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A bstract

W e consider a class of superconform al -deformed N = 1 gauge theo-—
ries dual to string theory on AdSs X with uxes, where X is a deform ed
SasakiE instein m anifold. T he supergravity backgrounds are explicit exam ples
of G eneralised CalabiYau m anifolds: the cone over X adm its an integrable
generalised com plex structure in term s of which the BP S sector of the gauge
theory can bedescribed. Them odulispaces of thedeform ed toricN = 1 gauge
theories are studied on a num ber of exam ples and are in agreem ent w ith the
m oduli spaces of D 3 and D 5 static and dual giant probes.
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1 Introduction

T he superconform al gauge theories living on D 3-branes at singularities generally
adm itm arginaldeform ations. A particularly interesting case ofm arginaldeform ation
for theoriesw ith U (1)° globalsymm etries isthe so called -deform ation [1]. Them ost
fam ous exam ple is the -deformation of N = 4 SYM which has been extensively
studied both from the eld theory point of view and the dualgravity perspective. Tn
particular, in [2], Lunin and M aldacena found the supergravity dual solution, which
is a com pletely regular AdSs background. T heir construction can be generalised to
the super-confom al theordes associated w ith the recently discovered SasakiE instein
backgrounds AdSs  IPA* [3]. M ore generally, all toric quiver gauge theories adm it

-deform ations [4]and,aswe w ill see, have regular gravitationalduals. T he resulting

-deform ed theories are interesting both from the point of view of eld theory and
of the gravity dual

On the eld theory side, we dealw ith a gauge theory with a deform ed m oduli
space of vacua and a deform ed spectrum of BPS operators. The case of N = 4
SYM has been studied in details In the literature [5{7]. In this paper we extend
this analysis to a generic toric quiver gauge theory. The m oduli space of the -
deformm ed gauge theory presents the sam e featuresas n N = 4 case. In particular,
its structure depends on the value of the deform ation param eter . Forgeneric the
deform ed theory adm its a Coulom b branch which is given by a set of com plex lines.
For rationalthere are additionaldirections corresponding to H iggs branches of the
theory.

On the gravity side, the dual backgrounds can be obtained from the original
CalbiYaus w ith a continuous T -duality transform ation using the general m ethod
proposed in [2]. W e show that it ispossible to study the -deformm ed background even
In the cases where the explicit original C alabiYau m etric is not known. T he toric
structure of the original background is enough. Besides the relevance for AdS/CF T,
the -deform ed backgrounds are also interesting from the geom etrical point view .
They are G eneralised CalbiYau m anifolds [8,9]: after the deform ation the back-
ground is no longer com plex, but it still adm its an integrable generalised com plex
structure. Actually the -deform ed backgrounds represent one of the few explicit
known exam ples of generalised geom etry solving the equation of m otions of type IT
supergravity *. The extrem e sin plicity of such backgrounds m ake it possble to ex—
plicitly apply the form alisn of G eneralised C om plex G eom etry, which,aswew ill see,
provides an elegant way to study T duality and brane probes [13{16].

The connection between gravity and eld theory is provided by the study of
supersym m etric D -brane probes m oving on the -deform ed background. In this
paper we w ill analyse the case of static D3 and D 5 probes, as well as the case of
D3 and D5 dual giant gravitons. W e will study in details existence and m oduli
gpoace of such probes. W e show that, n the -deform ed background, both static D 3
probes and D 3 dualgiants can only live on a set of Intersecting com plex lines Inside

I1For other non com pact exam ples see [10,11]and for com pact ones [12].



the deform ed CalabiYau, corresponding to the locus where the T* toric bration
degenerates to T!. This is in agreem ent w ith the abelian m oduli space of the -
deform ed gauge theory which indeed consists of a set of lines. M oreover, In the case
of rational , we dem onstrate the existence of both static D5 probes and D5 dual
giant gravitons w ith a m oduli space isom orphic to the origihal CalabiYau divided
by a Z, Z, discrete symm etry. This statem ent is the gravity counterpart of the
fact that, for rational , new branches are opening up in the m oduli space of the
gauge theory [5,6]. O ur analysis also generalises the results of [17]where it hasbeen
shown that the classical phase space of supersymm etric D 3 dual giant gravitons in
the undeform ed C alabiY au background is isom orphic to the Calabi¥Y au variety.

T he classicalway to study probe con guration is to solve the equations ofm otion
com Ing from the probe D iracBom-Infeld action. G eneralised Com plex G eom etry
provides an altemative m ethod to approach the problem . Aswe willexplain,a D -
brane is characterised by its generalised tangent bundle. The dual probes in the

-deform ed geom etry can be obtained from the original ones applying T duality to
their generalised tangent bundles. T he approach in tem s of G eneralised G eom etxry
allow s also to clarify how the com plex structure of the gauge theory is re ected by
the gravity dual, which, as we have already m entioned, is not in general a com plex
m anifold.

The study of brane probes we present here can be seen as consisting of two
Independent and com plem entary sections, one dealing w ith the Bom-Infeld approach
and the other one using G eneralised C om plex G eom etry. W e decided to keep the two
analysis independent, so that the reader not interested in one of the two can skip the
corresponding section.

T he paper is organized as follows. In Section 2 we discuss the structure of the

-deform ed gauge theory and of its gravity dual, and we characterize it in termm s of
pure soinors. In Section 3 we study the m oduli space of D 3 and D 5-brane, static
probes and dual giant gravitons, on the deform ed background using the Bom-Tnfeld
action, while in Section 4 we analyse the sam e con gurations using the generalised
tangent bundle approach. W ew ill show that,asusualfor BP S quantities, the explicit
know ledge of the Calabi¥Y au m etric is not required to extract sensible results. O ur
analysis thus applies to the m ost general toric background. In Section 5 we brie y
comm ent about supersymm etric giant gravitons in the deform ed background. In
Section 6 we explicitly dem onstrate through exam ples and general argum ents that
the results of Sections 3 and 4 agreesw ith the eld theory analysiswhich isperform ed
in details. Finally, in the A ppendices we collect various technical proofs, argum ents
and exam ples.



2 -deform ation in toric theories

2.1 -deform ed quiver gauge theories

T he entire class of super-conform algauge theories living on D 3Joranes at toric conical
Calabi¥Yau singularities adm its m arginal deform ations. The m ost fam ous exam ple
is the deformation of N = 4 SYM with SU (N ) gauge group where the origihal
superpotential

1 2 3 1 3 2 2.1)
is replaced by the -deform ed one

e 1,3 e 13 2° (22)
A fam iliar argum ent due to Leigh and Strassler [1 ]show s that the -deform ed theory
is conform al for all values of the  param eter.

Sim ilarly, a -deform ation can be de ned for the conifold theory. The gauge
theory has gauge group SU (N )  SU (N ) and bifundam ental elds (A;)* and Bpha
with ;A = 1;25N ;4,p = 1;2 transform ing In the representations (2;1) and (1;2)
of the global symm etry group SU (2) SU (2), respectively, and superpotential

A]_B]_AZBZ A]_BZAZB]_: (2.3)

The -defom ation corresponds to them arginaldeform ation w here the superpotential
is replaced by
e A.B,A,B, et A{Bo,A,B; ¢ (2.4)

B oth theories discussed above possess a U (1) geom etric sym m etry corresponding
to the isom etries of the intermal space, one U (1) is an R symm etry while the other
two act on the eldsas avour global symm etries?. The -defomm ation is strongly
related to the existence of such U (1)° symm etry and has a nice and useflil interpre-
tation in termm s of non-com m utativity in the intemal space [2]. T he deform ation is
obtained by selecting in U (1)° the two avour symm etries Q ; com m uting w ith the
supersym m etry charges and using them to de ne am odi ed non-com m utative prod—
uct. This corresponds iIn  eld theory to replacing the standard product between two
m atrix-valued elem entary elds £ and g by the starproduct

f g ‘e (QfAQg)fg (2.5)

where Qf = (Qi;Qg)anng= ©7;09) are the charges of them atter elds under
thetwo U (1) avour symm etries and

@~ 0% = ;07 00Y): 26)

2This U (1)° symm etry can be enhanced to a non abelian one in special cases. For instance it
isSU (4) for N = 4 SYM and SU (2) SU(2) U (1) for the conifold. In addition the conifold
possesses a U (1)g baryonic symm etry. A generic toric quiver, besides the geom etric symm etry
U@yY=10U (l)g U (1)r , presents several baryonic U (1) symm etries. In this paper we w illonly be
interested in the geom etric sym m etries of these theories.



The -deform ation preserves theU (1)’ geom etric sym m etry of the originalgauge
theory, while other m argihal deform ations in general further break it.
A 11 the superconform al quiver theories obtained from toric CalabiYau singular-
ities have a U (1)° symm etry corresponding to the isom etries of the CalabiYau and
erefore adm it exactly m arginal -deform ations. T he theories have a gauge group
® SU M ), bifiindam ental elds X ; and a bipartite structure which is inherited
from the dim er construction [18]. T he superpotential contains an even num ber of
term s V. naturally divided into V=2 termm s weighted by a +1 sign and V=2 tem s
welghted by a 1 sign

Wi(X) WiX): (2.7)
=1 =1
The -deform ed superpotential is obtained by replacing the ordinary product am ong
elds w ith the starproduct (2.5) and, as discussed in Appendix B, can always be
w ritten after rescaling eldsas [4]
¥=2 ¥=2
e wi() el W) (2.8)
=1 =1
where is som e rationalnumber. It isobvioushow N = 4 SYM and the conifold t
In this picture; other exam ples w ill be given in Section 6.

The -deform ation drastically reduces the m esonic m oduli space of the theory,
w hich isoriginally isom orphic to the N —<fold sym m etric product of the intemalC alabi-
Yau. To see quikly what happens consider the case where the SU (N ) groups are
replaced by U (1)’s —by abuse of language we can refer to thisas the N = 1 case.
Physically, we are considering a m esonic direction in them oduli space where a single
D 3-brane ismoved away from the singularity. In the undefomm ed theory the D 3-
brane probes the CalkhbiYau while In the -deformed theory it can only probe a
subvariety consisting of com plex lines intersecting at the origin. T his can be easily
seen N N = 4 and In the conifold case.

ForN = 4 SYM the F-+tem equations read

i 5=Db 5 i (177) = (1;2);(2;3)or(3;1) (29)
where b = e? | Since ; are cnumbers in the N = 1 case, these equations
are trivially satis ed for = 0, in plying that the m oduli space is given by three

unconstrained com plex numbers ;, giving a copy of C°. However, or 6 0 these
equations can be satis ed only on the three Iines given by the equations ;= =0
for j6 k. Only one eld ; isdi erent from zero ata tine.

For the conifold the F-+tem equations read

B1AB, = b'B,AB;;
B1A;B; = DbBRAB:;
AB1A, = DbAZBA;;
AB,A, = b'A,B,A;: (210)



These equationsareagain trivialfor = O0OandN = 1,the eldsbecom ing com m uting
chnum bers. The brane m oduli space is param etrized by the four gauge invariant
m esons

X=A1B1; y=AzBy; z=A1By; w = A3B; (211)

which are not independent but subEct to the ocbvious relation xy = zw . This is
the fam iliar description of the conifbd as a quadric in C*. For 6 0, the F-tem
constraints (2.10) are solved when exactly one eld A and one eld B are di erent
from zero. This In plies that only one m eson can be di erent from zero at a tin e.
The m oduli space thus reduces to the four lines

y=z=w=0; x=z=w=0; x=y=2z=0; x=y=w= 0:
(212)
W e will see In Section 32 using the dualgravity solutions and in Section 6 using
eld theory that forall -defomm ed toric quivers the abelian m esonic m oduli space
is reduced to d com plex lines, w here d is the num ber of vertices in the toric diagram
of the singularity.

Som ething specialhappensfor rational. New branches in them oduli space open
up. The N = 4 case was orighally discussed In [5]and the conifold n [19]. In all
cases these branches can be interpreted as one orm ore branesm oving on the quotient
of the original CalabiYau by a discrete 7, Z, symm etry. W e w ill describe these
branes explicitly in the gravitational duals In Section 32. The eHd theory analysis
of these vacua requires a little bit of technical patience and it is deferred to Section
6.

2.2 -deform ed toric m anifolds

T he general prescription fordeterm ining the supergravity dualofa -deform ed theory
has been given by Lunin and M aldacena [2]. The original background has a U (1)
isom etry and the prescription am ounts to perform ing a particular T duality along
two U (1) directions com m uting w ith the supersym m etry charges.

For a quiver gauge theory, the undeform ed gravity solution is a warped product
of 4-dim ensionalM inkow skitin esa Calabi¥Y au cone over a SasakiF nstein m anifold

ds?, = e®dsl + e ds? ; (213)

where the warp factor ise®® = r?. In all the form ulae we are om itting factors of the
radius of A ntide Sitter (see footnote 3 at page 9).

