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A bstract

W e consider a class of super-conform al�-deform ed N = 1 gauge theo-

ries dualto string theory on AdS5 � X with uxes,where X is a deform ed

Sasaki-Einstein m anifold.Thesupergravity backgroundsareexplicitexam ples

ofG eneralised Calabi-Yau m anifolds: the cone over X adm its an integrable

generalised com plex structure in term sofwhich the BPS sector ofthe gauge

theory can bedescribed.Them odulispacesofthedeform ed toricN = 1gauge

theoriesare studied on a num berofexam ples and are in agreem ent with the

m odulispacesofD3 and D5 static and dualgiantprobes.
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1 Introduction

The super-conform algauge theories living on D3-branes at singularities generally

adm itm arginaldeform ations.A particularlyinterestingcaseofm arginaldeform ation

fortheorieswith U(1)3 globalsym m etriesisthesocalled �-deform ation[1].Them ost

fam ous exam ple is the �-deform ation ofN = 4 SYM which has been extensively

studied both from the�eld theory pointofview and thedualgravity perspective.In

particular,in [2],Lunin and M aldacena found thesupergravity dualsolution,which

isa com pletely regularAdS5 background. Theirconstruction can be generalised to

thesuper-conform altheoriesassociated with therecently discovered Sasaki-Einstein

backgroundsAdS5 � Lp;q;r [3].M oregenerally,alltoricquivergaugetheoriesadm it

�-deform ations[4]and,aswewillsee,haveregulargravitationalduals.Theresulting

�-deform ed theoriesare interesting both from the pointofview of�eld theory and

ofthegravity dual.

On the �eld theory side,we dealwith a gauge theory with a deform ed m oduli

space ofvacua and a deform ed spectrum ofBPS operators. The case ofN = 4

SYM has been studied in details in the literature [5{7]. In this paper we extend

this analysis to a generic toric quiver gauge theory. The m odulispace ofthe �-

deform ed gauge theory presentsthe sam e featuresasin N = 4 case. In particular,

itsstructuredependson thevalueofthedeform ation param eter�.Forgeneric� the

deform ed theory adm itsa Coulom b branch which isgiven by a setofcom plex lines.

For� rationalthereareadditionaldirectionscorresponding to Higgsbranchesofthe

theory.

On the gravity side,the dualbackgrounds can be obtained from the original

Calabi-Yauswith a continuous T-duality transform ation using the generalm ethod

proposed in [2].W eshow thatitispossibletostudythe�-deform ed background even

in the caseswhere the explicitoriginalCalabi-Yau m etric isnotknown. The toric

structureoftheoriginalbackground isenough.BesidestherelevanceforAdS/CFT,

the �-deform ed backgrounds are also interesting from the geom etricalpoint view.

They are Generalised Calabi-Yau m anifolds [8,9]: after the deform ation the back-

ground is no longer com plex,but it stilladm its an integrable generalised com plex

structure. Actually the �-deform ed backgrounds represent one ofthe few explicit

known exam plesofgeneralised geom etry solving the equation ofm otionsoftype II

supergravity 1.The extrem e sim plicity ofsuch backgroundsm ake itpossible to ex-

plicitly apply theform alism ofGeneralised Com plex Geom etry,which,aswewillsee,

providesan elegantway to study T-duality and braneprobes[13{16].

The connection between gravity and �eld theory is provided by the study of

supersym m etric D-brane probes m oving on the �-deform ed background. In this

paper we willanalyse the case ofstatic D3 and D5 probes,as wellas the case of

D3 and D5 dualgiant gravitons. W e willstudy in details existence and m oduli

spaceofsuch probes.W eshow that,in the�-deform ed background,both staticD3

probesand D3 dualgiantscan only liveon a setofintersecting com plex linesinside

1Forothernon com pactexam plessee[10,11]and forcom pactones[12].
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the deform ed Calabi-Yau,corresponding to the locus where the T3 toric �bration

degenerates to T1. This is in agreem ent with the abelian m odulispace ofthe �-

deform ed gaugetheory which indeed consistsofa setoflines.M oreover,in thecase

ofrational�,we dem onstrate the existence ofboth static D5 probesand D5 dual

giantgravitonswith a m odulispace isom orphic to the originalCalabi-Yau divided

by a Zn � Zn discrete sym m etry. This statem entisthe gravity counterpart ofthe

fact that,for rational�,new branches are opening up in the m odulispace ofthe

gaugetheory [5,6].Ouranalysisalso generalisestheresultsof[17]whereithasbeen

shown thatthe classicalphase space ofsupersym m etric D3 dualgiantgravitonsin

theundeform ed Calabi-Yau background isisom orphicto theCalabi-Yau variety.

Theclassicalway tostudy probecon�guration istosolvetheequationsofm otion

com ing from the probe Dirac-Born-Infeld action. Generalised Com plex Geom etry

providesan alternative m ethod to approach the problem . Aswe willexplain,a D-

brane is characterised by its generalised tangent bundle. The dualprobes in the

�-deform ed geom etry can be obtained from the originalonesapplying T-duality to

theirgeneralised tangentbundles. The approach in term sofGeneralised Geom etry

allowsalso to clarify how the com plex structure ofthe gauge theory isreected by

the gravity dual,which,aswe have already m entioned,isnotin generala com plex

m anifold.

The study of brane probes we present here can be seen as consisting oftwo

independentand com plem entary sections,onedealingwith theBorn-Infeld approach

and theotheroneusingGeneralised Com plex Geom etry.W edecided tokeep thetwo

analysisindependent,so thatthereadernotinterested in oneofthetwo can skip the

corresponding section.

The paperisorganized asfollows. In Section 2 we discuss the structure ofthe

�-deform ed gaugetheory and ofitsgravity dual,and we characterize itin term sof

pure spinors. In Section 3 we study the m odulispace ofD3 and D5-brane,static

probesand dualgiantgravitons,on thedeform ed background using theBorn-Infeld

action,while in Section 4 we analyse the sam e con�gurationsusing the generalised

tangentbundleapproach.W ewillshow that,asusualforBPS quantities,theexplicit

knowledge ofthe Calabi-Yau m etric isnotrequired to extractsensible results. Our

analysisthusappliesto the m ostgeneraltoric background. In Section 5 we briey

com m ent about supersym m etric giant gravitons in the deform ed background. In

Section 6 we explicitly dem onstrate through exam ples and generalargum ents that

theresultsofSections3and 4agreeswith the�eld theoryanalysiswhich isperform ed

in details.Finally,in theAppendiceswe collectvarioustechnicalproofs,argum ents

and exam ples.
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2 �-deform ation in toric theories

2.1 �-deform ed quiver gauge theories

Theentireclassofsuper-conform algaugetheorieslivingon D3-branesattoricconical

Calabi-Yau singularitiesadm itsm arginaldeform ations. The m ostfam ousexam ple

is the �-deform ation ofN = 4 SYM with SU(N ) gauge group where the original

superpotential

�1�2�3 � �1�3�2 (2.1)

isreplaced by the�-deform ed one

e
i���1�2�3 � e

�i�� �1�3�2: (2.2)

A fam iliarargum entduetoLeigh and Strassler[1]showsthatthe�-deform ed theory

isconform alforallvaluesofthe� param eter.

Sim ilarly,a �-deform ation can be de�ned for the conifold theory. The gauge

theory hasgaugegroup SU(N )� SU(N )and bi-fundam ental�elds(Ai)
A
� and (B p)

�
A

with �;A = 1;:::;N ;i;p = 1;2 transform ing in the representations (2;1)and (1;2)

oftheglobalsym m etry group SU(2)� SU(2),respectively,and superpotential

A 1B 1A 2B 2 � A1B 2A 2B 1: (2.3)

The�-deform ationcorrespondstothem arginaldeform ationwherethesuperpotential

isreplaced by

e
i��
A 1B 1A 2B 2 � e

�i��
A 1B 2A 2B 1: (2.4)

Both theoriesdiscussed abovepossessaU(1)3 geom etricsym m etry corresponding

to the isom etriesofthe internalspace,one U(1)isan R-sym m etry while the other

two acton the �eldsasavourglobalsym m etries2. The �-deform ation isstrongly

related to theexistence ofsuch U(1)3 sym m etry and hasa nice and usefulinterpre-

tation in term sofnon-com m utativity in the internalspace [2]. The deform ation is

obtained by selecting in U(1)3 the two avoursym m etries Q i com m uting with the

supersym m etry chargesand using them to de�nea m odi�ed non-com m utativeprod-

uct.Thiscorrespondsin �eld theory to replacing thestandard productbetween two

m atrix-valued elem entary �eldsf and g by thestar-product

f � g � e
i��(Q f^Q g)

fg (2.5)

where Q f = (Q
f

1;Q
f

2)and Q
g = (Q

g

1;Q
g

2)are the chargesofthe m atter�eldsunder

thetwo U(1)avoursym m etriesand

(Q f
^ Q

g)= (Q
f

1Q
g

2 � Q
f

2Q
g

1): (2.6)

2This U (1)3 sym m etry can be enhanced to a non abelian one in specialcases. Forinstance it

is SU (4)forN = 4 SYM and SU (2)� SU (2)� U (1)R for the conifold. In addition the conifold

possesses a U (1)B baryonic sym m etry. A generic toric quiver,besides the geom etric sym m etry

U (1)3 = U (1)2F � U (1)R ,presentsseveralbaryonicU (1)sym m etries.In thispaperwe willonly be

interested in the geom etricsym m etriesofthese theories.
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The�-deform ation preservestheU(1)3 geom etricsym m etry oftheoriginalgauge

theory,whileotherm arginaldeform ationsin generalfurtherbreak it.

