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The propagation of field disturbances is examined in the context of the effective Yang-Mills

Lagrangian, which is intended to be applied to QCD systems. It is shown that birefringence phenomena

can occur in such systems provided some restrictive conditions, as causality, are fulfilled. Possible

applications to phenomenology are addressed.
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I. INTRODUCTION

Small disturbances on nonlinear fields propagate with
velocity depending on the polarization states. In general
there will be two polarization modes, leading to the exis-
tence of two waves propagating with different velocities.
This phenomenon is known in the literature as birefrin-
gence. In the Maxwell theory (i.e., Abelian gauge field) it
can be found when light propagates inside certain material
media [1]. It can also appear in the context of nonlinear
spin-one fields [2–4], as it occurs in the quantum electro-
dynamics (QED). The effective Lagrangian for QED was
derived long ago [5] for slowly varying but arbitrary strong
electromagnetic fields. Its nonlinearities lead to effects like
birefringence and photon splitting [2]. Some other inves-
tigations on this issue can be found in [6–9].

For the case of non-Abelian gauge theories, the quantum
fluctuations lead to a vacuum state which does not coincide
with the vacuum coming from the perturbation theories.
The structure of the vacuum state was discussed for several
models in [10–15]. The one-loop effective action for Yang-
Mills theory was presented and discussed in, e.g., [10,11].
For the asymptotically free theory in the regime of large
mean fields the effective action is controlled by perturba-
tion theory. In this context the issue of event horizon
formation in the physical vacuum associated with color
confinement was considered in [16].

The mathematical formalism (see Sec. II for details) to
deal with the propagation of small disturbances in non-
linear spin-one fields [2,4] depends on the Lagrangian as a
general function of the field invariant. Thus, it can be used
to examine the wave propagation in systems governed by a
Yang-Mills effective Lagrangian. Particularly, it is worth-
while to analyze if effects like birefringence can occur in
this context. Quantum chromodynamics (QCD) could be

taken as a specific application, since it presents strong
nonlinear properties.
In this manuscript the one-parameter effective

Lagrangian presented in [11] is used as a ‘‘working model’’
when discussing Yang-Mills fields. Because of the possi-
bility of two polarization modes presenting different ve-
locities, as derived from our theoretical framework, it is
shown that the birefringence phenomena can occur pro-
vided that causal conditions are fulfilled. In the QCD case,
we discuss how to observe the birefringence phenomena
associated with the propagation of small disturbances of
the gluon field. Though the gluon is not directly observable
due to confinement, a bulk of deconfined hot (and/or dense)
quark-gluon matter is expected to exist in the ultrarelativ-
istic heavy ion interactions, as well as in the early phase of
the universe [17]. In those cases when the gluon propagates
in the quark-gluon matter, it is argued that the birefrin-
gence of gluon field leads to local polarization of gluons.
The polarization correlation is suggested to be measured in
gold-gold collision on the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory and lead-lead
collision on the Large Hadron Collider (LHC) at CERN.
The paper is organized as follows. In Sec. II the light

cone conditions associated with the propagation of small
disturbances in one-parameter spin-one theories are re-
viewed. In Sec. III the effective Lagrangian for a Yang-
Mills field [11] is presented, and the procedure of taking
volumetric spatial average is defined. Then we discuss the
nontrivial behavior of the phase velocity. The conditions on
the causal propagation are stated and some limiting cases
from the effective Lagrangian are examined. Sections IV
and V are dedicated to the possible applications to phe-
nomenology and the effective geometry issue, respectively.
Finally, some final remarks are presented in the conclusion.
The present investigation is considered under the regime

of the eikonal approximation, as addressed in [4]. Latin
indices run in the range (1, 2, 3) and Greek indices run in
the range (0, 1, 2, 3). The Minkowski spacetime is used,
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employing a Cartesian coordinate system. The background
metric is denoted by ���, which is defined by

diagðþ1;�1;�1;�1Þ. Heaviside nonrationalized units
are used and c ¼ 1 ¼ @. The completely antisymmetric
tensor ����� is defined such that �0123 ¼ 1.