In the toric case these C alabiY aus have exactly three isom etries and the Lunin{
M aldacena m ethod can be applied. In [2] the -deform ation of the conifold and of
Y P4 gpaces are explicitly com puted using the know n m etrics for these SasakiE instein
goaces. In this paper we consider the general case of a toric CalabiYau cone. W e
will show that, as usual, m ost com putations regarding supersym m etric quantities
can be perform ed w ithout know ing the explicit form of them etric. W e w ill just need
the general characterisations of the CalbiYau m etrics given In [20]which we now
review .



221 The geom etry of toric C alabi¥Y au cones

T he geom etry ofa toric C alabiY au cone iscom pletely determ ined by d integer vectors
V 2 Z3. In fact there is a very explicit description of toric cones as T®  brations
over a rational polyedron described by [20]

C =fy2R°{L (y)=V?ry 0; = 1l:::dg (2.14)

where V. are the inward pointing vectors orthogonal to the facets of the polyedral
cone. The T® bration degenerates to T ? on the facets of the polyedron, 1 (y) = 0,
and further degenerates to T* on the edges (intersections of two facets). As a sin ple
gxam ple, the trivial CalabiYau C° param etrized by three com plex variables 7 ; =

2y can be considered asa T® bration, param eterised by the three angles 4,
over the rst octant in R given by the three equations y; O0.HereVy = (1;0;0),
V, = (0;1;0),and V3 = (0;0;1). In the follow ing we w illm ake a convenient change
of coordinates in order to have the third coordinate ofallV equalto one. Sin ilarly,
the conifbld can be described asa T® bration over a polyedron w ith four sides, as
shown In Figure 1.

(-1,0,1) (0,0,1) 0,1,1) 1,1,1)

11
‘1

(0,-1,1) (0,0,1) (1,0,1)

Figure 1: The toric diagram ®r C* and the conifbld consisting of the points V. =

(v ;1) pictured in the plane z = 1 in R®. The vectors V determ ine a rational
polyedron in R® with three and fur sides, respectively, whose proction on the
plane z = 1 is shown in the F gure.

A s chown In [20] them etric on the Calabi¥Y au cone can be w ritten as
ds; = g dyidy; + giyd d (2.15)

w ith g™ the Inverse m atrix ofgy;. D ue to the toric condition, gi; only depends on the
variables y; ; the m etric is a cone ifand only if g™ is hom ogeneous ofdegree 1 iny.
R egqularity of the m etrric im plies that near the facets

X3 iy
1 (y)

gij: + regular term s : (2.106)

=1



T he C alabi¥Y au condition further requires that the vectorsV lieon a plane. W ew ill
choose coordinateswhere V. = (v ;1). The integer points in the plane, v , describe
the toric diagram of the CalbiYau.

Asin [20]we can also use com plex coordinates to describe the m anifold

Zh=xty it 217)

A Kaher m etric can be written in tem s of a K aher potential F (z'). In the toric
case F only depends on the real part, x*, of the coordinates so that, if we de ne

= e°F ; (2.18)
T e
the m etric can be written as
dsf = gydz'dz! = gydx'dx) + gyd ‘d 7: (219)
T here is a nice relation between sym plectic and com plex coordinates given by
@F
Yi= . (2.20)
@x*

and, as the notation suggests, the function g;4(x) appearing in the com plex coordi-
nates form of them etric is the sam e as the function g;; (y) appearing in the sym plectic
form of the m etric after changing variables from x toy.

The K ahler form and the holom orphic three-form are given by

i . .
J0) Egijolzl ~dz? ; (2.21)
i p 1A 2 A 3
(0) e detgijdz dz dz (2 .22)
_ B+13 5 1 A 2 A 3,
= e dz dz dz” : (223)

Aschown In [20], the explicit form of (o) given in (2.23) follow s from R iocct atness,
which in plies detg;; = &’ ,and correlates the phase In = () with the com plex direc—
tion z° associated w ith the third com ponent of the vectors V. = (v ;1).
The R symm etry of the gauge theory is dual to the Recb vector of the Sasaki-
E instein space
X3 G
K = bl@ S (2.24)

=1
where the com ponents b = 2gy; tum out to be constants [20]. M oreover the third
com ponent Iy is set to 3 by the Calabi¥Yau condition. The vectorb= (b';3) satis es

g = r*: (2.25)
The Recb vector K is the partner under the com plex structure of the dilatation
operator r@,. Notice that the conical form of the m etric is hidden both in the

sym plectic and com plex coordinates. T he very sam e radial coordinate r is given by
a non—rivial expression depending on the actual value of the R ecb vector

r’ = 2by; : (226)



2.2.2 The -deformed CalabiYau

The -deform ation of toric CalabiYaus can be obtained as in [2]. For sim plicity
we will consider real in the follow ing. W e consider a two-torus in the intemal
m anifold and we perform a T duality transform ation that acts on the com plexi ed
K ahler m odulus of the two-torus as

P
= Brz+ 1 detgrz ! (227)

1+

Here we choose the T? in the directions ( ;; ,) since the action leaves the holom or—
phic threeform invariant. The param eter 1n supergravity is proportional to the
“param eter in the gauge theory.
The T dualm etric and B—- eld can be com puted via Buscher rules

E=g B! (dE +c)@kE + b)* (2.28)

by em bedding the O (2;2) transform ation (227) In O (6;6)

w here the bivector isde ned as
0 1
0 0 0
= @ 0 i, 0A : (2.30)
0 0O 0

T he choice of the two-torus introduces a four plus two splitting in them etric that
can bem ade explicit by rew riting it in the follow ing form

dst = hap o) o)+ 22 ajb= 1;2 (2.31)

where h, = g, is the m etric on the two-torus and we have de ned the oneform s

%, = dz'+ h*gudz’  a= 1;2; (232)
= (dx®+ h®g,dx’)+ i(d ®+ h®*°gsd )= X%+ iy @ (2.33)
i 3p b 3 dW3
4z = € g33  PPg.3gp3dz” = _2]'9_5 (234)
I

with h = det(h,,)=r*. The subscript (0) is to distinguish these form s from the
corresponding one in the T -dual background. W e also de ned w3 = e’ . The one
form 7 param eterises the direction orthogonal to the two-torus and to pass from the

rst to the second expression in (2.34) we used the dentity

det(gy) = € = det(hap)(gss K Gasgms) : (235)



T he advantage of w riting the m etric as in (2.31) is that the T duality transfor-
m ation (229) results sin ply in a rescaling of its angular part

ds{ = hapX X °+ G hopY °Y '+ 22 (2.36)

by the function
1

G = 1+ Zh: @7
T he antisym m etric part of (2 28) gives theN S two—-form ofthe -deform ed solution
B= hGY "~Y?: (2.38)

T he dilaton and the warp factor are
e = G; & =r; (2.39)

respectively, while the non<anishing RR  elds are given by>

dr
Fs= 4vol ~ — + 4Gvok. ; (2.40)
r
Fs= 4 L~d  =dC,; (241)
where vok, = & = 1,7d '~ d *~d ’ is the vome form of the undeform ed

SasakiE instein m anifold X 5, and the closed form !, depends only on the x* coordi-
nates.

2.3 The -deform ed pure spinors

Recently it has been shown that a unifying form alisn to treat N = 1 com pact-
i cations with non trivial background uxes is provided by G eneralised Com plex
G eom etry. For a detailed discussion of pure spinors, G eneralised Com plex G eom —
etry and its applications to string theory see [12,21,22]; here we will very brie y
summ arise what we w illneed In the follow ing section.

The dea is, given a m anifold, to study ob Ectsde ned on the sum of the tangent
and cotangent bundles, T T .W ecan for instance de ne spinorson T T : these
w ill be SO (6 ,6) soihors and have a representation In termm s of di erential form s of
m ixed degree, (T ). W e call pure the spinors that are annihilated by half of the
generators of C1i (6,6). They are represented by sum of even and odd fom s, P
corresponding to the positive and negative chirality, regoectively.

3In all the m ule for the background we are understanding factors of the AdSs radius, L,
which isgiven by: L* = 4 *g,N ®=Vol(Xs5),where N is the number of D 3-branes and X s is the
undeform ed SasakiE instein m aniod. In particular the m etric dsf;, hasa factor of L2, the NS ux
H a factorofL*,F; and Fs a factor of L*=g; and G should bede nedas:G ' = 1+ 2?L*h.Our
form ulae are in the string fram e and wewillset %= 1.



T he relevance for supergravity lies in the ocbservation that such pure spinors can
be obtained as tensor products of ordinary spinors. M ore precisely, if we decom pose
the type TIB ten-din ensional supersym m etry param eters as

ni_ . i, i ; (242)

+

where , ( = ,)and ! (%= !)arepositive chirality spinors in four and six

din ensions, the pure spinors are de ned as
2
L= 07 (243)
ooy (2.44)

T he spinors constructed this way de ne an SU (3) SU (3) structure on T T “.
By introducing an inner product between form s (M ukaipairing)

Bm;Bi @" B)ip Ay)= ( 2l (2.45)

we can de ne the nom of the pure spinors as
. . 1., ., 1. o .
hoji=h ; i= —HHFvok= —H.FH.5vok: (2.46)
It is convenient to introduce nomm alised tw isted spinors

N 81
el ~ = le el ~ : (2.47)
Bigs)

Il
0}

A 1l the NS content of the background (intemalm etric, B eld and dilaton) can be
extracted from . M oreover the tw isted pure spinors are those transform ing nicely
under T duality.

U sing the above de nition asbispinors, it ispossible to rew rite the supersym m etry
conditions for type IIB supergravity asdi erential equations for the pure spinors a

de™” y=0; (2 .48)
de® m ", )=0; (2 .49)
de®Rre”, )= &eb® (F): (2.50)

Here the  iswith respect to the six din ensional intemalm etric €* ds? and F is
the sum of the Intemalm agnetic edsF = F; + F3+ F5. It is related to the ten-
dimnensional RR edsasF % = F + vo, © ( F). The ten-din ensional B ianchi
dentity (@ H ~)F1Y = 0 yields the Bianchi dentity and the equations of m otion
forF: d H")F = 0and d+ H )& F )= 0, repectively. Notice that the
equations of m otion follow autom atically from (2.50).

4T he pure sphhorsm ust obey the SU (3) SU (3) com patbility conditionsh ;X ,i=h ;X
+1= 0 forany element X = X + of T T ,where X and are a vector and a one-fom ,
respectively.

10



T he pure spinor satisfying d (e "y = 0, de nes a twisted generalised Calabi-
Yau [21,22]. Thus one can interpret the closure of the pure spinor com ing from
the supersym m etry variations as the generalisation to the ux case of the standard
Calabi¥Y au condition for uxless com pacti cations: allN = 1 vacua are G eneralised
CalabiYau m anifods [O].

T he explicit form of the pure spinors depends on how the Intemal supersym m etry
param eters ! are related to the globally de ned spinors on the m anifold. For the
toric CalabiYau m anifolds there is one globally de ned (in this case covariantly
constant) spinor, . , so that one can choose

L= 2=l (251)

and the pure spinors are given in term s of the K alher form and holom orphic three—
form

A(0)= e3A 0) = e3A leAdzzAdWB; (2.52)

A_f_O) = e ie ZAJ(O) — el=2€ ZAqideiAde . (253)

In the CalabiYau background the dilaton and the NS two-form are zero, so that
there is no di erence between tw isted and untw isted spinors.

W e now want to construct the pure spinors corresponding to the -deform ed
backgrounds as the T duals of the CalabiYau ones. A s shown in [23] the T duality
transform ation (2.29) on the pure spinors is given by

T e "0 @y ) "0y (2.54)

where  is a bivector associated with the two U (1) isometries, ! and 2, of the
CalkbiYau. It acts on the pure spinor by contractions’

= @1A@2: @, @, ¢ (2'56)

Applying (2.56) to (2.53) and (2.52) we obtain a new pair of pure spinors (here
w e have undone the tw ist)

1dz1~dz%+B

P
= Ge?dw’" e ; (2.57)

- s 2A 1A 2
. — Gele J) hX X “+B ; (2.58)

SA generator of O (6;6) acts linearly on the elements of T T . Ifwe de ne a generic elem ent

of T T as(X; ),with X avectorand a one form ,we have
X A X
! B AT ; (2.55)

where A isan SO (6) element, A = A} dx" @,» +B Isatwoform B = %andxm ~dx",and is
a bivector =% "™ e ~ @ - Then O (6;6) elem ent corresponding to the -defomm ation, (2.29),

is jast the bivector and and thus acts as in (2.56) on a generic di erential form .
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whereB = hGY!” Y? istheNS twosform of the -defom ed background®. The
usual SU (3)  SU (3) com patibility conditions betw een " and ", contiue to hod
since the M ukaipairing is invariant under a general SO (6;6) transform ation.