Allthe superconform alquivertheoriesobtained from toric Calabi-Yau singular-

itieshave a U(1)3 sym m etry corresponding to the isom etriesofthe Calabi-Yau and

therefore adm itexactly m arginal�-deform ations. The theorieshave a gauge group
Q G

i= 1
SU(N ),bi-fundam ental�elds X i and a bipartite structure which is inherited

from the dim er construction [18]. The superpotentialcontains an even num ber of

term s V naturally divided into V=2 term s weighted by a +1 sign and V=2 term s

weighted by a � 1 sign
V=2X

i= 1

W i(X )�

V=2X

i= 1

~W i(X ): (2.7)

The�-deform ed superpotentialisobtained by replacing theordinary productam ong

�elds with the star-product (2.5) and,as discussed in Appendix B,can always be

written afterrescaling �eldsas[4]

e
i���

V=2X

i= 1

W i(’)� e
�i���

V=2X

i= 1

W i(’) (2.8)

where� issom erationalnum ber.Itisobvioushow N = 4 SYM and theconifold �t

in thispicture;otherexam pleswillbegiven in Section 6.

The �-deform ation drastically reduces the m esonic m odulispace ofthe theory,

which isoriginallyisom orphictotheN -foldsym m etricproductoftheinternalCalabi-

Yau. To see quickly whathappens considerthe case where the SU(N )groupsare

replaced by U(1)’s-by abuse oflanguage we can referto this asthe N = 1 case.

Physically,weareconsidering am esonicdirection in them odulispacewhereasingle

D3-brane is m oved away from the singularity. In the undeform ed theory the D3-

brane probes the Calabi-Yau while in the �-deform ed theory it can only probe a

subvariety consisting ofcom plex linesintersecting atthe origin. Thiscan be easily

seen in N = 4 and in theconifold case.

ForN = 4 SYM theF-term equationsread

�i�j = b�j�i; (i;j)= (1;2);(2;3)or(3;1) (2.9)

where b = e�2i�� . Since �i are c-num bers in the N = 1 case, these equations

are trivially satis�ed for � = 0,im plying that the m odulispace is given by three

unconstrained com plex num bers�i,giving a copy ofC
3. However,for� 6= 0 these

equationscan besatis�ed only on thethreelinesgiven by theequations� j = �k = 0

forj6= k.Only one�eld � i isdi�erentfrom zero ata tim e.

Fortheconifold theF-term equationsread

B 1A 1B 2 = b
�1
B 2A 1B 1;

B 1A 2B 2 = bB 2A 2B 1;

A 1B 1A 2 = bA 2B 1A 1;

A 1B 2A 2 = b
�1
A 2B 2A 1: (2.10)
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Theseequationsareagaintrivialfor� = 0andN = 1,the�eldsbecom ingcom m uting

c-num bers. The brane m odulispace is param etrized by the four gauge invariant

m esons

x = A 1B 1; y = A 2B 2; z = A 1B 2; w = A 2B 1 (2.11)

which are not independent but subject to the obvious relation xy = zw. This is

the fam iliardescription ofthe conifold asa quadric in C
4. For� 6= 0,the F-term

constraints(2.10)are solved when exactly one �eld A and one �eld B are di�erent

from zero. Thisim plies thatonly one m eson can be di�erent from zero ata tim e.

Them odulispacethusreducesto thefourlines

y = z= w = 0; x = z = w = 0; x = y = z= 0; x = y = w = 0:

(2.12)

W ewillseein Section 3.2 using thedualgravity solutionsand in Section 6 using

�eld theory thatforall�-deform ed toric quivers the abelian m esonic m odulispace

isreduced to d com plex lines,whered isthenum berofverticesin thetoricdiagram

ofthesingularity.

Som ethingspecialhappensfor� rational.New branchesin them odulispaceopen

up. The N = 4 case wasoriginally discussed in [5]and the conifold in [19]. In all

casesthesebranchescan beinterpreted asoneorm orebranesm ovingon thequotient

ofthe originalCalabi-Yau by a discrete Zn � Zn sym m etry. W e willdescribe these

branesexplicitly in the gravitationaldualsin Section 3.2.The �eld theory analysis

ofthese vacua requiresa little bitoftechnicalpatience and itisdeferred to Section

6.

2.2 �-deform ed toric m anifolds

Thegeneralprescriptionfordeterm iningthesupergravitydualofa�-deform edtheory

hasbeen given by Lunin and M aldacena [2]. The originalbackground hasa U(1)3

isom etry and the prescription am ounts to perform ing a particular T-duality along

two U(1)directionscom m uting with thesupersym m etry charges.

Fora quivergauge theory,the undeform ed gravity solution isa warped product

of4-dim ensionalM inkowskitim esaCalabi-Yau coneoveraSasaki-Einstein m anifold

ds210 = e
2Ads24 + e

�2A ds26; (2.13)

wherethewarp factorise2A = r2.In alltheform ulaeweareom itting factorsofthe

radiusofAntideSitter(seefootnote3 atpage9).

In thetoriccasetheseCalabi-Yaushaveexactly threeisom etriesand theLunin{

M aldacena m ethod can be applied. In [2]the �-deform ation ofthe conifold and of

Y pq spacesareexplicitly com puted usingtheknown m etricsfortheseSasaki-Einstein

spaces. In thispaperwe considerthe generalcase ofa toric Calabi-Yau cone. W e

willshow that,as usual,m ost com putations regarding supersym m etric quantities

can beperform ed withoutknowing theexplicitform ofthem etric.W ewilljustneed

the generalcharacterisationsofthe Calabi-Yau m etricsgiven in [20]which we now

review.
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2.2.1 T he geom etry oftoric C alabi-Yau cones

Thegeom etryofatoricCalabi-Yauconeiscom pletelydeterm ined bydintegervectors

V� 2 Z
3. In factthere isa very explicitdescription oftoric cones asT3 �brations

overa rationalpolyedron described by [20]

C
� = fy 2 R

3
jl�(y)= V

i
�yi� 0;� = 1:::dg (2.14)

where V� are the inward pointing vectorsorthogonalto the facetsofthe polyedral

cone. The T3 �bration degeneratesto T 2 on the facetsofthe polyedron,l�(y)= 0,

and furtherdegeneratesto T1 on theedges(intersectionsoftwo facets).Asa sim ple

exam ple,the trivialCalabi-Yau C
3 param etrized by three com plex variables Zi =p

2yie
i i

can be considered asa T3 �bration,param eterised by the three angles i,

overthe �rstoctantin R
3 given by the three equationsyi � 0. Here V1 = (1;0;0),

V2 = (0;1;0),and V3 = (0;0;1).In the following we willm ake a convenientchange

ofcoordinatesin orderto havethethird coordinateofallV� equalto one.Sim ilarly,

the conifold can be described asa T3 �bration overa polyedron with foursides,as

shown in Figure1.

(0,−1,1)

(1,1,1)(−1,0,1) (0,0,1) (0,1,1)

(0,0,1) (1,0,1)

Figure 1: The toric diagram forC 3 and the conifold consisting ofthe pointsV� =

(v�;1) pictured in the plane z = 1 in R
3. The vectors V� determ ine a rational

polyedron in R
3 with three and four sides, respectively, whose projection on the

planez= 1 isshown in theFigure.

Asshown in [20]them etricon theCalabi-Yau conecan bewritten as

ds26 = g
ijdyidyj + gijd�

id�j (2.15)

with gij theinversem atrix ofgij.Dueto thetoriccondition,gij only dependson the

variablesyi;them etricisa coneifand only ifg
ij ishom ogeneousofdegree� 1 in y.

Regularity ofthem etricim pliesthatnearthefacets

g
ij =

dX

�= 1

V i
�V

j
�

l�(y)
+ regularterm s: (2.16)
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TheCalabi-Yau condition furtherrequiresthatthevectorsV� lieon aplane.W ewill

choosecoordinateswhereV� = (v�;1).Theintegerpointsin theplane,v�,describe

thetoricdiagram oftheCalabi-Yau.

Asin [20]wecan also usecom plex coordinatesto describe them anifold

z
i= x

i+ i�
i
: (2.17)

A K�alherm etric can be written in term s ofa K�alherpotentialF(zi). In the toric

caseF only dependson therealpart,xi,ofthecoordinatesso that,ifwede�ne

gij =
@2F

@xi@xj
; (2.18)

them etriccan bewritten as

ds26 = gijdz
id�zj = gijdx

idxj + gijd�
id�j: (2.19)

Thereisa nicerelation between sym plectic and com plex coordinatesgiven by

yi=
@F

@xi
(2.20)

and,asthe notation suggests,the function gij(x)appearing in the com plex coordi-

natesform ofthem etricisthesam easthefunction gij(y)appearingin thesym plectic

form ofthem etricafterchanging variablesfrom x to y.

TheK�ahlerform and theholom orphicthree-form aregiven by

J(0) �
i

2
gijdz

i
^ d�zj; (2.21)


(0) � e
i�
p
detgijdz

1
^ dz2 ^ dz3 (2.22)

= e
x3+ i�3dz1 ^ dz2 ^ dz3: (2.23)

Asshown in [20],theexplicitform of
(0) given in (2.23)followsfrom Ricci-atness,

which im pliesdetgij = e2x
3

,and correlatesthephasein 
(0) with thecom plex direc-

tion z3 associated with thethird com ponentofthevectorsV� = (v�;1).