II. LIGHT CONE CONDITIONS

A. Field equations for one-parameter spin-one theories

The strength tensor field FðaÞ
�� and the gauge field A

ðaÞ
� are

related by

FðaÞ
�� ¼ @�A

ðaÞ
� � @�A

ðaÞ
� þ CabcAðbÞ

� AðcÞ
� ; (1)

where Cabc represents the structure constant for a compact
Lie group G. This tensor field can be conveniently defined

in terms of the (non-Abelian) electric EðaÞ
� and magnetic

HðaÞ
� fields as

FðaÞ
�� ¼ V�E

ðaÞ
� � V�E

ðaÞ
� � ���

��V�H
ðaÞ
� ; (2)

where V� represents the four-velocity of an observer at rest

with respect to the laboratory. In Cartesian coordinates it is
given by V� ¼ �0

�. In order to alleviate the notation, the

‘‘color’’ indices in the upper brackets will be omitted in
what follows.

Let us assume the gauge invariant Lagrangian density as
a general function of the Lorentz invariant F ¼: F��F�� as

L ¼ LðFÞ. From the minimal action principle we get the
equation of motion

ðLFF
��Þ;� ¼ 0; (3)

where a comma denotes partial derivatives with respect to
the Cartesian coordinates. LF represents the derivative of L
with respect to the invariant F. LFF is the second deriva-
tive. Using the relation F;� ¼ 2F��F��;� in Eq. (3) we

obtain

2LFFF
��F��F��;� þ LFF

��
;� ¼ 0: (4)

The field strength F�� must satisfy the identity

F��;� þ F��;� þ F��;� ¼ 0: (5)

Let us now derive the expression for the light cone con-
ditions for this class of theories.

B. The propagation of the field disturbances

In this section we analyze the propagation of waves
associated with the discontinuities of the field [18]. Let
us consider a surface of discontinuity � defined by
Zðx�Þ ¼ 0. Whenever � is a global surface, it divides
the spacetime in two distinct regions U� and Uþ (Z< 0
andZ> 0, respectively). Given an arbitrary function of the
coordinates, fðx�Þ, we define its discontinuity on � as

½fðx�Þ�� ¼: lim
fP�g!P

½fðPþÞ � fðP�Þ� (6)

where Pþ, P� and P belong to Uþ, U�, and �, respec-
tively. Applying the conditions [18] for the tensor field F��

and its derivative, we set

½F���� ¼ 0 (7a)

½F��;��� ¼ f��k� (7b)

where f�� represents the discontinuities of field on the

surface � and k� ¼: ð!; ~kÞ represents the components of

the wave 4-vector. The discontinuity of Eqs. (4) and (5)
yields, respectively,

f��k
� ¼ � 2

LF

LFFF�
�F�	f�	k�; (8)

f��k� þ f��k� þ f��k� ¼ 0: (9)

For the case where f�� is the wave propagation tensor

given by Eq. (7b), for which Eq. (9) applies, it follows that

f�� ¼ 
ð��k� � ��k�Þ; (10)

where
 is the strength of the wavelet and �� represents the

polarization vector. Working with Eqs. (8)–(10) we obtain
the eigenvalue equation

Z�
��

� ¼ 0; (11)

where we defined

Z�
� ¼: ��

� þ 4

LFk
2
LFFF

��F��k�k�; (12)

with k2 ¼: k�k�. The eigenvectors of Z�
� represent the

dynamically allowed polarization modes (eþ, e�). The
general solution for the eigenvalue equation is formally
given by detjZ�

�j ¼ 0, and results in the following light

cone conditions [2,4,19]:

k2þ ¼ �F��F�
�k

þ
�k

þ
� ; � ¼: 4LFF

LF

(13)

k2� ¼ 0; (14)

The � signs are related with the two possible polarization
modes associated with the wave propagation [2]. The ex-
istence of these two solutions shows that birefringence
effects may appear, provided that LFF=LF � 0. In the
formalism of geometrical optics it is usually said that
generally there will be two rays inside the medium, the
ordinary ray (o-ray) and the extraordinary ray (e-ray). The
former does not depend on the direction of wave propaga-
tion and its velocity is equal to the light velocity in the
classical vacuum of electrodynamics. The latter presents
an explicit dependence on the direction of propagation.
The light cone conditions for two-parameter Lagrangians
can be obtained in the same lines. For further details, see
Refs. [2,4].
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III. WAVE PROPAGATION IN THE YANG-MILLS
FIELD