The expression for the closed pure spinor, (2.57), has a nice Interpretation in
temm s of the generalised D arboux theoram [22]. T he pure spinors (2.57), (2.58) are
of type (1;0) and determ ine a splitting into four coordinates of sym plectic type and
two of com plex type. The closure condition d (e " y=0 In plies the existence of
sym plectic-com plex coordinates ( Y;z);i= 1;:;4 with

e = X" E A gy ; (2.63)

whereky=d '~ d 2+ d >~ d ? isthe natural sym plectic ©om and B’ is a potential
forH ,dB = H [22]. T he sym plectic coordinates predicted by the theorem are easily
denti ed from equation (2.57)

1 i
Zdztrdz?+ B —@dxt!*d? ad¥~d H+ B (2.64)

w ith the realand In aginary parts of the original com plex coordinates of the C alabi-
Yau (x*; 1);B = B+ 2(dx'"dx® d!'”d ?).W eseethat,although the -deformed
m anifold looks very com plicated and it is not even a com plex m anifold, the gener-
alised geom etry selects coordinates that are trivially related to the original com plex
coordinates of the Calabi¥Yau. A s a conssquence, all questions about supersym m et—
ric and BP S quantities in the -deformm ed background can be still analysed in term s
of the original com plex coordinates. This is not com pletely unexpected, since the
deformed N = 1 gauge theory has a natural com plex structure for all values of

In term s of the pure spinors it is straightforward to check that the T duallback-
ground is still supersym m etric. Ifwe assum e that '# are supersym m etry-preserving

oIt is a straightforward com putation to show that these pure spinors are equivalent to the di-
electric ones in [11]

cot2 &L

— ( sn2 &t deB gyn T O A (2.59)
.= cos2  ie? COSZZeZAj2+sjn2 e 1 e
wih sin2 = pﬁpa,cos2 :pa.TheSU(2)st1ucture
j o= Ei(“ Y (2.60)
b~ fhota 2; (2.61)

isde ned in temm s of the vielbein adapted to the -deform ed m etric (2.36)
. ) | S ——
t=X'+1 GY*t: (2.62)

A s before, the analogous quantities w ith superscript (0) refer to the original C alabiY au m etric.
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isom etries, Le |, "= 0,thenL ¢, (¢, )= 0and

2

N N N N

d( M= d(e,e, )= e . d(e, )= &,e,d = d:  (265)
Thus ra ~which is invariant along ;
de N=-e a: (2.66)

Then from (2.66) it follow s that the T -dual spinors satisfy the supersym m etry condi-
tions, (2.48)~2.50), if the originalonesdo. The T dualissd RR  eldscan be com puted
from e B Fl=e &Y (). Forthe -defom ation of the quiver theories,
this gives in particular
Fo d(4n)= GE; (2.67)
Fs= (B~ sF; F1=0;: (2.68)

O ne can check that these are the sameasin (2.40) and (241) and satisfy (2.50) w ith
the pure spinor given by (2.58).

Finally, it isalso easy to verify that the topology of the —ransform ed background
is the sam e as that of the original one, which was assum ed to be sm ooth. The only
points w here one can have topology changes are the edges of the sym plectic cone C ,
where the circlesde ned by '# shrink to zero. These are precisely the points w here
the bivector wvanishes. To see this we can use the de nition of the toric m anifold
asa T® bration over the symplectic cone C [20]. On the -th facet of the cone C
a given com bination of the three angles * degenerates. T he precise com bination can
be read from the corresponding vanishing vector

K = vi— =+ + v + (2.69)

where V. = (v ;1) is the vector orthogonal to the facet. Thus, on the -facet only
one linear com bination of the three angles ! degenerates. This is not enough in
general to m ake the bivector wvanishing. On the other hand, consider the edge
of C corresponding to the intersection of the -th and + 1-th facets; the vector
K K, = (v v )l@ 1+ (v v,1)°@ 2 also vanishes. Since the (two-
dim ensional) integer vectors v* and v?, ; are not equal ', it ©llow s that the killing
vectors @ 1 and @ 2 are proportionaland  vanishes. Thus vanishes precisely on
the edges of the cone.
If the origal SO (6;6) soinor (@ is reqular, then at these points

T o (2.70)

"Recall that v detemm ines the toric diagram of the CalbiYau so no consecutive v can be
equal.
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T hus, at these degenerate points
SRR (2.71)

Since a background is com pletely speci ed by ", ", and F, at the degeneration
points the new background looks sim ilar to the original one. Hence it is reqular as
well, as discussed from the m etric point of view in [2].

3 D3 and D 5 probes

T he connection between gravity and eld theory is provided by the study of super-

sym m etric D brane probesm oving on the -deform ed background. W e rst analyse

spacetin e 1ling static D borane probes, easily extending the results of [2]to a generic

Calbi¥Yau background. A parallel analysis is perform ed for non-static probes, in

particular dualgiant gravitons [24 ], corresponding to brane probes w rapping a three—

sohere In AdSs and spinning in the Intemalm anifold. The case of dualgiants in the
deformed N = 4 SYM hasbeen analysed in [25].

Tn this Section we perform an analysis based on the e ective Lagrangian on the
world-volum e of a probem oving in the deform ed background. In the next Section we
w ill discuss the sam e results from the point of view of T duality and supersym m etry,
using the G eneralised G eom etry perspective.

3.1 Static probes

The m oduli space of spacetine 1ling supersym m etric static fourbranes should re-
produce the m esonic m oduli space of the dual gauge theory. In the undeform ed
badkground we just have a single type of static supersym m etric probe, a D 3Jorane
which can live at every point of the intermalm anifold. C orrespondingly, the abelian
m oduli space of the dual eld theory is isom orphic to the Calbi¥Yau cone. In the
deform ed background, we have two di erent types of static supersym m etric probes,
D 3-branes, and dielectric D 5Jranes w rapped on the (T duality) two-torus and sta-
bilized by a wordvolum e ux [2]. Supersymm etric D 3probes can only live on a
set of intersecting com plex lines inside the deform ed C alabiY au, corresponding to
the Jocus where the T2 toric bration degenerates to T!. This is in agreem ent w ith
the abelian m oduli space of the -deform ed gauge theory which indeed consists of a
set of Iines. In the case of rational , there exist supersym m etric D 5-probes w ith a
m oduli space isom orphic to the origihal CalbiYau divided by a 7, 7, discrete
symm etry. T his statam ent is the gravity counterpart of the fact that for rational
new branches are opening up in the m oduli space of the gauge theory [5,6].
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3.1.1 Static D 3 probes

Consider a static spacetime 1ling D 3-Jorane probe. The dynam ics is govermed by

the brane world-volum e action
Z Z

pi
Sp3= Spr+ Secs= T d' e detG + T3 Cyu: (3.1)

G  is the pull back of the spacetin e m etric gy y to the world-=volum e of the D 3—
brane

@x ™ @x ™
= WgM N ; (32)
where ( %; *; ?; 3)aretheword=olm e coordhateson thebrane. T he ten-din ensional
m etric is given by
1
ds?, = r’dx dx + ;dsf% : (33)

By inserting in the BT and CS term s the explicit expression of the background elds
(239)—(2.40),we s=e that a D 3probe feels a potential given by
Z Z 1
d* v (y) a ¢ = 1 ; (34)
G

where y; are the coordinates on the intermal space. T he potential is positive de nite
and vanisheswhen G 1 or equivalently h 0. h vanishes precisely along the edges
of the cone C , where the T? bration degenerates to T!. T fact, it is easy to see
from the explicit behaviour of the m etric near the facets, given in equation (2.16),
that h is regqular and non vanishing in the interior of the cone and also in the interior
of the facets. O n the other hand, as follow s from egquation (2.16), on the edge where
the adpcent facets and + 1 intersect, h vanishes as
1(y)li:(y)

h _ : (3.5)
<KV V> F

W e conclude that a supersymm etric D 3probe can only m ove along the d edges of
the sym plectic cone. R ecall that the topology of the deform ed theory is the sam e as
that of the original C alabiY au, allow iIng to reason in term s of brations. M oreover,
Jocally, them etric near the degeneration locus is substantially dentical to the original
one.

W e expect that a single D 3Jorane probes the abelian m oduli space of the dual
gauge theory. W hat we found is com patible w ith the results for N = 4 SYM and
the conifold discussed in Section 2.1. T here we found that the abelian m oduli space
consists of three and four lines, respectively. T hese lines exactly correspond to the
edges of the polyedral cone discussed in Section 22. From the gravity analysis we
thus get the general prediction that the abelian m oduli space of toric quiver gauge
theories is given by a collection of d lines, w here d is the num ber of extermal vertices
of the toric diagram . W e w ill verify explicitly this prediction in Section 6 with eld
theory m ethods.
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3.1.2 Static D5 probes

A snoticed 1n [2]a D 5-borane w rapped on the two-torus ( !; ?)with a world-volim e
uxF=d '~d %= issupersymm etric. Tt is easy to see that a sin ilar con guration
exists for all C alabiY au backgrounds. T he supersym m etric D 5Jorane can live at an
arbitrary point in (y;; °) and can have additionalm oduli corresponding to W ilson
lines on the two-torus. It is interesting to analyse the m oduli space of such con g-
uration, since it corresponds to a particular non abelian branch of the dual gauge
theory.
C onsider therefore a D 5-brane w rapping the two-torus spanned by ( *; 2) in the
Intermalm anifold. T he corresponding em bedding is

X = = % = >
= %0 ) ovi= vl ) = 0;1;2;3; (3.6)
°) the word=olum e coordinates on the brane. The worlkd-
volum e action for a D 5-brane is
Z q
Sps = T d° e detG B+ F)
Z
+ Ts Ceg+ Cy ™ (F B)+ G " (F B)" (F B); (3.7)

wherewede neF =2 % ,withF dimensionless. W ewillset °= 1 asin the other
supergravity com putations.

For the six-dim ensional m etric we w ill use the expression (2.36) In sym plectic
coordinates

ds>2<6 = gidydy;+ giyd ‘d (38)
= g dydy;+ Ghad °d P+ 2Gg3d °d P+ [z (1 G )Rguigsld C):

Here and in the rest of this section the indices i;jand a;bare summ ed over 1;2;3 and
1;2, respectively. A 1l the functions in the above ansatz depend on the coordinates y;
only since the angular directions are isom etries of the background.

T he pulled-back m etric is given by

0 - 1
r’ + r_12 (7@ yi@ y5+ g33@ 303 GR gz GQ 3gn
¢ Ge@ ‘g G hi Ghy, A : (39)
GEe ‘o3 G hy G hy,

Sim ilarly the pullback of the B— eld has com ponents

B 4= hG {%g3)e °; (3.10)
B s= hGh%g;)e 7; (311)
Bsys= hG: (3.12)
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The worldvolum e eld strength has both m agnetic and electric com ponents

1
Faos= —3; Fa=QA( ); Fs=0Ay( ): (3.13)

T hem agnetic com ponent is required by supersim m etry, w hile the electric com ponents
corresoond to spacetin e uctuations of the W ilson lines on the two-torus.

U sing the above expressions the determ nant in the Bom-Tnfeld action can be
w ritten as

1 ..
det(G B+F)=1_§E2 = gIe i@ ys+ g (@ )P 2 @@ (74 ZhyfofP #

(3.14)
where 2 = 2@ Ay = %F .. The overall factor of G cancels the contribution from
the dilaton so that the B I action for the D 5probe takes the fom &

7 r
Sgpr= — d'r = 978 vl y5+ 95 (@ P2 @@ fE I fefd

(3.15)
The W essZum ino part of the action sin pli esaswell, since, asnoticed in [2], the
C¢ contribution cancelsw ith B, ©~ C4. The only non trivial contrdbution is

Z Z
N
SWZ = Tg C4AF45= — dtr4: (3.16)

T he contribution to the potential vanishes for allvalues of them oduliy;; >;A..
W e then obtain a six-din ensional fam ily of supersym m etric fourbranes.

W e want to discuss In detail the existence and the m oduli space of such con gu-
rations. F irst of all, due to charge quantisation, the D 5-Jorane solutionswe nd exist
only for rationalvalues of m =n, as discussed 1 details n [2%. In fact, sihce the
intemalT ? wrapped by the D 5-brane supportsa ux Fus = 1= , there is an induced
D 3charge that has to be quantized. Ifwe sst = m=n,with m and n reltively
prin e integers, we obtain a consistent con guration by taking a D 5Jrane w rapped
m tin es on the contractble T2 °. This con guration can be altematively seen as a
set of n blown up D 3-branes.

O ur solutions should correspond to additional branches of the dual gauge theory
which exist only for rational . These are well known forN = 4 SYM [5,6] and
are discussed in [19] for the conifod. For a generic -deform ed quiver gauge theory
we can study the geom etry of these new branches by looking at the m oduli space of

8Sg 1 and Sy » are proportionalto TsL* W ol(T?)= ?N=(2Vol(Xs)). Not to clitter form ulae
wewillonly write a factor of N .