The R-sym m etry ofthe gauge theory isdualto the Reeb vector ofthe Sasaki-

Einstein space

K =

3X

i= 1

b
i @

@�i
; (2.24)

wherethecom ponentsbi= 2gijyj turn outto beconstants[20].M oreoverthethird

com ponentb3 issetto 3 by theCalabi-Yau condition.Thevectorb= (bi;3)satis�es

gijb
i
b
j = r

2
: (2.25)

The Reeb vectorK isthe partnerunderthe com plex structure ofthe dilatation

operator r@r. Notice that the conicalform of the m etric is hidden both in the

sym plectic and com plex coordinates.The very sam e radialcoordinater isgiven by

a non-trivialexpression depending on theactualvalueoftheReeb vector

r
2 = 2biyi: (2.26)
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2.2.2 T he �-deform ed C alabi-Yau

The �-deform ation oftoric Calabi-Yaus can be obtained as in [2]. For sim plicity

we willconsider � realin the following. W e consider a two-torus in the internal

m anifold and we perform a T-duality transform ation thatactson the com plexi�ed

K�ahlerm odulusofthetwo-torusas

� = BT 2 + i
p
detgT 2 !

�

1+ �
: (2.27)

HerewechoosetheT2 in thedirections(�1;�2)sincetheaction leavestheholom or-

phic three-form invariant. The param eter  in supergravity is proportionalto the

�-param eterin thegaugetheory.

TheT-dualm etricand B-�eld can becom puted via Buscherrules

E = g� B2 ! (dE + c)(aE + b)�1 (2.28)

by em bedding theO (2;2)transform ation (2.27)in O (6;6)

O LM =

�
a b

c d

�

=

�
Id6 �

0 Id6

�

; (2.29)

wherethebivector� isde�ned as

� = 

0

@

03 0 0

0 i�2 0

0 0 0

1

A : (2.30)

Thechoiceofthetwo-torusintroducesafourplustwosplitting in them etricthat

can bem adeexplicitby rewriting itin thefollowing form

ds26 = hab�
a
(0)��

b
(0)+ Z �Z a;b= 1;2 (2.31)

wherehab = gab isthem etricon thetwo-torusand wehavede�ned theone-form s

�
a
(0) = dza + h

ac
gc3dz

3
a = 1;2; (2.32)

= (dxa + h
ac
gc3dx

3)+ i(d�a + h
ac
gc3d�

3)= X
a + iY

a (2.33)

Z = e
i�3
p
g33 � habga3gb3dz

3 =
dw 3

r2
p
h

(2.34)

with h = det(hab)=r
4. The subscript (0) is to distinguish these form s from the

corresponding one in the T-dualbackground. W e also de�ned w 3 = ez
3

. The one

form Z param eterisesthedirection orthogonalto thetwo-torusand to passfrom the

�rstto thesecond expression in (2.34)weused theidentity

det(gij)= e
2x3 = det(hab)(g33 � h

ab
ga3gb3): (2.35)
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The advantage ofwriting the m etric asin (2.31)isthatthe T-duality transfor-

m ation (2.29)resultssim ply in a rescaling ofitsangularpart

ds26 = habX
a
X

b+ G habY
a
Y
b+ Z �Z (2.36)

by thefunction

G =
1

1+ 2h
: (2.37)

Theantisym m etricpartof(2.28)givestheNStwo-form ofthe�-deform edsolution

B =  hG Y
1
^ Y

2
: (2.38)

Thedilaton and thewarp factorare

e
� =

p
G ; e

A = r; (2.39)

respectively,whilethenon-vanishing RR �eldsaregiven by3

F5 = 4vol4 ^
dr

r
+ 4GvolX 5

; (2.40)

F3 = � 4 !2 ^ d�
3 = dC2; (2.41)

where volX 5
= �6

dr

r
= !2 ^ d�1 ^ d�2 ^ d�3 isthe volum e form ofthe undeform ed

Sasaki-Einstein m anifold X 5,and theclosed form !2 dependsonly on thex
i coordi-

nates.

2.3 T he �-deform ed pure spinors

Recently it has been shown that a unifying form alism to treat N = 1 com pact-

i�cations with non trivialbackground uxes is provided by Generalised Com plex

Geom etry. For a detailed discussion ofpure spinors,Generalised Com plex Geom -

etry and its applications to string theory see [12,21,22];here we willvery briey

sum m arisewhatwewillneed in thefollowing section.

Theidea is,given a m anifold,to study objectsde�ned on thesum ofthetangent

and cotangentbundles,T � T�.W ecan forinstancede�nespinorson T � T�:these

willbe SO(6,6) spinors and have a representation in term s ofdi�erentialform s of

m ixed degree,��(T�). W e callpure the spinorsthatare annihilated by halfofthe

generatorsofCli�(6,6). They are represented by sum ofeven and odd form s,� � ,

corresponding to thepositiveand negativechirality,respectively.

3In allthe form ulae for the background we are understanding factors ofthe AdS5 radius,L,

which isgiven by:L4 = 4�4gsN �02=V ol(X 5),where N isthe num berofD 3-branesand X 5 isthe

undeform ed Sasaki-Einstein m anifold.In particularthem etricds210 hasa factorofL
2,theNS ux

H a factorofL4,F3 and F5 a factorofL
4=gs and G should be de�ned as:G �1 = 1+ 2L4h.O ur

form ulaearein the string fram eand we willset�0= 1.
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Therelevanceforsupergravity liesin theobservation thatsuch purespinorscan

beobtained astensorproductsofordinary spinors.M oreprecisely,ifwedecom pose

thetypeIIB ten-dim ensionalsupersym m etry param etersas

"
i= �+ 
 �

i
+ + �� 
 �

i
� ; (2.42)

where �+ (�� = ��+ )and �i+ (�i� = �i�+ )are positive chirality spinorsin fourand six

dim ensions,thepurespinorsarede�ned as

�+ = �
1
+ 
 �

2y
+ ; (2.43)

�� = �
1
+ 
 �

2y
� : (2.44)

The spinorsconstructed thisway de�ne an SU(3)� SU(3)structure on T � T� 4.

By introducing an innerproductbetween form s(M ukaipairing)

hA;B i� (A ^ �(B ))jtop �(An)= (� )Int[n=2]; (2.45)

wecan de�nethenorm ofthepurespinorsas

h�+ ;��+ i= h�� ;��� i= �
i

8
jj�jj2vol6 = �

i

8
jj�1jj

2
jj�2jj

2vol6: (2.46)

Itisconvenientto introducenorm alised twisted spinors

	̂ � = e
��
e
�B

^ 	 � =
8i

jj�jj
e
��
e
�B

^ �� : (2.47)

Allthe NS contentofthe background (internalm etric,B �eld and dilaton)can be

extracted from 	̂ � .M oreoverthetwisted purespinorsarethosetransform ing nicely

underT-duality.

Usingtheabovede�nitionasbispinors,itispossibletorewritethesupersym m etry

conditionsfortypeIIB supergravity asdi�erentialequationsforthepurespinors 	̂ �

d(e3A 	̂ � )= 0; (2.48)

d(e2A Im 	̂ + )= 0; (2.49)

d(e4A Re	̂ + )= � e
4A
e
�B

� �(F): (2.50)

Here the � iswith respectto the six dim ensionalinternalm etric e�2A ds26 and F is

the sum ofthe internalm agnetic �eldsF = F1 + F3 + F5. Itisrelated to the ten-

dim ensionalRR �elds as F (10) = F + vol4 ^ �(� F). The ten-dim ensionalBianchi

identity (d � H ^)F(10) = 0 yieldsthe Bianchiidentity and the equationsofm otion

forF: (d � H ^)F = 0 and (d + H ^)(e4A � F)= 0,respectively. Notice that the

equationsofm otion follow autom atically from (2.50).

4Thepurespinorsm ustobey theSU(3)� SU(3)com patibility conditionsh�� ;X � �+ i= h�� ;X �
��+ i = 0 for any elem ent X = X + � ofT � T�,where X and � are a vector and a one-form ,

respectively.
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The pure spinor satisfying d(e3A 	̂) = 0,de�nes a twisted generalised Calabi-

Yau [21,22]. Thus one can interpret the closure ofthe pure spinor com ing from

the supersym m etry variationsasthe generalisation to the ux case ofthe standard

Calabi-Yau condition foruxlesscom pacti�cations:allN = 1 vacua areGeneralised

Calabi-Yau m anifolds[9].

Theexplicitform ofthepurespinorsdependson how theinternalsupersym m etry

param eters �i are related to the globally de�ned spinors on the m anifold. Forthe

toric Calabi-Yau m anifolds there is one globally de�ned (in this case covariantly

constant)spinor,�+ ,so thatonecan choose

�
1
+ = e

A =2
�+ ; �

2
+ = ie

A =2
�+ ; (2.51)

and the pure spinorsare given in term softhe K�alherform and holom orphic three-

form

	̂
(0)

� = e
�3A 
(0) = e

�3A dz1 ^ dz2 ^ dw 3
; (2.52)

	̂
(0)

+ = e
�ie � 2A J(0) = e

1=2e� 2A gijdz
i^d�zj

: (2.53)

In the Calabi-Yau background the dilaton and the NS two-form are zero,so that

thereisno di�erencebetween twisted and untwisted spinors.

