integration of the
gauge potential (7) along this path,

Φ = −ρ0

∮
Ãθdθ = Ncπ . (9)

In the last equality, we have used (7) in a polar coor-

dinate, Ãθ = −Nc/2ρ0. The negative sign is from the
orientation of the path.

This AB phase means that, when Nc is odd, the spatial
rotation by the angle 2π results in a sign (−1) multiplied
to the baryon wave function. Therefore, when Nc is odd
(even), the baryon is a fermion (boson).

It is intriguing that a simple mechanism, the AB phase,
is encoded in the nuclear matrix model naturally to en-
sure the baryon statistics in holographic QCD.
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