A. The effective Lagrangian

The effective Lagrangian for QCD in terms of the pa-
rameter background field F can be presented [11] in the
form

L eff ¼ 1

4

F

�gðtÞ2 ; t ¼: log
F

�4
(15)

where the effective coupling �gðtÞ is implicitly given by

t ¼
Z �gðtÞ

g
dg

1

�ðgÞ ; (16)

with �ðgÞ the Callan-Symanzik �-function and g the
gauge field coupling constant appearing in the basic
QCD Lagrangian.

In fact, there are many invariants of the Yang-Mills field
with the number dependent on the specific gauge group
[20]. The ansatz used to derive this effective Lagrangian
takes into consideration only the algebraic invariant F and
imposes consistency with the trace anomaly for the energy-
momentum tensor [21].

For the present proposes, the system described by
Eq. (15) is assumed to satisfy the following requirements:

(1) the volumetric spatial average of the color field
strength is independent of direction;

(2) it is equally probable that the products EiEj and
HiHj (with i � j), at any time, take positive or
negative values;

(3) there is no net flow of energy as measured by an
observer at rest with respect to the system.

The above-mentioned volumetric spatial average of an
arbitrary quantity X for a given instant of time � is defined
as

�X ¼: lim
V!Vo

1

V

Z
X

ffiffiffiffiffiffiffi�g
p

d3xi; (17)

with V ¼ R ffiffiffiffiffiffiffi�g
p

d3xi, and Vo stands for the time depen-

dent volume of the whole space. A similar average proce-
dure has been already considered in the context of general
relativity solutions [22–24].

In terms of the color fields, these requirements imply
that

�E i ¼ 0; �Hi ¼ 0; EiHj �HiEj ¼ 0; (18)

EiEj ¼ �1
3E

2�ij; (19)

HiHj ¼ �1
3H

2�ij; (20)

where we have defined E2 ¼: �EiEi and H2 ¼: �HiHi.
The above average procedure consists of an idealization to
deal with systems like a quark-gluon plasma. Nevertheless,
it has adequate elements for our discussions. From the
point of view of a statistical ensemble, we can assume

that the field average over the whole bulk is vanishing
compared to the fluctuation, so it is isotropic as a whole,
while anisotropic for each local area.

B. Application to the effective Yang-Mills Lagrangian

For the special Lagrangian presented in Eq. (15), the
factor � in Eq. (13) is given by

� ¼ �4

E2ðZ2 � 1ÞGð �gÞ; (21)

where we have defined the quantities

Z2 ¼: H2

E2
; (22)

Gð �gÞ ¼: �g _�g�3 _�g2 þ �g €�g

�g2 � 2 �g _�g
; (23)

with _�g ¼: @ �g=@t.
The phase velocity for the wave perturbation can be

obtained from the dispersion relation as v2
e ¼ !=j ~kj, where

the index e stands for the e-ray. The o-ray propagates with
the light velocity, as determined by Eq. (14). Now using the
previous results, we obtain

v2
e ¼ 1� 8

3

ðZ2 þ 1ÞGð �gÞ
ðZ2 � 1Þ þ 4Gð �gÞ : (24)

In order to guarantee causality, the physical solutions must
satisfy the requirement 0 � ve � 1, which implies that

0 � 8

3

ðZ2 þ 1ÞGð �gÞ
ðZ2 � 1Þ þ 4Gð �gÞ � 1: (25)

From the analysis of the energy density for the effective
action associated with this problem, it can be inferred that
the case E2 >H2 leads to a metastability of the vacuum.
The interpretation for this behavior is that if a region in the
system develops a large E field, it will decay quickly to a
configuration whereH2 > E2 [11]. Therefore, it is adopted
here that H2 > E2 (which means Z2 > 1 and F > 0) and
the condition stated by Eq. (25) yields

0 � Gð �gÞ � 3ðZ2 � 1Þ
4ð2Z2 � 1Þ : (26)