W e now want to construct the pure spinors corresponding to the �-deform ed

backgroundsastheT-dualsoftheCalabi-Yau ones.Asshown in [23]theT-duality

transform ation (2.29)on thepurespinorsisgiven by

	̂ (0)
! 	̂ = e

�
�	̂ (0) = (1+ �)�	̂ (0)

; (2.54)

where � is a bivector associated with the two U(1) isom etries,�1 and �2,ofthe

Calabi-Yau.Itactson thepurespinorby contractions5

� =  �@
�1
^ �@

�2
=  �@

�1
�@

�2
: (2.56)

Applying (2.56)to (2.53)and (2.52)we obtain a new pairofpure spinors(here

wehaveundonethetwist)

	 � = 
p
Ge

�3A dw 3
^ e

1


dz1^dz2+ B

; (2.57)

	 + =
p
Ge

�ie � 2A J(0)�hX
1^X 2+ B

; (2.58)

5A generatorofO (6;6)actslinearly on the elem entsofT � T �. Ifwe de�ne a generic elem ent

ofT � T � as(X ;�),with X a vectorand � a oneform ,wehave

�
X

�

�

!

�
A �

B � A T

� �
X

�

�

; (2.55)

whereA isan SO (6)elem ent,A = A n
m dx

m 
 �@x n ,B isa two-form B = 1

2
B m ndx

m ^ dxn,and � is

a bivector� = 1

2
�m n�@x m ^ �@x n .Then O (6;6)elem entcorresponding to the�-deform ation,(2.29),

isjustthe bivectorand and thusactsasin (2.56)on a genericdi�erentialform .
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where B =  hGY1 ^ Y 2 isthe NS two-form ofthe �-deform ed background6. The

usualSU(3)� SU(3)com patibility conditionsbetween	̂ � and 	̂ + continue to hold

sincetheM ukaipairing isinvariantundera generalSO (6;6)transform ation.

The expression for the closed pure spinor,(2.57),has a nice interpretation in

term softhe generalised Darboux theorem [22]. The pure spinors(2.57),(2.58)are

oftype(1;0)and determ inea splitting into fourcoordinatesofsym plectic typeand

two ofcom plex type. The closure condition d(e3A 	̂ � )= 0 im pliesthe existence of

sym plectic-com plex coordinates(�i;z);i= 1;::;4 with

e
3A �� 	 � = e

ik0+ ~B
^ dz; (2.63)

wherek0 = d�1 ^ d�2+ d�3^ d�4 isthenaturalsym plecticform and ~B isa potential

forH ,d ~B = H [22].Thesym plecticcoordinatespredicted by thetheorem areeasily

identi�ed from equation (2.57)

1


dz1 ^ dz2 + B �

i


(dx1 ^ d�2 � dx2 ^ d�1)+ ~B (2.64)

with therealand im aginary partsoftheoriginalcom plex coordinatesoftheCalabi-

Yau (xi;�i); ~B = B + 1


(dx1^dx2� d�1^d�2).W eseethat,although the�-deform ed

m anifold looksvery com plicated and itisnoteven a com plex m anifold,the gener-

alised geom etry selectscoordinatesthataretrivially related to theoriginalcom plex

coordinatesoftheCalabi-Yau.Asa consequence,allquestionsaboutsupersym m et-

ricand BPS quantitiesin the�-deform ed background can bestillanalysed in term s

ofthe originalcom plex coordinates. This is not com pletely unexpected,since the

�-deform ed N = 1 gaugetheory hasa naturalcom plex structureforallvaluesof�.

In term softhepurespinorsitisstraightforward to check thattheT-dualback-

ground isstillsupersym m etric.Ifweassum ethat�1;2 aresupersym m etry-preserving

6It is a straightforward com putation to show that these pure spinors are equivalentto the di-

electriconesin [11]

	 � = (� sin2�e
i(�+ �)

e
�A

z)^ e
i R e!

sin 2� e2A
�cot2� Im !

e2A ; (2.59)

	 + =

�

cos2� � ie
�2A

j�
cos2�

2
e
�2A

j
2
+ sin2�e

�2A
Im !

�

e
z �z

2e2A

with sin2� = � 
p
h
p
G ,cos2� =

p
G .TheSU(2)structure

j =
i

2
(�

1
^ ��

1
+ �

2
^ ��

2
); (2.60)

! = i
p
h�

1
^ �

2
; (2.61)

isde�ned in term softhe vielbein adapted to the �-deform ed m etric (2.36)

�
i
= X

i
+ i

p
G Y

i
: (2.62)

Asbefore,the analogousquantitieswith superscript(0)referto the originalCalabi-Yau m etric.
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isom etries,L@
�1;2

	̂ = 0,then L @
�1
(�@

�2
	̂)= 0 and

d(� �	̂)= d(�@
�1
�@

�2
	̂)= � �@

�1
d(�@

�2
	̂)= �@

�1
�@

�2
d	̂ = � � d̂	: (2.65)

Thusfora 	̂ which isinvariantalong � 1;�2

d(e� �	̂)= e
�
� d̂	 : (2.66)

Then from (2.66)itfollowsthattheT-dualspinorssatisfy thesupersym m etry condi-

tions,(2.48)-(2.50),iftheoriginalonesdo.TheT-dualised RR �eldscanbecom puted

from e�B � �(F)= e� � e�B
(0)

� �(F(0)).Forthe�-deform ation ofthequivertheories,

thisgivesin particular

F5 = � d(4A)= GF
(0)

5 ; (2.67)

F3 = � (B ^ � F5); F1 = 0: (2.68)

Onecan check thatthesearethesam easin (2.40)and (2.41)and satisfy (2.50)with

thepurespinorgiven by (2.58).

Finally,itisalsoeasytoverifythatthetopologyofthe�-transform ed background

isthe sam easthatoftheoriginalone,which wasassum ed to besm ooth.The only

pointswhereonecan havetopology changesaretheedgesofthesym plecticconeC�,

wherethecirclesde�ned by �1;2 shrink to zero.Theseareprecisely thepointswhere

the bivector� vanishes. To see thiswe can use the de�nition ofthe toric m anifold

asa T3 �bration overthesym plectic cone C� [20].On the �-th facetoftheconeC�

a given com bination ofthethreeangles�idegenerates.Theprecisecom bination can

beread from thecorresponding vanishing vector

K � =

3X

i= 1

V
i
�

@

@�i
= v

1
�

@

@�1
+ v

2
�

@

@�2
+

@

@�3
(2.69)

where V� = (v�;1)isthe vectororthogonalto the facet. Thus,on the �-facetonly

one linear com bination ofthe three angles �i degenerates. This is not enough in

generalto m ake the bivector � vanishing. On the other hand,consider the edge

ofC� corresponding to the intersection ofthe �-th and � + 1-th facets;the vector

K � � K�+ 1 = (v� � v�+ 1)
1@�1 + (v� � v�+ 1)

2@�2 also vanishes. Since the (two-

dim ensional)integervectorsva� and va�+ 1 are notequal
7,itfollowsthatthe killing

vectors@�1 and @�2 are proportionaland � vanishes. Thus� vanishesprecisely on

theedgesofthecone.

IftheoriginalSO (6;6)spinor	̂ (0) isregular,then atthesepoints

� �	̂ (0)
! 0 : (2.70)

7Recallthat v� determ ines the toric diagram ofthe Calabi-Yau so no consecutive v� can be

equal.
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Thus,atthesedegeneratepoints

	̂’ 	̂ (0)
: (2.71)

Since a background iscom pletely speci�ed by 	̂ � ,	̂ + and F,atthe degeneration

pointsthe new background lookssim ilarto the originalone. Hence itisregularas

well,asdiscussed from them etricpointofview in [2].

3 D 3 and D 5 probes

The connection between gravity and �eld theory isprovided by the study ofsuper-

sym m etric D-braneprobesm oving on the�-deform ed background.W e�rstanalyse

space-tim e�llingstaticD-braneprobes,easilyextendingtheresultsof[2]toageneric

Calabi-Yau background. A parallelanalysis is perform ed for non-static probes,in

particulardualgiantgravitons[24],correspondingtobraneprobeswrappingathree-

spherein AdS5 and spinning in theinternalm anifold.Thecaseofdualgiantsin the

�-deform ed N = 4 SYM hasbeen analysed in [25].

In thisSection we perform an analysisbased on the e�ective Lagrangian on the

world-volum eofaprobem ovingin thedeform ed background.In thenextSection we

willdiscussthesam eresultsfrom thepointofview ofT-duality and supersym m etry,

using theGeneralised Geom etry perspective.