°In 2]to see this they check that a con guration of (Np 3;Np5;Nyss) In the undeform ed ge-
ometry ismapped to Np3;Nps+ Np3;Nyss) by the Lunin-M aldacena transform ation. Hence

=m=n and Np3 = N mustbeamultipl ofn.

M thecasem = %lwe can equivalently im pose that the rst Chem num ber for the U (1) gauge
bundle is integer: 2L F = n,which gives = 1=n.

T?2
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the solutions. For sin plicity consider the case Nys = m = 1. The m oduli space of
the brane is param eterised by £ ;X% ;vig. ° and yi, (i= 1;2;3) are four scalars
deform ations corresponding to transverse m ovem ents of the D 5-Jborane in the intemal
geom etry. Then we have two W ilson lines in the intemal T ?, corresponding to the
deform ations of the gauge eld on the brane: etl.2 Here A = A=(2 ) such that
F = dA,F = dA and the integral is over the two non trivialone cycleson T 2. N otice
that before T duality the W ilson lines correspond to the position of the D 3-brane
on T2. Naively the space of the deform ations of the gauge el is given by the st
cohom ology of T#, which is param etrized by the gauge invariants X, = _ A, but
since the holonom ies, exp (iA7, ), are the only physical observables, it is clear that
they have com pact range: 0 A7, 2

The m etric for the m oduli space can be read from the DBI action, when we
give a space-tin e dependence to allm oduli. W e can then interpret the electric eld
strgngths as the space-tin e dervatives of theW ilson lines: F .= @ A, = 2 @A, '
@ _A =@ XA,.Byexpanding (3.15) we obtain them etric on the m oduli space

Z

N L
Sos= >~ 4 glevey;rgs@ 7Y 2.l T Chff o (Ga7)

T hism etric is dentical to the m etric of the original C alabiY au when we dentify
@ °= f*; or 2 PR (318)

A sdiscussed above, form = 1 the angular variable @ associated to the W ilson lines
hasperiod 2 =n.W e thus see that them etric on them oduli space is jast that of the
originalCY divided by Z, Zp -

T herefore the prediction from the gravity analysis is that, for every toric quiver
gauge theory, at rational , we have additional H iggs branches isom orphic to the
orbifold CY =7, Zn . W e willgive evidence for this statem ent in Section 6.

3.2 Dualgiant gravitons

W e are Interested in this section in dual giant gravitons, brane probes w rapping a
threesphere in global AdSs and spinning In the intemalm anifold. Dual giants are
de ned in global coordinates in AdSs.

As shown In [17], the classical phase space of a supersymm etric D 3 dual giant
on the undeform ed SasakiF instein background is isom orphic to the original C alabi-
Yau, that is the abelian m oduli space of the dual gauge theory. Upon geom etric
quantisation of the classical solutions one obtains all the m esonic BP S states of the
theory*!.

Tn this section we w ill extend this discussion and study the dynam ics of the dual
giant gravitons in the -deform ed geom etries. Since the quantisation of the classical

1By quantising the classicaldualgiant solutions we obtain states of the gauge theory on S° R
[24]. A 1l these states are m apped to BP S operators via the conform alm apping to R*.
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dualgiant solutions givesm esonic BP S states (corresponding to BP S operators), we
expect that the classical phase space of the dual giants contains inform ation about
the m esonic m oduli space of the dual gauge theory. D ual giants for the -deform ed
N = 4 SYM were already analysed in [25].

Exactly in parallel to the case of static probes, the -deform ed geom etries adm it
BPS dual giant gravitons of two kinds. The st type of giants are present for all
values of the deform ation param eter  and correspond to D 3-branes w rapping an S°
In AdSs and spinning along the R eeb vector in the Intemal geom etries. On the eld
theory side they correspond to the operators param eterising the abelian Coulomb
branch of the theory. The classical phase space of the dual giants reproduces the
abelian m oduli space of the dual gauge theory. The other class of dual giants can
exists only for rationalvalues of the deform ation param eter and consists of D 5-boranes
wrapping the S° in AdSs and the two-torus ( '; ?) in the internalm aniold. They
rotate In the angular direction orthogonal to the two-torus and have a m agnetic
workd-volum e eld strength proportional to 1= . The world-volum e gauge eld sat-
is es the quantisation condition only for rational. On the eld theory side these
con gurations correspond to H iggs branches that are present when  is rational.

3.2.1 D3 dualgiant gravitons

W e want to study the dynam ics of a D 3Jorane probe that wraps the threesphere
In AdSs, written in global coordinates, and rotates on the intemalm anifold. This
is still govemed by the brane world-volum e action (3.1) where we now take as ten—
din ensionalm etric

dsly = dsigg. + dsi. : (319)
Them etric of AdSs is given in global coordinates

dsigs. = V®R)AE+

drR?+ R?’(d ?+ cos” d Z+ sn® d3) (320)
vV (R)

with VR) = 1+ R?. tisthe glbbaltine in AdSs and the angles , ; and
param eterise a round threesphere. W e w ill w rite the m etrdic on X 5 as the restriction
of the six-din ensional intemalm etric to the hypersurfacewith r= 1

2byi=1: (321)

>From now on,we consider as coordinates orX s the angles * and two extra angles
param eterised by the y; w ith the above constraint.

W ith this choice of coordinates the embedding X ™ () corresponding to the dual
giant graviton can be taken as

= M) vw=wi() i= 150130 (322)
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It is then easy to see that

detG =R%cos sn ?; (323)

14

where we have de ned (the dot represents the derivative w ith respect to t= )

S RVAI S (3.24)

To evaluate the W 72 term we can choose the pullback of the fourform potential to
be

Cuyy=Rsn cos d ~d ~"d;~d ,: (325)
Substituting (3.23) and (325) into (3.1) we obtain the Lagrangian for the probe'?
3 P—
L= NR(e R): (3.26)

To nd the explicit solutions for the possible m otions of the D 3-brane probe it is
convenient to pass to the Ham iltonian form alisn and solve the H am ilton equations
ofm otion. For the dualgiant graviton we are considering the canonicalm om enta are

QL NR°R-
= — = e —p—_—'
BT s v’
QL NR?3 5 327)
i=—=e = :
By v, g-Yis
QL NR? .
p:= e .- € =0
T he H am iltonian then reads
NR? .
H = e =V N R
s P—
= NR7( V R); (3.28)

where In the second line we have expressaed everything in temm s of the canonical
m om enta and we have Introduced the function

_ 2 2 Ho .
=e +N2R6(VpR+gijpyipyj+qplp]). (3.29)
12K eeping Into consideration also the factors of L, the Lagrangian for D 3 dual giants is propor—
tionalto T3L4Vol(S®)= >N =Vol(Xs); howeverwe w ill w rite explicitly only the factor N in front
of L.
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T he corresponding equations of m otion are

1+ R?
= R (530)
1 (p= )
= NR°4 =“(x*+ 3e¢? + ; 331
o [ X( N2R4)] ( )
1
Vi = mgijpyj; (3.32)
NR*
Bi= G (333)
i 1 ij
G g (3.34)
pi=0; (3.35)
where we have de ned r
x=R —: (3.36)

A BPS solution representing a dual giant rotating in the intermalm anifold is given
by

R = const; pr = 0; (3.37)
yi = const; p, = 0; (3.38)
2=p; pi=2NR% (3.39)

with y; satisfying (yi)= 0.
To explicitly see it, it is convenient to introduce a set of Jocal angular coordinates
adapted to the m otion of the brane probe

ds?, = g'dydy;+ H (d + .d 2+ hyd *d °; (3.40)

where is the angular direction in which the brane rotates, and the indices a;b run
from 1 to 2. A s before the functions H and h,, depend on the variables y; only. Tn
these coordinates the function lecom es

2

1
e’ 4+ S VRt auRep, tH TP TP wp e wp )i (341D

while (3.34) and (3.35) are substituted by

- NRlzx(H 'p 1° 2P, P )i p =20; (342)
2=_—L-h®ps p); p.=0¢ (3.43)

NR?2x

Since the brane rotates in the direction we expect
vi= 0; 2 =0; R-=0: (3.44)
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The rst condition, together w ith (3.32) and (3.33), In plies
Py, =0 and @, =0: (345)

i

T he second condition in (3.44) In poses

Ppa= ap : (3.46)

And nally the third condition com bined with (3.30) and (3.31) gives

| © N —
pr =0 and x= 2 4 3e? : (3.47)
O bserve that the condition @, = 0 and the de nitions of x and  altogether
T ply
@, =0; @, H=0: (3.48)

Up to now we have not in posed the condition that the dualgiantmust be BPS.

T his am ounts to setting the H am iltonian equal to them om entum in direction of the
rotation

H=p : (3.49)

The value of p and H on the solution are easily com puted from the equations
above

= NR?Kk+R%(x 1)]; (3.50)
P P

H R
p = HNR R2(x%2 e? )+ x?; (3.51)

so that for the ratio to be equalto 1 for allvalies ofR , one has to in pose'’
x=1; = 0; H=1; (3.52)

which mply —= 1 on the BPS solutions.

W e can now analyse the conditions for BPS m otion. Let us start w ith the case
of the undeform ed theory. In the undeform ed background, is dentically zero. A
supersym m etric con guration can be obtained by allow ing the probe to rotate along
the Resb vector. In fact the angle dual to R ecb vector is nomm alized to one

H=g[K;K)=gbb 1; (3.53)

where we m ade use of equation (2.25) on the SasakiF instein r= 1. Thus the BPS
equations (3.48) and (3.52) are satis ed. This reproduces the results found in [17]:
a supersym m etric dual giant m ust rotate along the Resb vector and it can sit at
any point In y;. Itsmotion in the phase space (@* ;p* ) is characterized by six free

13T here m ight exist other solutions with xed valie of R . M ost likely, an analysis in term s
of supersymm etry transform ations would reveal that these solutions are not BPS. They would
correspond to truly isolated vacua in the dual eld theory, that are not expected to exist in such
theories.
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real param eters that are the initial conditions on the SasakiF instein space plusR .
A Ttogether these param eters reconstruct a copy of the CalabiYau and the induced
sym plectic form on the phase space reduces to the natural sym plectic form of the
CalabiYau cone [17].

In the case of thedeform ed theory, isa non trivial finction ofy; and Hle condi-
tions (348), (3.52) slect a subvariety of the internal space. Slhcee = 1+ 2h
we can w rite the conditions for the vanishing of and @,, as

h=0; @,h=0: (3.54)

Hereh isthedeterm inant of the tw otorusm etric w hich vanishes exactly on the edges
of the polyhedral cone where the torus degenerates. In addition its derivative also
vanishes on the edges as equation (3.5) clearly show s. W e see that the BP S cond ition
restricts the dual giant to live on the d edges of the cone.

W e stillhave to nd the angular direction of rotation ofa BP S dualgiant, which
is characterized by the conditions H = 1, @, H = 0. W e still expect our giant to
rotate along the Recb vector. W e can com pute the value of H for a giant rotating
along the R ecb vector

1+ 9 “detgy

H=gK;K)=G+9(1 G)ag Hgusgs)= :
1+ <h

(3.55)
W e can easily check thatalong an edgewhereh = @, h = OwehaveH = 1;Q,H = 0
thus solving the rem aining equations of m otion and BP S conditions.

Summ arizing, a dual giant graviton in the beta-deform ed theory is supersym —
m etric only when it lives on the edges of polyhedron and rotates along the Reeb
vector.

Adding R to the set of initial conditions of the probe, we see that the m oduli
Space for a dualgiant can be denti ed w ith a collection of lines. W e expect that the
classical phase space of a single dual giant corresponds to the abelian m oduli space
of the dual gauge theory. Indeed what we found is consistent w ith the results for
static probes and the eld theory discussion in Section 6.