Now we are going to examine two cases in which the
explicit form of the effective coupling was presented in the
literature. The first one is obtained when the regime of
small coupling is taken into consideration, and the second
one was previously proposed in [25] as a suggestion for the
case of a large coupling constant.
For the case of small coupling the beta function can be

expanded as [25–28]

�ðgÞ ¼ �1
2b0g

3 þ b1g
5 þ � � � (27)

where b0 and b1 are constants. Now, taking the limit of
large mean fields (F ! 1) we obtain from Eq. (16) that
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1

�gðtÞ ¼ b0t� 2
b1
b0

logtþ � � � (28)

Introducing these results in the effective Lagrangian we
obtain [11,29]

L eff ¼ 1

4
b0F log

F

�4
: (29)

For this case the function Gð �gÞ results in

Gð �gÞ ¼ � 1

2

1

tþ 1
: (30)

Since t > 1 at the large mean field regime, we conclude
that Gð �gÞ< 0, and there will be no propagation associated
with the e-ray. The o-ray travels with the unperturbed
velocity v� ¼ 1 and does not depend on the direction of
propagation.

The nonperturbative expression for the beta function is
still unknown. Nevertheless, a suggestion about the strong
coupling form of the beta function was presented long ago
[25], and is given by

�ðgÞ ¼ �a

2
g; (31)

with a a positive constant. If we assume this form for the
beta function, we obtain from Eqs. (16) and (31)

1

�gðtÞ2 ¼ 1

g2

�
F

�4

�
a
: (32)

In terms of the parameter t it follows that

�gðtÞ2 ¼ g2e�at: (33)

Introducing these results in the effective Lagrangian we
obtain

L eff ¼ 1

4g2
F

�
F

�4

�
a
: (34)

For this case the function Gð �gÞ results in
Gð �gÞ ¼ �1

2a: (35)

Thus, since a > 0, we conclude that Gð �gÞ< 0, and again
there will be no propagation associated with the e-ray. In
the both cases, once the superluminal propagation is sup-
pressed, the medium allows just one polarization mode to
propagate. So it seems to behave like a polarizer.

IV. OBSERVABLE FOR BIREFRINGENCE

As shown in the previous section, birefringence effects
can occur in the Yang-Mills fields. Nevertheless, due to the
confinement phenomenon, a direct measurement of these
effects on gluons propagating in an external color field
seems to be improbable. However, deconfined quark-gluon
matter, also known as quark-gluon plasma (QGP), is ex-
pected to be produced in the gold-gold interaction at RHIC
or lead-lead interaction at LHC. This provides an oppor-

tunity to investigate the issue of gluon propagation in QGP
systems.
The different velocities in which the field disturbances

can propagate are associated with different polarization
modes. It can be simply understood as a quantum mea-
surement on the gluon, by which the gluon falls onto the
eigenstate of the polarization mode. In the special cases
where the e-ray gluon is forbidden by causality, the exter-
nal field works like a polarizer, and only the o-ray gluon is
allowed there. The polarization is assigned by the external
field. When one gluon propagates in a QGP, it is ‘‘mea-
sured’’ time and time by the local field. Hence, the last
polarization direction before its hadronization into hadrons
is completely out of control. This will also destroy any
global polarization information [30]. However, due to the
complete polarization at any local area, the polarization
correlation will be very strong. A crucial point is how to
identify two particles at the same local area with the same
polarization. In order to explore this point let us consider,
for simplicity, a ‘‘gluon plasma.’’ When the hard parton
propagates in the medium, it works as a source of small
disturbances on the external field, and could lead to the
emission of Cherenkov radiation. The o-gluon can exist
within the Cherenkov cone, but the e-gluon must be out-
side. If the gluon is not confined it can be measured that the
polarizations for two gluons inside the cone are parallel.
More specifically, �̂1 � �̂2 ¼ 1. The experimental results
depend not only on the polarization transfer from the gluon
to a certain kind of hadron in hadronization process, but
also on the identification of the Cherenkov cone. So, one
suggestion is to measure the polarization correlation of two
particles of the same kind (2 vector mesons, 2 hyperons,
etc.) with almost parallel momenta and within the same jet
cone (when the jet can be identified, as expected in LHC).
By studying the correlation dependent on the jet cone
angle, one may have a way to measure the Cherenkov
angle.
One experimental observable for the polarization corre-