3.1 Static probes

The m odulispace ofspace-tim e �lling supersym m etric static four-branesshould re-

produce the m esonic m odulispace ofthe dualgauge theory. In the undeform ed

background we justhave a single type ofstatic supersym m etric probe,a D3-brane

which can liveatevery pointoftheinternalm anifold.Correspondingly,theabelian

m odulispace ofthe dual�eld theory isisom orphic to the Calabi-Yau cone. In the

deform ed background,we have two di�erenttypesofstaticsupersym m etric probes,

D3-branes,and dielectric D5-braneswrapped on the (T-duality)two-torusand sta-

bilized by a world-volum e ux [2]. Supersym m etric D3-probes can only live on a

set ofintersecting com plex lines inside the deform ed Calabi-Yau,corresponding to

the locuswhere the T3 toric �bration degeneratesto T 1.Thisisin agreem entwith

theabelian m odulispaceofthe�-deform ed gaugetheory which indeed consistsofa

setoflines. In the case ofrational�,there existsupersym m etric D5-probeswith a

m odulispace isom orphic to the originalCalabi-Yau divided by a Zn � Zn discrete

sym m etry. Thisstatem entisthe gravity counterpartofthe factthatforrational�

new branchesareopening up in them odulispaceofthegaugetheory [5,6].
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3.1.1 Static D 3 probes

Consider a static space-tim e �lling D3-brane probe. The dynam ics is governed by

thebraneworld-volum eaction

SD 3 = SB I + SC S = � T3

Z

d4�e��
p
� detG�� + T3

Z

C4: (3.1)

G �� isthe pullback ofthe space-tim e m etric gM N to the world-volum e ofthe D3-

brane

G �� =
@X M @X N

@��@��
gM N ; (3.2)

where(�0;�1;�2;�3)aretheworld-volum ecoordinatesonthebrane.Theten-dim ensional

m etricisgiven by

ds210 = r
2dx�dx

� +
1

r2
ds2X 6

: (3.3)

By inserting in theBIand CS term stheexplicitexpression ofthebackground �elds

(2.39)-(2.40),weseethata D3-probefeelsa potentialgiven by

Z

d4�V (yi)�

Z

d4� r4
�

1
p
G
� 1

�

; (3.4)

whereyi arethecoordinateson theinternalspace.Thepotentialispositivede�nite

and vanisheswhen G � 1 orequivalently h � 0.h vanishesprecisely along theedges

ofthe cone C�,where the T3 �bration degenerates to T 1. In fact,itiseasy to see

from the explicitbehaviourofthe m etric nearthe facets,given in equation (2.16),

thath isregularand non vanishing in theinterioroftheconeand also in theinterior

ofthefacets.On theotherhand,asfollowsfrom equation (2.16),on theedgewhere

theadjacentfacets� and � + 1 intersect,h vanishesas

h �
l�(y)l�+ 1(y)

j< V�;V�+ 1 > j2
: (3.5)

W e conclude thata supersym m etric D3-probe can only m ove along the d edges of

thesym plecticcone.Recallthatthetopology ofthedeform ed theory isthesam eas

thatoftheoriginalCalabi-Yau,allowing to reason in term sof�brations.M oreover,

locally,them etricnearthedegeneration locusissubstantiallyidenticaltotheoriginal

one.

W e expect that a single D3-brane probes the abelian m odulispace ofthe dual

gauge theory. W hatwe found is com patible with the results forN = 4 SYM and

theconifold discussed in Section 2.1.Therewefound thattheabelian m odulispace

consistsofthree and fourlines,respectively. These linesexactly correspond to the

edgesofthe polyedralcone discussed in Section 2.2. From the gravity analysis we

thusgetthe generalprediction thatthe abelian m odulispace oftoric quivergauge

theoriesisgiven by a collection ofd lines,whered isthenum berofexternalvertices

ofthetoricdiagram .W ewillverify explicitly thisprediction in Section 6 with �eld

theory m ethods.
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3.1.2 Static D 5 probes

Asnoticed in [2]a D5-branewrapped on thetwo-torus(�1;�2)with a world-volum e

ux F = d�1^ d�2= issupersym m etric.Itiseasy toseethatasim ilarcon�guration

existsforallCalabi-Yau backgrounds.Thesupersym m etric D5-branecan liveatan

arbitrary pointin (yi;�
3)and can have additionalm odulicorresponding to W ilson

lineson the two-torus. Itisinteresting to analyse the m odulispace ofsuch con�g-

uration,since it corresponds to a particular non abelian branch ofthe dualgauge

theory.

Considerthereforea D5-branewrapping thetwo-torusspanned by (�1;�2)in the

internalm anifold.Thecorresponding em bedding is

x
� = �

�
; �

1 = �
4
; �

2 = �
5
;

�
3 = �

3(��); yi= yi(�
�) � = 0;1;2;3; (3.6)

where we call(�0;:::;�5) the world-volum e coordinates on the brane. The world-

volum eaction fora D5-braneis

SD 5 = � T5

Z

d6�e��
q

� det(G � B + F)��

+T5

Z

C6 + C4 ^ (F � B )+ C2 ^ (F � B )^ (F � B ); (3.7)

wherewede�neF = 2��0F ,with F dim ensionless.W ewillset�0= 1asin theother

supergravity com putations.

For the six-dim ensionalm etric we willuse the expression (2.36) in sym plectic

coordinates

ds2X 6
= g

ijdyidyj + ~gijd�
id�j (3.8)

= g
ijdyidyj + Ghabd�

ad�b+ 2Gga3d�
ad�3 + [g33 � (1� G)habga3gb3](d�

3)2:

Hereand in therestofthissection theindicesi;jand a;baresum m ed over1;2;3and

1;2,respectively.Allthefunctionsin theaboveansatzdepend on thecoordinatesyi
only sincetheangulardirectionsareisom etriesofthebackground.

Thepulled-back m etricisgiven by

0

@
r2��� +

1

r2
(gij@�yi@�yj + ~g33@��

3@��
3) G @��

3g13 G@��
3g23

G @��
3g13 G h11 G h12

G @��
3g23 G h21 G h22

1

A : (3.9)

Sim ilarly thepullback oftheB-�eld hascom ponents

B �4 = �  hG(h2aga3)@��
3
; (3.10)

B �5 =  hG(h1aga3)@��
3
; (3.11)

B 45 =  hG : (3.12)
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Theworld-volum e �eld strength hasboth m agneticand electriccom ponents

F45 =
1


; F�4 = @�A 1(�

�); F�5 = @�A 2(�
�): (3.13)

Them agneticcom ponentisrequired bysupersim m etry,whiletheelectriccom ponents

correspond to space-tim euctuationsoftheW ilson lineson thetwo-torus.

Using the above expressions the determ inant in the Born-Infeld action can be

written as

det(G� B +F)= r
6 G

2

�
1

r2

�

g
ij
@�yi@�yj + g33(@��

3)2 � 2g3a@��
3
f̂
a
� + 

2
habf̂

a
� f̂

b
�

�

� r
2

�

:

(3.14)

where f̂a� = �ab@�A b = �abF�b.The overallfactorofG cancelsthecontribution from

thedilaton so thattheBIaction fortheD5-probetakestheform 8

SB I = �
N



Z

d4�r3

r

r2 �
1

r2

�

gij@�yi@�yj + g33(@��
3)2 � 2g3a@��

3f̂a� + 2habf̂
a
� f̂

b
�

�

:

(3.15)

TheW ess-Zum ino partoftheaction sim pli�esaswell,since,asnoticed in [2],the

C6 contribution cancelswith B 2 ^ C4.Theonly non trivialcontribution is

SW Z = T5

Z

C4 ^ F45 =
N



Z

dtr4: (3.16)

Thecontribution to thepotentialvanishesforallvaluesofthem oduliyi;�
3;A a.

W ethen obtain a six-dim ensionalfam ily ofsupersym m etric four-branes.

W ewantto discussin detailtheexistence and them odulispaceofsuch con�gu-

rations.Firstofall,dueto chargequantisation,theD5-branesolutionswe�nd exist

only forrationalvaluesof � m =n,asdiscussed in detailsin [2]9.In fact,sincethe

internalT2 wrapped by theD5-branesupportsa ux F45 = 1=,thereisan induced

D3-charge that has to be quantized. Ifwe set  = m =n,with m and n relatively

prim e integers,we obtain a consistentcon�guration by taking a D5-branewrapped

m tim eson thecontractibleT2 10.Thiscon�guration can bealternatively seen asa

setofn blown up D3-branes.

Oursolutionsshould correspond to additionalbranchesofthedualgaugetheory

which exist only for rational�. These are wellknown for N = 4 SYM [5,6]and

arediscussed in [19]forthe conifold.Fora generic �-deform ed quivergaugetheory

wecan study thegeom etry ofthesenew branchesby looking atthem odulispaceof

8SB I and SW Z areproportionalto T5L
4�0V ol(T 2)= �2N =(2V ol(X 5)).Notto clutterform ulae

wewillonly writea factorofN .
9In [2]to see this they check thata con�guration of(N D 3;N D 5;N N S5)in the undeform ed ge-

om etry is m apped to (N D 3;N D 5 + ND 3;N N S5) by the Lunin-M aldacena transform ation. Hence

 = m =n and ND 3 = N m ustbe a m ultiple ofn.
10In the casem = 1 we can equivalently im pose thatthe �rstChern num berforthe U (1)gauge

bundle isinteger: 1

2�

R

T 2 F = n,which gives = 1=n.
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the solutions. Forsim plicity considerthe case N D 5 = m = 1. The m odulispace of

the brane isparam eterised by f�3; ~A a;yig. �3 and yi,(i= 1;2;3)are fourscalars

deform ationscorresponding to transversem ovem entsoftheD5-branein theinternal

geom etry. Then we have two W ilson linesin the internalT2,corresponding to the

deform ations ofthe gauge �eld on the brane: ei
R

a
A . Here A = A=(2�)such that

F = dA,F = dA and theintegralisoverthetwonon trivialonecycleson T2.Notice

that before T-duality the W ilson lines correspond to the position ofthe D3-brane

on T2.Naively thespace ofthe deform ationsofthegauge�eld isgiven by the �rst

cohom ology ofT2,which is param etrized by the gauge invariants ~A a =
R

a
A ,but

since the holonom ies,exp(i~A a),are the only physicalobservables,it is clear that

they havecom pactrange:0� ~A a � 2�.

The m etric for the m odulispace can be read from the DBI action,when we

givea space-tim edependence to allm oduli.W ecan then interprettheelectric �eld

strengthsasthespace-tim ederivativesoftheW ilson lines:F�a = @�A a = 2�@�A a ’

@�
R

a
A = @�

~A a.By expanding (3.15)weobtain them etricon them odulispace

SD 5 =
N

2

Z

d4�

�

g
ij
@�yi@�yj + g33(@��

3)2 � 2g3a@��
3
f̂
a
� + 

2
habf̂

a
� f̂

b
�

�

: (3.17)

Thism etricisidenticalto them etricoftheoriginalCalabi-Yau when weidentify

@��
a = � f̂

a
� ; or �

a
� � �

ab ~A b: (3.18)

Asdiscussed above,form = 1 theangularvariable�a associated to theW ilson lines

hasperiod 2�=n.W ethusseethatthem etricon them odulispaceisjustthatofthe

originalCY divided by Zn � Zn.