3.2.2 D5 dualgiant gravitons

For rational another class of brane probes can be consistently embedded In the

deform ed geom etry: D 5-branes w rapping the sam e S° inside AdSs and the two-torus
1

spanned by ( *; ?) in the intermalm anifod. T he corresponding em bedding is
t= ; R = R( )r = 1/ 1= 2! 2 = ’ ’
1_ 4 2 _ 5
- 14 - 4
= () v=wil ) i=1;2;3; (3.56)

%) the word-volum e coordinates on the brane. T he discussion

is com pletely parallel to that for a static D 5dbrane. T he world-=yolum e action for the
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dualgiant is still given by (3.7) and now the pulled-back m etric is given by

0
0 0 0 G 29135 G 2gp3
B 0 R? 0 0 0 0o &
E 0 0 R?co¢ ! 0 0 0 g 357)
E 0 0 0 R?shn? * 0 0 &
€6 32g5 0 0 0 Ghy;, Ghy, A
G 295 O 0 0 Ghy,; G hy,
with =V@®) £ dlyyj+ g3(2)>. TheB- el isgiven by
Bos = hG (H%gs)=; (3.58)
Bos= hG (h'%g.;)-=; (359)
B,s= hG ; (3.60)

and the word-=volum e eld strength has both m agnetic and electric com ponents
1
Fgs= —3 Foal )7 Fos( )¢ (3.61)

It is a straightforward com putation to verify that the BT action for the D 5 probe has
the sam e form as for the CalabiYau case™
7 S
N 3
Sgr= — dRR VR)

vy 324+ 2 3£ 2h, fefb;
V(R) qyﬂ@ (3@3( ) RBa a ab

(3.62)
where £® = abF op. The W essZum ino part of the action reduces to the Calabione
aswell. This is because the only non trivial contribution is

Z Z
N
SWZ = T;5 C4AF45= — d'&{4: (3.63)

T hus the world-volum e Lagrangian is

NR® P—
L = ( R) (3.64)

w ith

Py G3(SP+ 2 ga—=f,  Th,fof° (3.65)

which form ally is equivalent to that of a D 3 dualgiant in the undeformm ed geom etry
w ith the replacem ent of =2 w ith aPF . O n the undefom ed CakbiYau a D 3 dual

14s5. 1 and Sy ; are proportional to TsL* W ol(S®)Wol(T?) = *N=Vol(Xs). Again we write
only the factor N .
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giant can live at an arbitrary point and rotates along the R esb vector. W e thus see
that a class of solutions for D 5 dual giants is obtained by choosing

1
Foa= — B ; 2=p: (3.66)

W e can analyse the classical phase space of the D 5 dualgiants. Exactly as in the
cae of static D5, for = m=n, we obtain the orbifold CY =7, Z, . Coordinates
on this space are obtained by adding R to the initial values of 3, y; and the two
W ilson lines along the two-torus, and taking into account the m odi ed periodicities
of the angles. T he classical phase space of the D 5 dual giants is thus isom orphic to
the additional H iggs branches in the m oduli space of the dual gauge theory existing
for rational . This is consistent w ith the fact that the quantisation of this classical
phase space (asdone forexam ple in [17]) should reproduce them esonic BP S operators
param eterising the H iggs branch.

4 Supersym m etric D borane probes from
—transform ation

In this section we analyse the existence and supersymm etry of D3 and D 5 probes
using generalised geom etry. W e show in particular that the class ofdualgiants found
in Section 3.2 can be obtained by direct action of the —transform ation on the word—
volum e of the D 3 dual giants described in [17]. T his w ill autom atically ensure that
the dual giants are supersym m etric in the -deform ed background.

A sinpleway to do it isagain using the form alisn ofG eneralised G eom etry, w here
a D brane wrapping a subm anifold and supporting a world=volum e eld strength
F isdescribed by its generalised tangentbundle T ) [22]. T his can be described as
am axin ally isotropic subspace of T  T¢ 1°, as follow s

T gy=fX + 2T T3 :X 2T and j= yxFg: (4.1)

A s already m entioned, the elem ents of T T° transform linearly under the action
of the extended T -duality group O (d;d) and so does T( ). If we start from a
D brane pressrving a badckground supersymm etry which is also preserved by the
O (d;d) transform ation, then the D Jorane obtained by “ntegrating’ the transform ed
generalised tangent bundle w ill be autom atically supersym m etric in the transform ed
background .

Let us start by considering the -deform ation of a static D 3Jbrane in the un-
deformm ed toric SasakiE instein background, 1ling the four Poincare directions and
sitting at an arbitrary point of the intermal CalabiYau cone. A s it is well known,
this con guration preserves all the background Poincare supersym m etries.

SStrictly speaking we should consider the extension of T by T ? ; ©or our class of backgrounds the
tw o are isom orphic since B is globally de ned.
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If the D 3-brane sits at a point where the two-torus ( *; ?) shrinks to zero size,
the generalised tangent bundle describing the new D Jbrane is identical to the onewe
started from , since the —ransform ation (2 29) reduces to the dentity at these points.
T hus the original D 3-Jorane ism apped to a D 3-Jbrane at the sam e degeneration point
in the deform ed background.

The situation is di erent when the original D 3-brane sits at a point where 2
are non-degenerate. Since the only coordinates playing a non-rivial role in the

—transform ation are the two angles ° we can sin ply describe the D 3-brane as a
point on the two-torus ( !; 2). Since all orm s vanish when restricted to a point,
the associated (two-din ensional) generalised tangent bundle (4.1) adm its the basis
e = d ®.Acting on this basis with the -deformation (229),we obtain a basis for
the —ransform ed generalised tangent bundle

& = ab@—(z‘ib+d s (42)
By projcting it onto the background tangent bundle, we see that the ordinary tan-
gent bundle of the new D brane is spanned by @ : and @ 2. Thus, we obtain a
D 5-brane wrapping ( !; ?) in the -deform ed background. From the generalde ni-
tion (4.1), we also see that the D 5brane m ust support a world-volum e gauge eld
F= (1= ) '~d °.
W e can easily check this result using the supersym m etry conditions for D oranes
given iIn tem s of the (twisted) background pure-spinors [14,15]. For a D brane
wrapping the ntemalcycle with wordvolme uxF is

A

" 7€ kp1=0; Ux " ) "€ kp=0 8X 2Ty (F-atness)(43)
7.9 2 lp=0: (D - atness) (4 4)

Tn our case = = e @ ©yand ", = e exp( # J©). Then, we
Inm ediately see thata D 3-brane issupersymm etriconly where ! 0 (ie. thepoints
where the ( !; ?) two—torus degenerates), since at the other points the F— atness is
not satis ed. O n the other hand, a D 5-brane wrapping the ( '; ?) two-torus at any
non-degenerate point autom atically satis es the D — atness, since J “’ 42 = 0, whik
the F- atness in poses the condition F = (1= )d '~ d 2. W e have thus recovered
the result obtained from T -duality, generalising the result obtained by other m eans
in RQ]forAdSs S°.

Let us now pass to the description of the action of the -transfomm ation on the
D 3 dual giant gravitons. D 3 dual giants In the undeform ed background have been
found and discussed in [17]. In any toric SasakiE instein background, they wrap a
static S° of arbitrary radius at the center of AdSs, sit at any point described by the
y; coordinates (constrained by the condition 2b'y; = 1) and run along the angular
coordinates as ollow s

t= ; ‘=D + const: (4.5)
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A s for the case above, ifa D 3 dualgiant sitsat a point In the y; coordinates w here
the two—torus described by ( *; ?) degenerates, its —transform ation is trivial and
gives again a D 3 described by the sam e em bedding (4.5). T hese are nothing but the
D 3-brane dualgiants described In Subsection 32.1,which are thus supersym m etric.

In order to study the —ransform ation ofD 3 dualgiants sitting at non-degeneration
points, we can restrict our attention on the tine t and the three angles *. From
(4.1) we see that a basis for the generalised tangent bundle of these D 3 dualgiants is
given by the tangent vectors and a basis of one form s vanishing along the tra fctory

@ @ G C .

0 i 3 i i

e =—=—+Db— ,; e =dt pd ;e =c¢ uyd T 46
@ @t @+ E ¢ (4.0)

where = 1;2,1;j= 1;2;3 and ¢ j; are such that ¢ )ibi= 0.By —transfom ing it
o_ @ ;@ 3

e = Et-'- bl@ i ; €& = abgajbjﬁD + dt qu]d * ;

e = ¢

Cwg et cond o (4.7)
Profcting this basis to the background tangent bundle we obtain a basis for the
tangent bundle to the —ransform ed brane, which is thus a D 5Jbrane described by
the em bedding

( ;%) 7 t= ; =1V + const; %= ?): (4.8)

A sabove, from the “w isting’ of the basis (4.7) we see that the D 5Joranem ust support
a non-trivialworld-=volum e eld strength,which can be easily calculated to be

1 1
F=—- _Bd Ada+d1Ad2=2—ab Bd +d° ~ Bd +dP ¢9)

W e have thus recovered the D5 dual giants described in Subsection 322. Again,
they are autom atically supersymm etric by O (2;2) symm etry. A s already discussed
In Section 3.1, the gauge eld must be quantised, giving the condition = m=n
rational.

Tn Sections 3.1 and 322 we showed that the m oduli space of D 5Jorane probes
(static or dual giants) is given by CY =7, 7, . Here we will brie vy show that the
sam e result can be obtained as the -deform ation of the m oduli space of a probe D 3
n the undeformm ed geom etry.

For sim plicity, consider a static D 3-Jbrane In an undeform ed SasakiE instein back-
ground (the analysis ofdualgiants is com pletely analogous). A sexplained in [15], the
In nitesim aldeform ations of a D brane w rapping a cycle with el strength F are
described by sections of the generalissd nom albundle: N ( z) = EJ =T 5, ’ T(? £y -
In the case of the static D 3-brane, focusing again on the ( *; 2) directions, a basis
for the sections of N ( z, is given by the follow Ing representatives

@
@ a

e = ; (4.10)
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which clearly generate them otion of the D 3-brane in the ( !; ?) directions. W e can
now apply the —ransform ation (2.29) to obtain representatives of the correspond-
Ing sections of the generalised nom al bundle to the D 5-brane in the -deform ed
background. T he are given by

e == d ”: (411)

T he digplacem ent
a1 Gy & (412)

of the D 3brane in the SasakiE instein background is generated by the generalized

nom al vector e,. The —ransformm ation m aps it nto fe,, which corresponds, as

discussed in [15], to a shift A = c®e, of the gauge el on the D 5brane in the
-deform ed background. In com ponents this reads

1
A, AL+ = ,P=AL+n (413)

Thus, In particular, a periodic shift ., = 2 P of the D 3-brane corresponds to
a shift
7

. A=2n., (414)
b

of the W ilson line on the D 5Jorane. A s before the W ilson lines are de ned by RaA ,
with A = A=2 ,have period 2 and param eterise a two-torusT?.

T hisresult have a natural interpretation taking into account thatthe -deform ation
maps n D3-branes to a single D 5Pbrane. From this point of view , the angular
posjt]'onﬁ & in the undeform ed background actually corregponds to the average
h %i= I;: 1 "Z‘r)=n of the angular positions ?r) ;r = 1;:::;n; of the n D 3dranes,
while theW %son lines on the D 5-brane In the -deform ed background are associated
to the sum s 2: 1 "z‘r) (the trace of the corresponding n n m atrix in the com plete
non-abelian description of the n D 3-branes) by the -defom ation. A constant pe-
riodic shift ,h Pi= 2 P of the average D 3-brane position then produces the shift
(4.14) of the D 5-brane W ilson lines. From (4.14), we see that going once around a
l-eycle in TZ, corresponds to going n—tin es around a l-cycle in T

T T&=Z, Z,): (415)

W e can conclude that the m oduli space of the static D 5-branes in the -deform ed
background corresponds to the quotient CY =(Z Z,) ofthe CY cone of the unde-
form ed theory. T he sam e argum ents presented above can be applied to the case of
D 5 dualgiants in the -deform ed background and lead to the expected conclusion
that their m oduli space again corresponds to CY =(Z, Zn ).
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However, untilnow we have given only a one+to-onem ap between the coordinates
on the m oduli space and the coordinates on CY =(Z, Zn ). To com plte the den-
ti cation we still have to com pute the m etric on the m oduli space and see that it
coincides w ith them etric 0c£CY =(Z,, Zn ).

Consider the m oduli space of a static supersym m etric D 5Jorane described above.
Its tangent vectors correspond to the uctuations in the intemal space that preserve
the supersym m etry condition and can thus be seen as m assless chiral elds in an
e ective four-dim ensional description. T he K ahler m etric for these chiral elds can
be in principle obtained by looking at their kinetic term obtained by expanding the
DB I+ CS action for the D 5brane. This is exactly the m etric we are Interested in.

W e can apply the results of [15,16]to identify the K ahler structure of them oduli
gpace. To nd the correct holom orphic param etrization of the D 5 m assless uctua-
tions we can use once again the action of the -deform ation. The uctuation of a
generalD -brane are given by the sections of the generalissd nom albundleN ( &, [15].
Fora D 3-brane in a SasakiE instein background, them oduli space corresponds to the
CY coneM itself,N ( &, T and the associated com plex structure is nothing but
the com plex structure of the CY .Now , a basis for the holom orphic tangent space to
the m oduli space is given by the follow ing sections of the generalised nom albundle

@
@zt

& = ; (410)
where z' are the holom orphic coordinates on the CY . A basis for the holom orphic
deform ations for the corresponding D 5orane in the -deformm ed background can be
obtained sim ply by taking the —ransform ation of the basis (4.16)

e = OLM el (417)

W e can now use the general form ula for the K ahlerm etric given in [15,16], which
was In fact obtained by expanding the DB+ CS D Jborane action. In the basis (4.17)
it is given by

7
Gy = il e Mm@ )&=
7
= i e oM exp( 7 Jp) &=
7
= a” F= i@ §ndl? ; (418)

| il

where J© is Kahler om on the CY cone. W e thus see that we obtain (locally)
exactly the CY m etric, up to an overall factor which com es from the fact that the
D 5brane with n units of F ux corresponds to n D 3-branes In the undeform ed SE
background. From the coordinate denti cation discussed above, we can conclude
that the K ahler m oduli space for the D 5Jorane is indeed CY =(Z Zn ).
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5 Comm entson giant gravitons

T here exist other BPS string con gurations. O f particular interest are the giant
gravitons, con gurations of D 3-brane wrapping 3 cycles in the intemal space. It
would be quite interesting to perform a com plete analysis of the spectrum of giant
gravitons on the -deform ed background. A s shown In [26{31], In the undeform ed
case, the quantisation of the classical supersym m etric giant graviton solutions gives a
com plete inform ation about the spectrum and the partition fiinction of BP S m esonic
operators In the eld theory.