lation can be suggested. This can be extracted from the

ideal case of two � particles with the same polarization ~P,

with P ¼ j ~Pj representing the polarization rate. The con-

ventional way to measure ~P of a single � is by measuring
the direction vector (denoted as p̂) of the momenta of the
daughter particles, e.g., proton or pion from the� decay, at
the rest frame of �. Then the angular distribution,

dN

d cos

� 1þ �p̂ � ~P ¼ 1þ �P cos
; (36)

can give the information on the polarization. Here � is the
hyperon decay parameter. From this equation we see that if

the direction of ~P is random, the average of all �0s gives
zero, then P is not able to be measured. However, for the
two �0s with the same polarization, in the rest frame of
each�, respectively, the direction vectors p̂1 and p̂2 can be
measured. Then we calculate the expectation value hp̂1 �
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p̂2i, which results in

P ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp̂1 � p̂2i

q
=�: (37)

Because hp̂1 � p̂2i is a SO(3) scalar, it does not depend on
the direction of polarization. Thus, it can be averaged for
all the jets of all the (QGP) events in order to get the scalar
value of averaged polarization from Eq. (37). In an experi-
ment, the � pair of the same jet [34] are expected to have
the same polarization with larger probability, as discussed
above.

V. THE EFFECTIVE GEOMETRY ISSUE

The effective theory approach has long been considered
as a possible way to understand confinement phenomena.
One of the possible ways to investigate these phenomena
consists in the construction of analogue models in which
confinement would be related with an event horizon for-
mation, as it occurs in the black hole physics. Such an
interpretation was considered in [16,35] (see also the refer-
ences therein).

The results discussed in this paper can be read in the
context of the optical geometry. In this context some com-
ments are in order. Equations (13) and (14) can be pre-
sented in the appealing form

g��
� k�k� ¼ 0; (38)

where we define the two symmetric contravariant tensors

g��
þ ¼ ��� � �F��F�

�; (39)

g��� ¼ ���: (40)

The inverse symmetric tensor g�� is defined in such way

that g��g�� ¼ �
�
� . Therefore, for each propagation vector

k�, the corresponding tensor g�� plays the role of an
effective metric tensor. Indeed, k� is a lightlike (or null)
vector with respect to the associated metric tensor. It can be
shown [36] that it also satisfies a geodesic equation in
terms of the Christoffel symbols ��

�� associated with

this metric. In this way we can refer to k� as a geodesic
null vector with respect to the effective metric tensor g��.
This geometric interpretation could be used in order to

produce an analogue model for confinement based on the
possible formation of an event horizon. In this case, the
requirement of causal propagation would assume a non-
trivial role. Inside the hadron, where quark and gluons can
interact and propagate, the velocity of the field disturban-
ces would be expected to be smaller than 1. On the other
hand, if the vacuum outside the hadron is described by the
effective Lagrangian, the larger than 1 velocity could be
interpreted as an indication of confinement, since no physi-
cal observable could propagate there.

VI. CONCLUSIONS

In this paper the propagation of field disturbances was
investigated in the context of the effective Yang-Mills
Lagrangian. The general dispersion relations for one-
parameter Lagrangians, Eqs. (13) and (14), were derived
employing the method presented in [2,4]. It was shown that
birefringence phenomena can occur.
Let us remark on some points. First, it should be stressed

that the method depends on the effective Lagrangian as
LðFÞ, so the conclusions are quite general. Second, the
assumption of causal propagation of the signals sets non-
trivial constraint when exploring specific solutions.
Finally, for the case of a deconfined quark-gluon system,
which naturally provides an effective external field, the
birefringence phenomena with gluons and its local polar-
ization effects are expected to be observed at RHIC and
LHC by measuring the strong local spin correlations of
various hadrons from QGP. The measurements of the spin
correlations suggested here, at the same time, can be useful
in assigning the details of the effective fields in QGP. This
information provides opportunities to develop the effective
Lagrangian framework and hence the better understanding
of QCD.
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