Therefore the prediction from the gravity analysisisthat,forevery toric quiver

gauge theory,at rational�,we have additionalHiggs branches isom orphic to the

orbifold CY=Zn � Zn.W ewillgiveevidence forthisstatem entin Section 6.

3.2 D ualgiant gravitons

W e are interested in thissection in dualgiantgravitons,brane probeswrapping a

three-sphere in globalAdS5 and spinning in the internalm anifold. Dualgiantsare

de�ned in globalcoordinatesin AdS5.

As shown in [17],the classicalphase space ofa supersym m etric D3 dualgiant

on theundeform ed Sasaki-Einstein background isisom orphicto theoriginalCalabi-

Yau,that is the abelian m odulispace ofthe dualgauge theory. Upon geom etric

quantisation ofthe classicalsolutionsoneobtainsallthem esonic BPS statesofthe

theory11.

In thissection wewillextend thisdiscussion and study thedynam icsofthedual

giantgravitonsin the�-deform ed geom etries.Sincethequantisation oftheclassical

11By quantising theclassicaldualgiantsolutionsweobtain statesofthegaugetheory on S3 � R

[24].Allthese statesarem apped to BPS operatorsvia the conform alm apping to R4.
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dualgiantsolutionsgivesm esonicBPS states(corresponding to BPS operators),we

expectthatthe classicalphase space ofthe dualgiantscontainsinform ation about

them esonic m odulispace ofthedualgaugetheory.Dualgiantsforthe�-deform ed

N = 4 SYM werealready analysed in [25].

Exactly in parallelto thecaseofstaticprobes,the�-deform ed geom etriesadm it

BPS dualgiantgravitons oftwo kinds. The �rst type ofgiantsare present forall

valuesofthedeform ation param eter and correspond to D3-braneswrapping an S3

in AdS5 and spinning along theReeb vectorin theinternalgeom etries.On the�eld

theory side they correspond to the operators param eterising the abelian Coulom b

branch ofthe theory. The classicalphase space ofthe dualgiants reproduces the

abelian m odulispace ofthe dualgauge theory. The otherclass ofdualgiants can

existsonlyforrationalvaluesofthedeform ation param eterand consistsofD5-branes

wrapping the S3 in AdS5 and the two-torus(�
1;�2)in the internalm anifold. They

rotate in the angular direction orthogonalto the two-torus and have a m agnetic

world-volum e �eld strength proportionalto 1=.The world-volum e gauge�eld sat-

is�esthe quantisation condition only for rational. On the �eld theory side these

con�gurationscorrespond to Higgsbranchesthatarepresentwhen � isrational.

3.2.1 D 3 dualgiant gravitons

W e want to study the dynam ics ofa D3-brane probe that wraps the three-sphere

in AdS5,written in globalcoordinates,and rotateson the internalm anifold. This

isstillgoverned by the brane world-volum e action (3.1)where we now take asten-

dim ensionalm etric

ds210 = ds2A dS5 + ds2X 5
: (3.19)

Them etricofAdS5 isgiven in globalcoordinates

ds2A dS5 = � V (R)dt2 +
1

V (R)
dR 2 + R

2(d�2 + cos2�d�21 + sin2�d�22) (3.20)

with V (R) = 1 + R 2. t is the globaltim e in AdS5 and the angles �,�1 and �2

param eterisea round three-sphere.W ewillwritethem etricon X 5 astherestriction

ofthesix-dim ensionalinternalm etricto thehypersurfacewith r= 1

2biyi= 1: (3.21)

>From now on,weconsiderascoordinatesforX 5 theangles�
i and two extra angles

param eterised by theyi with theaboveconstraint.

W ith thischoiceofcoordinatestheem bedding X M (��)correspondingtothedual

giantgraviton can betaken as

t= �; R = R(�); � = �
1
; �1 = �

2
; �2 = �

3
;

�
i= �

i(�); yi= yi(�) i= 1;:::;3: (3.22)
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Itisthen easy to seethat

p
� detG�� = R

3cos� sin��1=2; (3.23)

wherewehavede�ned (thedotrepresentsthederivativewith respectto t= �)

�= V (R)�
_R 2

V (R)
� g

ij_yi_yj � ~gij _�
i_�j: (3.24)

To evaluate the W Z term we can choose the pullback ofthe four-form potentialto

be

C(4) = R
4sin� cos�d� ^ d� ^ d�1 ^ d�2: (3.25)

Substituting (3.23)and (3.25)into (3.1)weobtain theLagrangian fortheprobe12

L = � N R
3(e��

p
�� R): (3.26)

To �nd theexplicitsolutionsforthepossiblem otionsoftheD3-braneprobeitis

convenientto passto the Ham iltonian form alism and solve the Ham ilton equations

ofm otion.Forthedualgiantgraviton weareconsidering thecanonicalm om enta are

pR =
@L

@ _R
= e

�� N R 3

p
�

_R

V
;

pyi =
@L

@ _yi
= e

�� N R 3

p
�
g
ij _yj; (3.27)

p�i =
@L

@ _�i
= e

�� N R 3

p
�
~gij

_�j:

TheHam iltonian then reads

H = e
�� N R 3

p
�
V � N R

4

= N R
3(
p
V 
� R); (3.28)

where in the second line we have expressed everything in term s ofthe canonical

m om enta and wehaveintroduced thefunction


= e
�2� +

1

N 2R 6
(V p2R + gijpyipyj + ~gijp�ip�j): (3.29)

12K eeping into consideration also the factorsofL,the Lagrangian forD 3 dualgiantsispropor-

tionalto T3L
4V ol(S3)= �3N =V ol(X 5);howeverwewillwriteexplicitly only the factorN in front

ofL.
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Thecorresponding equationsofm otion are

_R =
1+ R 2

N R 2x
pR ; (3.30)

_pR = N R
3[4�

1

x
(x2 + 3e�2� +

(pR )
2

N 2R 4
)]; (3.31)

_yi=
1

N R 2x
gijpyj ; (3.32)

_pyi = �
N R 4

2x
@yi
; (3.33)

_�i=
1

N R 2x
~gijp�j ; (3.34)

_p�i = 0; (3.35)

wherewehavede�ned

x = R

r



V
: (3.36)

A BPS solution representing a dualgiantrotating in the internalm anifold isgiven

by

R = const; pR = 0; (3.37)

yi= const; pyi = 0; (3.38)

_�i= b
i
; p�i = 2N R 2

yi (3.39)

with yi satisfying �(yi)= 0.

Toexplicitly seeit,itisconvenienttointroduceasetoflocalangularcoordinates

adapted to them otion ofthebraneprobe

ds
2
X 5

= g
ijdyidyj + H (d + �ad 

a)2 + habd 
ad b

; (3.40)

where istheangulardirection in which thebranerotates,and theindicesa;brun

from 1 to 2.Asbeforethe functionsH and hab depend on the variablesyi only.In

thesecoordinatesthefunction 
 becom es


= e
�2� +

1

N 2R 6
(V p2R + gijpyipyj + H

�1
p
2
 + h

ab(p a � �ap )(p b � �bp ));(3.41)

while(3.34)and (3.35)aresubstituted by

_ = 1

N R 2x
(H �1 p � hab�a(p b � �bp )); _p = 0; (3.42)

_ a = 1

N R 2x
hab(p b � �bp ); _p a = 0: (3.43)

Sincethebranerotatesin thedirection  weexpect

_yi= 0; _ a = 0; _R = 0: (3.44)
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The�rstcondition,togetherwith (3.32)and (3.33),im plies

pyi = 0 and @yi
= 0: (3.45)

Thesecond condition in (3.44)im poses

p a = �ap : (3.46)

And �nally thethird condition com bined with (3.30)and (3.31)gives

pR = 0 and x = 2�
p
4� 3e�2� : (3.47)

Observe thatthe condition @yi
 = 0 and the de�nitions ofx and 
 altogether

im ply

@yi�= 0; @ yiH = 0: (3.48)

Up to now wehavenotim posed thecondition thatthedualgiantm ustbeBPS.

Thisam ountsto setting theHam iltonian equalto them om entum in direction ofthe

rotation

H = p : (3.49)

The value ofp and H on the solution are easily com puted from the equations

above

H = N R
2[x+ R

2(x� 1)]; (3.50)

p =
p
H N R

2
p
R 2(x2 � e�2� )+ x2; (3.51)

so thatfortheratio to beequalto 1 forallvaluesofR,onehasto im pose13

x = 1; �= 0; H = 1; (3.52)

which im ply _ = 1 on theBPS solutions.

W e can now analyse the conditionsforBPS m otion. Letusstartwith the case

ofthe undeform ed theory. In the undeform ed background,� isidentically zero. A

supersym m etriccon�guration can beobtained by allowing theprobeto rotatealong

theReeb vector.In facttheangle dualto Reeb vectorisnorm alized to one

H = g(K ;K )= gijb
i
b
j
� 1; (3.53)

where we m ade use ofequation (2.25)on the Sasaki-Einstein r = 1.Thusthe BPS

equations(3.48)and (3.52)are satis�ed. Thisreproducesthe resultsfound in [17]:

a supersym m etric dualgiant m ust rotate along the Reeb vector and it can sit at

any pointin yi. Itsm otion in the phase space (qA;pA)ischaracterized by six free

13There m ight exist other solutions with �xed value ofR. M ost likely,an analysis in term s

of supersym m etry transform ations would revealthat these solutions are not BPS.They would

correspond to truly isolated vacua in the dual�eld theory,thatare notexpected to existin such

theories.
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realparam etersthatare the initialconditionson the Sasaki-Einstein space plusR.