In the CalbiYau case, giant gravitons can be param eterised by Euclidean D 3-
branes living Inside the Intemal six-m anifold [26,32]. W e restrict to the m Inin al
giant gravitons w ithout worldvolum e ux, which param etrize all the bosonic BP S
states. The argum ent given In [26] suggests that the sam e param eterisation can be
used In all solutionsw ith AdSs factor. T he supersym m etric conditions for Euclidean
D branes on a generalised geom etry background have been derived in [33]and shown
to be dentical to the conditions for the intemal part of space— 1ling branes discussad
in [14,157°, that we have already written in (4.3) and (4.4). So they can be easily
applied to an Eucldean D 3-brane, given the form of the pure spinors discussed in
Section 2.3.

The F- atness condition (4.3) for Euclidean D 3-brane wrapping with F = 0
reduces to

o] =0, (51)

wherewe recallthat (p, is the holom orphic (3;0) on the orignalCY geom etry. The
condition (5.1) exactly requires that the 4—<cycle w rapped by the Euclidean D 3-brane
m ust be holom orphicw ith respect to theCY com plex structure. C onsider forexam ple
urcyclesin  -deform ed toric vacua de ned by the embedding w5 = g(z!;z?%;2t;2%),
12,712 are chosen as coordinates on the cycle. Then the F- atness (5.1)

where z°7;z

becom es
dz' ~dz* ~dg=0 , @g= 0 ; (52)

which indeed requires that the em bedding is holom orphic w ith respect to the ol
variables. O f course, other supersym m etric en beddings m ight exist which are not
param eterised by z'7.

On the other hand, the general D — atness condition is (4.4) in the -deformed
toricwvacua, for the above four<cycleswith F = 0, becom es

J~TNT)J d¥ ~dx*~dg~dg=0 , Imn (,g@qg)= 0: (53)

Interestingly, all the supersym m etric conditions can be written in tem s of the
original com plex coordinates of the Calabi¥Yau. This is in agreement with eld the-
ory,w here them oduli space for the deform ed theory rem ainsa com plex m anifold and

16Indeed, the results of this section can be equally used to dentify and study avor D 7Tdoranes
on this generalclass of -deform ed backgrounds (see [34,35] for work in this direction).
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the originalcom plex structure of them oduli space can be stillused to characterize it.
W e can easily nd many solitions of the F and D — atness conditions. For exam ple,
allm onom ials of de nite charge ws = €' &% solve the constraints. At rst sight,
we are left w ith m ore solutions than expected from the spectrum of BP S states of the
deformm ed theory. However a m ore carefill analysis of the giant graviton characteri-
zation as Euclidean D 3-branes, of their global properties, of their world=olum e ux
and, In general, of the quantisation procedure should be perform ed before extracting
correct results. W e leave this interesting analysis for future work.

6 The gauge theory

In this Section we discuss the m oduli space fora -deform ed quiver gauge theory.
R ather than giving general proofs for all toric quiver theories we exam ine various
exam ples and we give som e general argum ents.

6.1 Non abelian BPS conditions

In order to understand the fullm esonic m oduli space of the gauge theory we need to
study general non-abelian solutions of the F term equations.

Before attacking the general construction, we consider N = 4 SYM and the
conifold. In the N = 4 SYM case, we form m esons out of the three ad pint elds
( i) . Thenon-abelian BP S conditions for thesem esonic elds are given in equation
(29) and can be considered as equations for three N N m atrices. In the conifold
case, we can de ne four com posite m esonic elds which transform in the adpint
representation of one of the two gauge groups

Xx= (A1By1) ; y= (ABy) ; z= (ABy) ; w= (AyBq) (6.1)

and consider the fourm esons x;y;z;w asN N m atrices. W e could use the second
gauge group w ithout changing the results. W ith a sin ple com putation using the
F—-tem conditions (2.10) we derive the follow Ing m atrix com m utation equations

xz = blzx
xw = lwx
yz = ey
yw = blwy
Xy = VX
W = WZ (62)
and the m atrix equation
xy = lwz (63)

which is just the conifold equation. Here and in the lowing b= e? .For =0
these conditions sin plify. A llthem esonscomm ute and theN N m atrices x;vy;z;w
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can be sim ultaneous diagonalized . T he eigenvalues are required to satisfy the conifold
equation (6.3) and therefore the m oduli space is given by the sym m etrized product
of N copies of the conifold, as expected.

An interesting observation is that, fortheN = 4 SYM and (6.2) for the conifod,
the Ftem oconditions for 6 0 can be obtained by using the non comm utative
product de ned In (2.5)

£ g le@0%¢gy. (6.4)

The charges ofm esons for N = 4 and the conifold are shown in Figure 2.

The BPS conditions for the Calbi¥Yau case, which require that every pair of
mesonic eds f and g comm ute, are replaced In the -deform ed theory by a non
com m utative version

[f;gl= 0 ! [£;9] t g g £=20: (6.5)

It is an easy exercise, using the assignm ent of charges shown in Figure 2, to show
that these m odi ed com m utation relations reproduce equations (2.9) and (6.2).

This sim ple structure extends to a generic toric gauge theory. The algebraic
equations of the CalbiYau give a st of m atrix equations for m esons. In the un-
deformm ed theory, allm esons comm ute, while in the -deform ed theory the original
com m utation properties are replaced by their non com m utative version. In order to
fully appreciate these statem ents we neaed to understand the structure of them esonic
chiral ring for toric theordes [36{42].

6.1.1 Themesonic chiral ring

W e brie vy review the structure of the m esonic chiral ring for quiver gauge theories.
T he reader is referred to [36{42] for an exhaustive discussion. T he reader w ho wants
to avoild technical details can directly jum p to the next Sections, w here m ost of the
exam ples are selfexplaining.

>From the algebraicgeom etric point of view the data of a conical toric Calabi-
Yau are encoded i a rational polyedral cone C in Z° de ned by a set of vectors V

= 1;u5d. Fora CY cone,using an SL (3;Z ) transform ation, it is always possible
to carry these vectors in the form V. = (x ;y ;1). In this way the toric diagram
can be drawn in the x;y plane (see for exam ple Figure 2). The CY equations can
be reconstructed from this set of com binatorial data using the dual cone C . This
is de ned in equation (2.14) and it was already used to write the metric asa T°
bration. T he two cones are related as follow . T he geom etric generators for the cone
C ,which are vectors aligned along the edges of C , are the perpendicular vectors to
the facets of C.

To give an algebraicgeom etric description of the CY , we need to consider the
cone C as a sam Igroup and to nd its generators over the integer num bers. The
prin itive vectors pointing along the edges generate the cone over the realnum bers but
we generically need to add other vectors to obtain a basis over the Integers. D enote
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by W5 with j= 1;:5k a set of generators of C  over the Integers. To every vector
W 5 it is possible to associate a coordinate x5 In som e am bient space. k vectors in z°
are clearly linearly dependent for k > 3, and the additive relations satis ed by the
generators W 5 transhte into a set of m ultiplicative relations am ong the coordinates
x5. These are the algebraic equations de ning the six-dim ensional CY cone.

#)1 (0,-1,1)

(0,-1,0) y
(-1,0,1)l (0,0,1) ©11) | @11)
W%i oo T _w
#; / (-1,0,0) z (-1,0,1;
%1’1’1) 0,-1) 0,01 (101
0,1,0) | X

) (b)

Figure 2: The toric diagram C and the generators of the dual cone C with the
associated mesonic eds for: (@) N = 4, (b) coniold. The U (1)° charges of the
m esons are explicitly indicated; the rst two entrdes of the charge vectors give the
U (1)? global charge used to de ne the non comm utative product.

A 1l the relations betw een points in the dual cone becom e relations am ong m esons
n the eld theory. In fact, using toric geom etry and dim er technology, it ispossible to
show that there exists a one to one correspondence betw een the integer points inside
C and the m esonic operators in the dual eld theory, m odulo F-termm constraints
[37,40]. To every integerpointm ; in C we indeed associateameson M , ; In thegauge
theory with U (1)° chargem 5. In particular, the m esons are uniquely determ ined by
their charge under U (1)°. The rst two coordinates

Q™= (mjm?) (6.6)

of the vectorm 4 are the charges of them eson under thetwo avourU (1) symm etries.
Since the cone C is generated as a sam Igroup by the vectors W 5 the generic m eson
w illbe obtained as a product ofbasicm esonsM y , ,and we can restrict to these gen-
erators for all our purposes. T he m ultiplicative relations satis ed by the coordinates
x4 becom e a set of m ultiplicative relations am ong the m esonic operatorsM y ; Inside
the chiral ring of the gauge theory. It is possible to prove that these relations are
a consequence of the F-+tem constraints of the gauge theory. The abelian version
of this set of relations is jast the set of algebraic equations de ning the CY variety
as enbedded in C*. The examples of N = 4 SYM and the conibld are shown in
Figure 2. In the case of N = 4 , the three mesons 4 correspond to independent
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charge vectors and we cbtain the variety C°. In the case of the conifbd, the four
mesons x;y;z;w correspond to four vectors w ith one linear relation and we obtain
the description of the coniold as a quadric xy = zw in C*.

W e need now to understand the non abelian structure of the BPS conditions.
M esons correspond to closed loops in the quiver and, as shown in [36,38], for any
m eson there is an F—-tem egquivalent m eson that passes for a given gauge group. W e
can therefore assum e that allm eson loops have a base point at a speci ¢ gauge group
and consider them asN N matricesM . In the undeform ed theory, the F-tem
equations In ply that allm esons comm ute and can be sim ultaneously diagonalized.
The additional F-tem constraints require that the m esons, and therefore all their
elgenvalues, satisfy the algebraic equations de ning the CalabiYau. This gives a
m oduli space which is the N fold sym m etrized product of the Calabi¥Yau. This has
been explicitly veri ed in [43] for the case of the quiver theories [44 ] corresponding
to the LP¥ m anifolds. In the -deform ed theory the com m utation relations am ong
m esons are replced by  -deformm ed com m utators

2' ml/\ m2 mlA m2
My My,=e? © 7799 M, =02 "7 M, M, : (6.7)

T he prescription (6.7) w ill be our short—<ut for com puting the relevant quantities we
w ill be interested in. T his fact becom es com putationally relevant in the generic toric
case. Aswe will show In an explicit exam ple in the Appendix B this procedure is
equivalent to using the -deform ed superpotentialde ned in (2.8) and deriving the
constraints for them esonic elds from the F-tem relations.

Finally the m esons still satisfy a certain num ber of algebraic equations

which are isom orphic to the de ning equations of the original C alabiY au.

6.2 Abelian m oduli space

Tn this section, we give evidence from the gauge theory side that the abelian m oduli
goace of the -deform ed theories is a set of lines. There are exactly d such lines,
where d is the num ber of vertices in the toric diagram . In fact, the lines correspond
to the geom etric generators of the dual cone of the undeform ed geom etry, or, in
other words, the edges of the poledron C where the T® bration degeneratesto T *.
Tntemalgenerators of C asa sam igroup do not corregpond to additional lines in the
m oduli space. T hese statem ents are the eld theory counterpart of the fact that the
D 3 probes can m ove only along the edges of the sym plectic cone.

W e explained In the previous section how to obtain a set ofm odi ed com m utation
relations am ong m esonic elds. Tn the abelian case the m esons reduce to com m uting
cnum bers. >From the relations (6.7) with non a trivial b factor, we obtain the
constraint

My Mp,=0: (69)
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Adding the algebraic constraints (6.8) de ning the CY , we obtain the full set of
constraints for the abelian m esonic m oduli space.

W e now solve the constraints in a selected set of exam ples, which are general
enough to exem plify the result. W e analyse N = 4, the conifold, the Sugpended
Pinch Point (SP P ) singularity and am ore sophisticated exam ple, P dP,,w hich covers
the case where the generators of C as a sam igroup are m ore than the geom etric
generators.

62.1 The case ofC?
The N = 4 theory is sinple and was already discussed in Section 2.1. The three
Iines correspond to the geom etric generators of the dual cone as In Figure 2.