Altogetherthese param etersreconstructa copy ofthe Calabi-Yau and the induced

sym plectic form on the phase space reduces to the naturalsym plectic form ofthe

Calabi-Yau cone[17].

In thecaseofthedeform ed theory,�isanon trivialfunction ofyiand thecondi-

tions(3.48),(3.52)selecta subvariety ofthe internalspace.Since e�� =
p
1+ 2h

wecan writetheconditionsforthevanishing of� and @ yi� as

h = 0; @yih = 0: (3.54)

Hereh isthedeterm inantofthetwo-torusm etricwhich vanishesexactlyon theedges

ofthe polyhedralcone where the torusdegenerates. In addition itsderivative also

vanisheson theedgesasequation (3.5)clearly shows.W eseethattheBPS condition

restrictsthedualgiantto liveon thed edgesofthecone.

W estillhaveto �nd theangulardirection ofrotation ofa BPS dualgiant,which

is characterized by the conditions H = 1,@yiH = 0. W e stillexpect our giant to

rotate along the Reeb vector. W e can com pute the value ofH fora giantrotating

along theReeb vector

H = g(K ;K )= G + 9(1� G)(g33 � h
ab
ga3gb3)=

1+ 92detgij

1+ 2h
: (3.55)

W ecan easily check thatalongan edgewhereh = @yih = 0wehaveH = 1;@yiH = 0

thussolving therem aining equationsofm otion and BPS conditions.

Sum m arizing,a dualgiant graviton in the beta-deform ed theory is supersym -

m etric only when it lives on the edges ofpolyhedron and rotates along the Reeb

vector.

Adding R to the set ofinitialconditions ofthe probe,we see that the m oduli

spacefora dualgiantcan beidenti�ed with a collection oflines.W eexpectthatthe

classicalphase space ofa single dualgiantcorrespondsto the abelian m odulispace

ofthe dualgauge theory. Indeed what we found is consistent with the results for

staticprobesand the�eld theory discussion in Section 6.

3.2.2 D 5 dualgiant gravitons

For  rationalanother class ofbrane probes can be consistently em bedded in the

deform ed geom etry:D5-braneswrapping thesam eS3 insideAdS5 and thetwo-torus

spanned by (�1;�2)in theinternalm anifold.Thecorresponding em bedding is

t= �; R = R(�); � = �
1
; �1 = �

2
; �2 = �

3
;

�
1 = �

4
; �

2 = �
5
;

�
3 = �

3(�); yi= yi(�) i= 1;2;3; (3.56)

wherewecall(�0;:::;�5)theworld-volum ecoordinateson thebrane.Thediscussion

iscom pletely parallelto thatfora staticD5-brane.Theworld-volum eaction forthe
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dualgiantisstillgiven by (3.7)and now thepulled-back m etricisgiven by

0

B
B
B
B
B
B
@

� � 0 0 0 G _�3g13 G _�3g23
0 R 2 0 0 0 0

0 0 R 2cos2�1 0 0 0

0 0 0 R 2sin2�1 0 0

G _�3g13 0 0 0 G h11 G h12

G _�3g23 0 0 0 G h21 G h22

1

C
C
C
C
C
C
A

(3.57)

with �= V (R)�
_R 2

V (R )
� gij_yi_yj + ~g33(_�

3)2.TheB-�eld isgiven by

B 04 = �  hG(h2aga3)_�
3
; (3.58)

B 05 =  hG(h1aga3)_�
3
; (3.59)

B 45 =  hG ; (3.60)

and theworld-volum e �eld strength hasboth m agneticand electriccom ponents

F45 =
1


; F04(�); F05(�): (3.61)

Itisa straightforward com putation to verify thattheBIaction fortheD5probehas

thesam eform asfortheCalabi-Yau case14

SB I = �
N



Z

dtR 3

s

V (R)�
_R 2

V (R)
� gij_yi_yj � g33(_�

3)2 + 2g3a _�
3f̂a � 2habf̂

af̂b;

(3.62)

where f̂a = �abF0b. The W ess-Zum ino partofthe action reducesto the Calabione

aswell.Thisisbecausetheonly non trivialcontribution is

SW Z = T5

Z

C4 ^ F45 =
N



Z

dtR 4
: (3.63)

Thustheworld-volum e Lagrangian is

L = �
N R 3


(
p
�� R) (3.64)

with

�= V (R)�
_R 2

V (R)
� g

ij_yi_yj � g33(_�
3)2 + 2g3a _�

3
f̂a � 

2
habf̂

a
f̂
b (3.65)

which form ally isequivalentto thatofa D3 dualgiantin theundeform ed geom etry

with thereplacem entof _�a with � �abF0b.On theundeform ed Calabi-Yau aD3dual

14SB I and SW Z are proportionalto T5L
4�0V ol(S3)V ol(T 2) = �4N =V ol(X 5). Again we write

only the factorN .
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giantcan live atan arbitrary pointand rotatesalong theReeb vector.W ethussee

thata classofsolutionsforD5 dualgiantsisobtained by choosing

F0a =
1


�abb

b
; _�3 = b

3
: (3.66)

W ecan analysetheclassicalphasespaceoftheD5 dualgiants.Exactly asin the

case ofstatic D5,for� = m =n,we obtain the orbifold CY=Zn � Zn. Coordinates

on this space are obtained by adding R to the initialvalues of�3,yi and the two

W ilson linesalong thetwo-torus,and taking into accountthem odi�ed periodicities

oftheangles.The classicalphase space ofthe D5 dualgiantsisthusisom orphic to

theadditionalHiggsbranchesin them odulispaceofthedualgaugetheory existing

forrational�.Thisisconsistentwith thefactthatthequantisation ofthisclassical

phasespace(asdoneforexam plein[17])shouldreproducethem esonicBPSoperators

param eterising theHiggsbranch.

4 Supersym m etricD -braneprobesfrom

�-transform ation

In this section we analyse the existence and supersym m etry ofD3 and D5 probes

usinggeneralised geom etry.W eshow in particularthattheclassofdualgiantsfound

in Section 3.2 can beobtained by directaction ofthe�-transform ation on theword-

volum e ofthe D3 dualgiantsdescribed in [17].Thiswillautom atically ensure that

thedualgiantsaresupersym m etric in the�-deform ed background.

A sim plewaytodoitisagainusingtheform alism ofGeneralised Geom etry,where

a D-brane wrapping a subm anifold � and supporting a world-volum e �eld strength

F isdescribed by itsgeneralised tangentbundleT(�;F) [22].Thiscan bedescribed as

a m axim ally isotropicsubspace ofT � T? 15,asfollows

T(�;F) = fX + � 2 T � T
?
j� : X 2 T� and �j� = �X Fg: (4.1)

Asalready m entioned,the elem ents ofT � T? transform linearly underthe action

of the extended T-duality group O (d;d) and so does T(�;F). If we start from a

D-brane preserving a background supersym m etry which is also preserved by the

O (d;d)transform ation,then the D-braneobtained by ‘integrating’the transform ed

generalised tangentbundlewillbeautom atically supersym m etricin thetransform ed

background.

Let us start by considering the �-deform ation ofa static D3-brane in the un-

deform ed toric Sasaki-Einstein background,�lling the fourPoincar�e directionsand

sitting atan arbitrary pointofthe internalCalabi-Yau cone. Asitis wellknown,

thiscon�guration preservesallthebackground Poincar�esupersym m etries.

15Strictly speaking weshould considertheextension ofT by T ?;forourclassofbackgroundsthe

two areisom orphicsinceB isglobally de�ned.
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Ifthe D3-brane sitsata pointwhere the two-torus(�1;�2)shrinksto zero size,

thegeneralised tangentbundledescribing thenew D-braneisidenticalto theonewe

started from ,sincethe�-transform ation(2.29)reducestotheidentityatthesepoints.

ThustheoriginalD3-braneism apped to a D3-braneatthesam edegeneration point

in thedeform ed background.

The situation is di�erent when the originalD3-brane sits at a point where �a

are non-degenerate. Since the only coordinates playing a non-trivialrole in the

�-transform ation are the two angles �a we can sim ply describe the D3-brane as a

pointon the two-torus(�1;�2). Since allform s vanish when restricted to a point,

the associated (two-dim ensional)generalised tangentbundle (4.1)adm itsthe basis

ea = d�a.Acting on thisbasiswith the �-deform ation (2.29),we obtain a basisfor

the�-transform ed generalised tangentbundle

~ea = � �
ab @

@�b
+ d�a : (4.2)

By projecting itonto thebackground tangentbundle,weseethattheordinary tan-

gent bundle ofthe new D-brane is spanned by @�1 and @�2. Thus, we obtain a

D5-branewrapping (�1;�2)in the�-deform ed background.From thegeneralde�ni-

tion (4.1),we also see thatthe D5-brane m ustsupporta world-volum e gauge �eld

F = (1=)d�1 ^ d�2.