6.2.2 The conifold

T he abelian m esonic m oduli space of the conifold theory was already discussed in
Section 2.1 using elam entary elds. From the ejuations (6.2) we obtain the sam e
result: four lines corresponding to the extemal generators of the dual cone as shown
n Figure 2.
6.2.3 SPP

T he gauge theory obtained as the near horizon lim it of a stack of D 3-branes at the
tip of the conical sinqularity
xy2 =Wz (6.10)

iscalled the SP P gauge theory [45]. T he toric diagram and the quiver of this theory
are given in Figure 3. Its superpotential is

V4
0,2,1) /—1,—1,2) 1
(1,0,0) (1,1,1) |
X _ Y
(-1,0,1)
3 : 2

(0,0,1) T (1,0,1)

0,1,0' W

Figure 3: The toric diagram and the quiver of the SP P sihgularity

W = X 21X 12X 23X 32+ X 13X 31X 77 X3pX3X 31X 13 XX 01X 1 (6.11)
T he generators of the m esonic chiral ring are
W= X13X3X2; X=Xq1;

Zz=X1pX23X31; Y= X12X21: (6.12)
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T hesem esons corresoond to the generators of thedualcone in Figure 3. Their avour
charges can be read from the dual toric diagram

Qx= (1;0),0.=( 1; 1),Q=( 1;0),0, = (0;1): (6.13)

U sing the deform ed com m utation rule form esons (6.7) we obtain the follow ing rela—
tions

XW=lwx; zx=Ixz; wz=lzw ;
wy=lyw; yz=lzy: (6.14)

Tn the abelian case they reduce to

xw=0; zx=0; wz=0;

wy=0; yz=0; xy° WZ; (6.15)

where the last equation is the additional F+tem constraint giving the originalCY
m anifold. The presence of the symbol\ " is due to the fact that the orighalCY
equation isdeform ed by an unin portant pow er of the deform ation param eter b, w hich
can always be reabsorbed by rescaling the variables. T he solutions to these equations
are

(x=0; y=0; z=0)! fwg;
x=0; y=0; w=20)! fzg;
(x=0; z=0; w=20)! fyg;
w=0; y=0; z=0)! fxg; (6.106)

corresponding to the four com plex lines associated to the four generators of the dual
cone.

6.24 PdP,

T his is probably the sin plest exam ple w ith intermal generators: the perpendicular
to the toric diagram are enough to generate the dual cone on the real num bers but
other intemal vectors are needed to generate the cone on the integer num bers. T he
discussion In Section 3.2 suggests that them oduli space seen by the dualgiant gravi-
tons and hence the abelian m esonic m oduli space of the gauge theory are exhausted
by the extermal generators. W e w ill see evidence of this fact.

T he P dP, gauge theory, [46], is the theory obtained as the near horizon lim it of
a stack of D 3-branes at the tip of the non com plete intersection singularity de ned
by the set of equations

Z1Z3 = ZoL , 2024 = Z3t , 2325 = 4t
ZpZg = £ ;2124 = Y (6.17)
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Zs 0,-1,2)
0,2,1) l 1,2,1) Z3

/ (-1,-1,3)

Figure 4: T he toric diagram and the quiver of the P dP, singularity

T he toric diagram and the quiver of the theory are given in Figure 4. T he superpo-
tential of the theory is
W = XgX17X 74X g6 + X 21X 13X 35X 52 + X 27X 73X 36X 62 + X 14X 45X 51
X51X 17X 73X 35 XX 14X 46X g2 XX 74X 45X 52 X13X 36X 61 (6.18)
T he generators of the m esonic chiral ring are
2y = X51X13X 357 Zp = X 51X 17X 74X 457 23 = X 21X 17X 74X 45X 52 5
zg= X 14X 45X 52X 217 25 = X 14X 46X 617 L= X 13X 36X g1t (6.19)
>From the toric diagram we can easily read the charges of the m esonic generators
Q2 = (0;1); Qz=0( 1;0); Qp=( 1; 1); Q= (0; 1); Q= (1;0):
(6.20)
T o generate the cone on the integerswe nead to add the Intemalgeneratort= (0;0;1)
with avour charges Q. = (0;0). The generators satisfy the equations (6.17) for
the P dP, singularity m odi ed just by som e irrelevant proportional factors given by
powers of b. W e must add the relations obtained from the mesonic -deform ed
comm utation rule (6.7)
217y = 2571 7 773 = bz3z1; 25z = bmzsp 2p73 = zzzp
2074 = 10247y ; 7324 = V2423 ; 2325 = V2573 2425 = 12524 ; (621)
that In the abelian case reduce to
712 = 0; z123=0; 25z =0; 2zz3= 0;
274 = 0; 2324 = 0; 2Z325 = 0; 2z42z5= 0: (6.22)

T he solutions to the set of equations (6.17) and (622) are

(zo=0; z3=0; z=0; z=0; t=0)! fzg;
(zz=0; z3=0; z=0; z=0; t=0)! fzg;
(z1=0; z=0; zz=0; z5=0; t=0)! fzg;
(zz=0; z=0; z3=0; z=0; t=0)! fzg;
(z1=0; z=0; z3=0; z4=0; t=0)! fzg; (6.23)
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corresponding to the wve extermal generators. W e observe in particular that the
com plex line corresponding to the intermal generators t is not a solution.

6.3 Non abelian m oduli space and rational

The F+tem equations
Mg My,=e?t@"70% I M (624)

give a non comm utative t Hooft:W eyl algebra for the N N matrces M ;. By
diagonalizing thematrix ,,n, = (Q™* * Q™?) we can reduce the problem to various
copies of the algebra for a non com m utative torus

M1M2=62iM2M1 (6.25)

w hose representations are well known.

For generic , corresponding to irrational values of , the "t HooftW eyl algebra
hasnonon trivial nitedin ensionalrepresentations: wecan only nd solutionsw here
all the m atrices are diagonal, and in particular equation (625) ImpliesM M , =
MM = 0. The problam is thus reduced to the abelian one and the m oduli space
is obtained by symm etrizing N copies of the abelian m oduli space, which consists
of d Iines. T his is the ram aining of the original C oulom b branch of the undeform ed
theory.

For rational = m=n, Instead, new branches are opening up in the moduli
space [5,6]. In fact, for rational , we can have nite dim ensional representations
of the 't Hooft-W eylalgebra which aregiven by n = n m atrices (O* )i5 . The explicit
form of them atrices (0* )i; can be ound In [47]but it is not of particular relevance
forus. Forgauge groups SU (N ) with N = nM we can have vacua w here them esons
have the form

M ;) =DiagM ,) (OI)ij; a=1;ua3M ; i;5= 1;u5n; ; = 1:::N :
(626)
TheM variablesM , are further constrained by the algebraic equations (6.8) and
are due to denti cations by the action of the gauge group. A convenient way of
param eterising the m oduli space is to look at the algebraic constraints satis ed by
the elem ents of the centre of the non-com m utative algebra [51].

W ew illgive argum ents show Ing that the centre of the algebra ofm esonic operators
isthealgebraicvariety CY=%, %,.HereCY m eansthe originalundeform ed variety,
and thetwo 7, factors are abelian discrete sub-groupsofthetwo avours sym m etries.
This statem ent is the eld theory counterpart of the fact that the m oduli space of
D 5 dualgiant gravitons is the original C alabiYau divided by 7, Zp -

T he generic vacuum (6.26) corresponds toM D 5 dualgiantsm oving on the geom —
etry. T he resulting branch of them oduli space is theM —fold sym m etrized product of
theorighalCakbiYaudivided by 2, Z,.Each D5 dualgiant should be considered
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as a fully non-abelian solution of the dual gauge theory carrying n color indices so
that the total number of colors isN = nM . W e can obtain a di erent perspective
on this branch of our gauge theory by considering it as the world-volum e theory of
D 3-branes sitting at a discrete torsion 2, 7, orbifold of the original singularity [48].
In this picture, the D 5 dual giants correspond to the physical branes surviving the
orbifold profction. This perspective has been discussed in details in the literature
forN = 4 SYM [5]and it can be easily extended to generic toric singularities.

6.3.1 The case ofC?

The case of the -deform ation of N = 4 gauge theory is sin ple and wellknown [5].

T he generators of the algebra of m esonic operators are the three elem entary elds

1, 2, 3. Equation (2.9) in plies that it possible to write the generic elem ent of
the algebra in the ordered form

_ k1 k2 ks
ki ko ks T 1 2 3 (6.27)

T he centre of the algebra is given by the subset of operators in (6.27) such that:

_ 6<3 k2 — .
ki k2 k3 1 1 kikoks 1 kikoks s
= I ks — .
ki ko ks 2 2 ki ko ks 2 kikoks s
_ 2 k1 _ .
kdoks 3= O 3 kikeks T 3 kikoks (6.28)

Sihce B' = 1, the center of the algebra is given by the set of y x,x, such that
ki =k, = ksmodn.

T he generators of the center of the algebra are: 007 onps 0pn/s 1a22-Wecall
them x;y;w ;z resoectively. T hey satisfy the equation

xXyw = z" (6.29)

which de nesthevariety C°=Z, %,.To seethis, takeC > with coordinatez ;7 2%;2 3,
and consider the action of the group Z, Z, on C?

7t;72%:230 7zt L ,z2 71 (6 30)

with " = " = 1. Thebasic invariantm onom ialsunderthisaction arex = (Z1);y =
(Z2P;w= (Z3)V;z=2'2%2° and they clearly satisfy the equation (6.29).

This fact can be represented in a diagramm atic way as in Figure 5. T his repre-
sentation of the rationalvalue -defom ation is valid for every toric CY sihgularity.

6.4 Conifold

T he case of the conifold is a bit m ore Intricate and can be a ussful exam ple for the
generic CY toric cone. The generators of the m esonic algebra x;y;z;w satisfy the
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I b=1

Figure5:C°> ! C3=Z, %, in the toric picture, b = 1.

equations (6.2). Tt follow s that we can write the generic m onom ial elem ent of the
algebra in the ordered form

ki k ks _k
ki ko ks kg = X ly fwiz (6.31)

T he centre of the algebra is given by the subset of the operators (6.31) that satisfy
the equations

mokoks X= BN X kaoaoke = X kgokske s
kikokska ¥ = 6(3 ke Y kikokskse T Y kikokska 7
kikokska W = H(l K w kikoksks — W ki ko kska 7
goksks 2= BN 2 laoaoke = 2 kkokoks (6.32)

Because ' = 1, the elam ents of the centre of the algebra are the subset of the
operators of the form (6.31) such thatk; = ky, ks = ks, mod n.

The centre is generated By 0007 0m007 00n07 000n7 12007 o0paa;Wecall
them respectively A ;B ;C ;D ;E ;G .The F-tem relation

xy=lwz (633)

then In plies that E and G are not independent: E = G . M oreover the generators
of the centre of the algebra satisfy the equations

AB=CD =E": (6.34)

A s in the previous exam ple, it is easy to see that these are the equations of the
Zn Z, orbifold of the conifold. Take indeed the coordinates x;y;w ;z de ning the
conifold as a quadric enbedded in C*. The action of Z,, 7, is

Xiyiwiz !l x Gy T Gwo Tz (635)
where " = " = 1. The basic invariants of this action are A ;B ;C ;D ;E ;G ,and they

are sub gct to the constraint (6.33). Hence the equations (6.34) de ne the variety
C(T'M)=2, Z.
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Figure 6: C (T'%) ! C(T'?)=Z, 2, in the toric picture, v = 1

6.5 The general case

Now we want to analyse the generic case and show that the centre of the m esonic
algebra for the rational -deformed (' = 1) gauge theory istheZ, %, quotient of
theundeformed CY .

For a generic toric quiver gauge theory we take a set of basicmesons M i, (we
willcallthem sin ply x5 from now on) corresponding to the generatorsW 5 of the cone
C . These are the generators of the m esonic chiral ring of the given gauge theory.
Because they satisfy the relations (624) it is always possible to write the generic
m onom ialelem ent of the m esonic algebra generated by x5 In the ordered form

p1px T Xp X5 ::‘Xik : (6.36)
W e are Interested in the operators that form the centre of the algebra, or, in other
words, that comm ute w ith all the elem ents of the algebra. To nd them it is enough
to nd all the operators that com m ute w ith all the generators of the algebra, nam ely
X1 ;5% . The generic operator (6.36) has charge Qg ..., under the two avour
U (1) symm etries, and the generators x5 have charges Q 5. They satisfy the follow ing
relations
priipe X3 = X5 pypup, B0 (6.37)

T his I plies that the centre of the algebra is form ed by the set of | ..., such that
Qpjup ~Q5=0modn ,j= 1;u5k: (6.38)

At this point it is in portant to realize that the Q ; contain the two din ensional
vectors perpendicular to the edges of the two din ensional toric diagram . The fact
that the toric diagram is convex im plies that the Q 5 span the T 2 avour torus. In
particular the operator g ;...,, must commute (m odulo n) with the operators w ith
charges (1;0) and (0;1). The st condition gives all the operators in the algebra
that are invariant under the Z, In the second U (1), while the second gives all the
operators nvariant under the 7, contained in the rst U (1). A 1l together the st
of operators in the centre of the algebra consists of all operators
under the Z,, 7, discrete subgroup of the T?2.

Them onom ialsm ade w ith the free x; ; ::1;%, coordinates of C*¥ that are nvariant
under?Z, Z,,fom ,byde nition, thequotient variety C¥=Z, %, . T he toric variety

b1 snpe dNVAriant
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V isde ned starting from a ring over C ¥ w ith relations given by a set of polynom ials
fay ;5,09 de ned by the toric diagram

C[xy;myx

C[V]= [l/ rk]: (6.39)

fop ;a9
Indeed the elam ents of the centre of the algebra are the m onom ials m ade w ith the
x5, subFct to the relations fq ; ::;;q,9, nvariant under 7, 7, . This fact allow s us
to conclude that the centre of the algebra in the case ' = 1 is the quotient of the
originalCyY

CY

Vb= m . (6.40)

The -deformed N = 4 gauge theory and the -deform ed conifold gauge theory are
special cases of this result. In the appendix we w ill discuss a m ore sophisticated
exam ple, which includes SP P as a particular case.

7 Conclusions

In this paper we discussed general properties of the -deform ation of toric quiver
gauge theories and of their gravitational duals, which have a very sim ple characteri-
zation in tem s of generalised com plex geom etry.

W e analysed them oduli space of vacua of the -deform ed theory using D oranes
probes and eld theory analysis. An in portant class of supersymm etric probes,
the giant gravitons, has still to be analysed. It would be interesting to study the
classical con gurations of giant gravitons in the -deform ed background and their
quantisation. This should give inform ation about the spectrum of BPS operators
and, as it happens in the undeform ed theory, it should help In com puting partition
functions for the chiral ring of the gauge theory [27{31,40{42].

O n the gravity side, we clari ed the geom etrical structure of the supersym m etric

-deform ed background. The description in temm s of pure spinors is ram arkably
sin ple. It would be interesting to see whether this description can be extended to
the analysis of otherm arginaldeform ations of superconform al theories. Tn particular
N = 4 SYM and other quiver gauge theories adm it deform ations that breaks the
U (1) symm etry whose supergravity dual is still elusive. Tt would be interesting to
extend our m ethods to the search of these m issing solutions.
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A deformed N = 4 Super Yang-M ills

Forthe -deformation of N = 4 SYM it is possible to use the pure spinor form alism
to determ ine the precise relation between the param eter  entering the supergravity
background and the  param eter deform ing the superpotential of the dual gauge
theory. Even if the com putation does not apply to the -deform ation of a generic
toric C alabiY au,we report it here since it provides a nice application of the form alism
of G eneralised Com plex G eom etry.

T he com putation is based on the observation that for a generic deform ation of
N = 4 SYM it possible to relate the integrable pure spinor of the gravity solution
(" frus)and the superpotential of the dual gauge theory [11,15]. M ore precisely
it possible to write the superpotential for a single D Jrane probe, with a world-
volum e ux F and wrapping a cycle in the ntemalm anifold, in term s of the closed
pure spinor [15]. Sihoe e® © is closed, one can bcally write €* © = d  and the
superpotential can be w ritten as

W = j e A1)

Notice that (A 1) has precisely the form of the CS temm in the standard D -
brane action, where plays the role of the twisted RR potentials C *~ € . A non-—
abelian generalisation of such CS term form ultiple D branes was obtained by M yers
n [49], using an argum ent essentially based on T duality. Since the pure spinor A
transform s precisely as the RR - eld strengths under T duality, the sam e argum ent
can be applied In our case, and the resulting non-abelian superpotential has exactly
the sam e form ofM yers’ non-abelian CS tem ,with C * € substituted by

For the background obtained by -deform ing AdSs &, using the standard at
com plex coordinates on the intemalwarped C°, we have

A

3R = (Zz°dz’ + cyclic)+ dz' ~ dz” ~ dz” ; A 2)
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and thus

1 197 k
5' ijzdz” ~dz o A 3)

= 72?2+
Then, from the above argum ent and M yers’ non-abelian C S action we get the follow -
ing non-abelian superpotential for a stack of D 3-branes (in units %= 1)

W = Str[eZi ](0)
Tr(1+1 )1 2 3 T 1 ) o3 215 A 4)

where ; is the non-abelian scalar eld describing the D 3brane uctuations, which
is canonically associated to z'=(2 %). Com paring with (2.2), sihce we need 1
to trust the supergravity approxin ation, we conclude that

= : (A D)

B Som e explicit eld theory exam ples

In this appendix we illustrate few points of the el theory analysis. Using the
SPP example, we show how the non comm utative product acts on the undeform ed
superpotential and m otivate form ula (2.8). W e also discuss the non abelian branches
of the theories LPAX for rational

B .l A ction of the non com m utative product

To obtain the -deform ed gauge theory we pass from the sim ple product between
elds to the star product:

XX X, % & @9y .x. ® 1)

where X ; are the elam entary elds In the quiver.
T he star product is non com m utative but associative and the product of a string
ofn elds takes the fom :

X 4 X P2 X5 Qa:"Qay)y a X B 2)

n

Let us consider two generic m esonic elds w ith base point in the sam e gauge group:
M =X, ::X, N = Xy :::Xp . In the undeform ed theory they commuteM N =
NM ,butwhen we tum on the -defom ation thisrelation becomes:M™ N = N M’,
for the quantities M™ = X ,, i XN = Xy, 11t X. Thisgives,using (B 2):

M N = b2 "9n INM (B 3)

where we de ned the charges of the composite elds: Qy = Q4 + i+ Q4 ,QOn =
Qp, + i+ Qp . Note that relation (B .3) also holds in the sam e form for m esons M
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and N , since they are proportional to M™ and N regpectively, thanks again to (B 2).
W e obtain therefore our generalm ethod (6.7) for com puting com m utation relations
form esons.

W ewould lke now to understand the structure of the superpotentialW forthe -
deform ed theory, obtained by replacing the standard productw ith the star product in
(B .1). Firstofall, sinceW isa trace ofm esons, consistency requires the star product
to be invariant under cyclic perm utations of the elds. T his happens because of the
conservation of charge '7: the two U (1) avour charges of each m eson are zero.

Then wewant to show thatW can alwaysbe put Into the form (2.8) by rescaling

elds. Considder a generic toric gauge theory with G gauge groups, E elam entary
elds and V m onom ials In the superpotential. W e have the relation [18]:

G E+V =0 B 4)

T he superpotentialW of the undeform ed theory isa sum ofV monom ialsm ;;n;
m ade w ith traces of products of elem entary elds. Every elem entary eld appears in
the superpotential W once w ith the positive sign and once w ith the negative sign,

$=2 $=2
= cmg c, Ny (B 5)
=1 J=1

W

After -deform ation the coe cientsc; ,¢; are replaced by generic com plex num bers.
R escaling the elem entary chiral elds produces a rescaling also of the coe cients
C; ,C; ,but note that the quantity

Q
oI - const B .6)
c

J J

rem ains constant since every chiral eld contributes jist once in the num erator and
Jjust once in the denom inator. In the undeform ed theory this constant is 1, while in
the -deform ed case its value can bewritten asb V=2, for som e rational

Consider the action of the E din ensional group of chiral elds rescalings over the
V din ensional space of coe cients ¢ , ¢, In the superpotential. T he subgroup that
leaves Invariant a generic point (w ith all coe cients di erent from zero) is the group
of global sym m etries of the superpotential. It isknown that toric theorieshave G + 1
globalsymm etries'® , therefore the din ension ofa genericorbitisE G+ 1)=V 1,
thanks to (B 4). This show s that (B 6) is the only algebraic constraint under eld
rescalings, and hence it is always possible to put the superpotential in the form :

k* k3 in the
n point vertex interaction of the perturbative expansion of space-tin e non-com m utative quantum
el theories, due to the conservation of m om enta at each vertex.
T hese are the 2 avour non anom alous symm etries plusG 1 baryonic sym m etries (anom alous
and non anom alous).

7T his is the analog of the cyclic nvariance of the factor exp El i

0< < <n

45



X X
W = m I b HJ (B '7)
I J

Let us explain In m ore detail a particular case, SPP .

Figure 7: D in er con guration and toric diagram for the SPP singularity.

A Il the nform ation of a toric quiver gauge theory is encoded in a din er graph [18]
(see Figure 7). The dea is very sinple: you draw a graph on T? such that it
contains all the inform ation of the gauge theory: every link isa eld, every node a
superpotential term , and every face is a gauge group. T here exist e cient algorithm s
to com pute the distrdbution of charges a; for the various U (1) global sym m etries of
the gauge theory [50]. The charges for every elds in the SPP gauge theory are
given in Figure 7. For theptwo global avour symm etries we are interested in, the
trialcharges are such that ,a; = 0 (conservation of avour charges at every node).
W e can thus w rite the charges of them esonic elds in tem s of the trial charges:

XZX]_]_! a; + ar ,y=X12X21! asz + az + as
W = X13X 32X 21 ! ar + 2a3 + ayg ,2Z2= X12X 23X 31 ! a; + ag + 28.5
B 8)

U sing the values of the m esonic charges given in (6.13) one can now com pute the
charges a; for the elem entary elds. These will be a set of rational num bers. W e
can now use these charges to pass from the sim ple product to the star product (B .1)
n every term in the superpotential. T his procedure w ill generate a phase factor in
front of every term in the superpotential. T he interesting quantity is the nvariant
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constant in (B ©6): 0
+
01T _ i o pt B 9)
J CJ
T he actualvalue of this constant In plies that we can rescale the elem entary elds in

such a way that the superpotential assum es the fom :
W o= XX 12X 33X 30+ X 13X 31X 11 B2 (X 32X 53X 31X 13+ X 15X 51X 17) B .10)

U sing the F-termm equations from the -deform ed superpotential (B 10) one can re—
produce the com m utation rules am ong m esons (6.14) given in them ain text plus the
~deform ed version of the CY shgularity: wz = Ixy*.

B .2 LPAH

In this Section we give another exam ple of the m oduli gpace for rational . LPHA
with g p are an In nite class of SasakiF instein gpaces. For som e values of p;g
these spaces are very wellknown. Indeed L'2? = C (T!?),and L'#?? = SPP. The
real cone over LPAH is a toric CalabiYau cone that can be globally described as an
equation in C*:

C (LPHEF) 1 xPyT= wz (B .11)
A 11 the algebraic geom etric inform ation regarding these singularities can be encoded
in a toric diagram , see Figure 8. T he variety is a com plete intersection in C*. deed

(0,0.2)

Z
P )

(1,0,0)

(1,p.1)

X g=2,p=1 g=p=1
y —_— _—
o) D

(0,0,1) (1,0,2)
(0.1.0 W

Figure 8: The toric diagram s of the C (LPHX) singularity and their two well known
specialcases: SPP ,C (T1?h).

to each generator of the dualcone we can assign a coordinate like in Figure 8. These
coordinates are In one to one correspondence with the mesonic eld in the eld
theory generating the chiral ring, and the st two coordinates of the vectors are
their charges under the two U (1) avour symm etries. T he generators of the m esonic
algebra are x;y;w ;z and thanks to their com m utation relations

XY= VX ,XW = wx ,xz= b’ zx

yw=Dblwy,yz=lzy ,wz= P zw B.12)
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we can w rite the generic m onom ial elem ent of the algebra in the ordered fom :

k k. ks _k
Kikoksks = XY WOz (B 13)

T he center of the algebra is given by the subset of the operators (B .13) that satisfy
the equations:

Ky ko ks ke X = B0 % g ke = X ko ks ke
kikoksks Y = 6(3 K Y kikokska =Y kikokska
Kidokake W= BT K2EPR Gy sk TV ok
Kdokaks 2= B2 FTEPRS o ke T 2 ek ke

(B .14)

Because ' = 1 theelam ents ofthe center of the algebra are the subset of the operators
ofthe form (B .13) such thatks; = ks, k1 = ko + (9 pk,ki=k+ (g p)lkmodn.
Thegeneratorsofthisalgebra are n00,07 00007 00m07 00087 12007 qpoiad iWe
call them respectively A ;B ;C ;D ;E ;G . Using the F-term relation xPy¥= wz we see
that G depends on the other generators through: G = E9. M oreover the relations
am ong generators are:

APBY=CD ; E"=AB : (B .15)

In the special case of g = p = 1 these equations reduce to those for the quotient of
the conifold. Tt iseasy to see that equations (B 15)de netheZ, %, orbifold of the
C (LPHA), Take the coordinates x;y;w ;z realizing C (LPH") as a quadric em bedded
in C*. Theaction ofZ, 2, is:

x;y;wiz !l ox gy taw oz TPOT B 16)

where " = " = 1. The iIndependent Invariants of this action are A ;B ;C ;D ;E ,and
they are subfct to the constraints (B 15). Hence the equations (B .15) de ne the
variety C (LPAA)=7, 7.
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