W ecan easily check thisresultusing thesupersym m etry conditionsforD-branes

given in term s ofthe (twisted) background pure-spinors [14,15]. For a D-brane

wrapping theinternalcycle � with world-volum eux F is

[̂	 � j� ^ e
F]top�1 = 0 ; [(�X 	̂ � )j� ^ e

F]top = 0 8X 2 TM (F-atness)(4.3)

[̂	 + j� ^ e
F]top = 0 : (D-atness)(4.4)

In our case 	̂ � = e� � (e�3A 
(0)) and 	̂ + = e� � exp(� ie�2A J(0)). Then, we

im m ediately seethataD3-braneissupersym m etriconlywhere� ! 0(i.e.thepoints

wherethe(�1;�2)two-torusdegenerates),since attheotherpointstheF-atnessis

notsatis�ed.On theotherhand,a D5-branewrapping the(�1;�2)two-torusatany

non-degenerate pointautom atically satis�esthe D-atness,since J (0)jT 2 = 0,while

the F-atnessim poses the condition F = (1=)d�1 ^ d�2. W e have thus recovered

the resultobtained from T-duality,generalising the resultobtained by otherm eans

in [2]forAdS5 � S5.

Letusnow passto the description ofthe action ofthe �-transform ation on the

D3 dualgiantgravitons. D3 dualgiantsin the undeform ed background have been

found and discussed in [17]. In any toric Sasaki-Einstein background,they wrap a

staticS3 ofarbitrary radiusatthecenterofAdS5,sitatany pointdescribed by the

yi coordinates (constrained by the condition 2biyi = 1)and run along the angular

coordinatesasfollows

t= � ; �
i= b

i
� + const: (4.5)
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Asforthecaseabove,ifaD3dualgiantsitsatapointin theyicoordinateswhere

the two-torus described by (�1;�2) degenerates,its �-transform ation is trivialand

givesagain a D3 described by thesam eem bedding (4.5).Thesearenothing butthe

D3-branedualgiantsdescribed in Subsection 3.2.1,which arethussupersym m etric.

Inordertostudythe�-transform ationofD3dualgiantssittingatnon-degeneration

points,we can restrict our attention on the tim e tand the three angles �i. From

(4.1)weseethatabasisforthegeneralised tangentbundleoftheseD3dualgiantsis

given by thetangentvectorsand a basisofoneform svanishing along thetrajectory

e
0 =

@

@�
=

@

@t
+ b

i
@

@�i
; e

3 = dt� gijb
jd�i ; e

� = c(�)id�
i
; (4.6)

where� = 1;2,i;j= 1;2;3 and c(�)i aresuch thatc(�)ib
i= 0.By �-transform ing it

~e0 =
@

@t
+ b

i
@

@�i
; ~e3 = �

ab
gajb

j
@

@�b
+ dt� gijb

jd�i ;

~e� = �
ab
c(�)b

@

@�a
+ c(�)id�

i
: (4.7)

Projecting this basis to the background tangent bundle we obtain a basis for the

tangentbundle to the �-transform ed brane,which isthusa D5-brane described by

theem bedding

(�;�a) 7! (t= � ;�
3 = b

3
� + const;�a = �

a): (4.8)

Asabove,from the‘twisting’ofthebasis(4.7)weseethattheD5-branem ustsupport

a non-trivialworld-volum e�eld strength,which can beeasily calculated to be

F =
1



�

�abb
bd� ^ d�a + d�1 ^ d�2

�

=
1

2
�ab

�

� b
ad� + d�a

�

^

�

� b
bd� + d�b

�

:(4.9)

W e have thus recovered the D5 dualgiants described in Subsection 3.2.2. Again,

they are autom atically supersym m etric by O (2;2)sym m etry. Asalready discussed

in Section 3.1,the gauge �eld m ust be quantised,giving the condition  = m =n

rational.

In Sections 3.1 and 3.2.2 we showed thatthe m odulispace ofD5-brane probes

(static ordualgiants)isgiven by CY=Zn � Zn. Here we willbriey show thatthe

sam eresultcan beobtained asthe�-deform ation ofthem odulispaceofa probeD3

in theundeform ed geom etry.

Forsim plicity,considerastaticD3-branein an undeform ed Sasaki-Einstein back-

ground (theanalysisofdualgiantsiscom pletely analogous).Asexplained in [15],the

in�nitesim aldeform ationsofa D-branewrapping a cycle� with �eld strength F are

described by sectionsofthegeneralised norm albundle:N (�;F) = E j�=T(�;F) ’ T?
(�;F)

.

In the case ofthe static D3-brane,focusing again on the (�1;�2)directions,a basis

forthesectionsofN (�;F) isgiven by thefollowing representatives

ea =
@

@�a
; (4.10)
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which clearly generatethem otion oftheD3-branein the(�1;�2)directions.W ecan

now apply the �-transform ation (2.29)to obtain representativesofthe correspond-

ing sections ofthe generalised norm albundle to the D5-brane in the �-deform ed

background.Thearegiven by

~ea =
1


�bad�

b
: (4.11)

Thedisplacem ent

�
a
! �

a + c
a (4.12)

ofthe D3-brane in the Sasaki-Einstein background isgenerated by the generalized

norm alvectorcaea. The �-transform ation m apsitinto c
a~ea,which corresponds,as

discussed in [15],to a shift �A = c a~ea ofthe gauge �eld on the D5-brane in the

�-deform ed background.In com ponentsthisreads

A a ! A a +
1


�abc

b = A a + n�abc
b (4.13)

Thus,in particular,a periodicshift� a�
b = 2��ba oftheD3-branecorrespondsto

a shift

� a

Z

b

A = 2�n�ba (4.14)

oftheW ilson lineon theD5-brane.AsbeforetheW ilson linesarede�ned by
R

a
A ,

with A = A=2�,haveperiod 2� and param eterisea two-torus ~T2.

Thisresulthaveanaturalinterpretationtakingintoaccountthatthe�-deform ation

m aps n D3-branes to a single D5-brane. From this point of view, the angular

positions �a in the undeform ed background actually corresponds to the average

h�ai=
P n

r= 1
�a
(r)
=n ofthe angularpositions �a

(r)
;r = 1;:::;n;ofthe n D3-branes,

whiletheW ilson lineson theD5-branein the�-deform ed background areassociated

to thesum s
P n

r= 1
�a
(r)

(thetraceofthecorresponding n � n m atrix in thecom plete

non-abelian description ofthe n D3-branes)by the �-deform ation. A constantpe-

riodicshift� ah�
bi= 2��ba ofthe average D3-braneposition then producesthe shift

(4.14)ofthe D5-brane W ilson lines. From (4.14),we see thatgoing once around a

1-cyclein T2
SE correspondsto going n-tim esaround a 1-cyclein ~T2

~T2
’ T

2
SE=(Zn � Zn): (4.15)

W e can conclude thatthe m odulispace ofthe static D5-branesin the �-deform ed

background correspondsto thequotientCY=(Zn � Zn)oftheCY coneoftheunde-

form ed theory. The sam e argum entspresented above can be applied to the case of

D5 dualgiantsin the �-deform ed background and lead to the expected conclusion

thattheirm odulispaceagain correspondsto CY=(Zn � Zn).
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However,untilnow wehavegiven only aone-to-onem ap between thecoordinates

on the m odulispace and the coordinateson CY=(Zn � Zn). To com plete the iden-

ti�cation we stillhave to com pute the m etric on the m odulispace and see thatit

coincideswith them etricofCY=(Zn � Zn).

Considerthem odulispaceofa staticsupersym m etricD5-branedescribed above.

Itstangentvectorscorrespond to theuctuationsin theinternalspacethatpreserve

the supersym m etry condition and can thus be seen as m assless chiral�elds in an

e�ective four-dim ensionaldescription. The K�ahlerm etric forthese chiral�eldscan

bein principle obtained by looking attheirkineticterm obtained by expanding the

DBI+CS action fortheD5-brane.Thisisexactly them etricweareinterested in.

W ecan apply theresultsof[15,16]to identify theK�ahlerstructureofthem oduli

space. To �nd the correctholom orphic param etrization ofthe D5 m asslessuctua-

tionswe can use once again the action ofthe �-deform ation. The uctuation ofa

generalD-branearegiven bythesectionsofthegeneralised norm albundleN (�;F) [15].

ForaD3-branein aSasaki-Einstein background,them odulispacecorrespondstothe

CY coneM itself,N (�;F) � TM and theassociated com plex structureisnothing but

thecom plex structureoftheCY.Now,a basisfortheholom orphictangentspaceto

them odulispaceisgiven by thefollowing sectionsofthegeneralised norm albundle

ei=
@

@zi
; (4.16)

where zi are the holom orphic coordinates on the CY.A basis forthe holom orphic

deform ationsforthe corresponding D5-branein the �-deform ed background can be

obtained sim ply by taking the�-transform ation ofthebasis(4.16)

~ei= O LM � ei : (4.17)

W ecan now usethegeneralform ula fortheK�ahlerm etricgiven in [15,16],which

wasin factobtained by expanding theDBI+CS D-braneaction.In thebasis(4.17)

itisgiven by

Gi�| = � i

Z

�

[~ei��~e�|� Im (e2A 	̂ + )]j� ^ e
F =

= � i

Z

�

�
e
2A
e
�
� �ei��e�|Im

�
exp(� ie

�2A
J(0))

�	
j� ^ e

F =

= � iJ
(0)

i�|

Z

�

F = � i(2�)2nJ
(0)

i�| ; (4.18)

where J(0) is K�ahler form on the CY cone. W e thus see that we obtain (locally)

exactly the CY m etric,up to an overallfactorwhich com esfrom the factthatthe

D5-brane with n unitsofF ux correspondsto n D3-branesin the undeform ed SE

background. From the coordinate identi�cation discussed above,we can conclude

thattheK�ahlerm odulispacefortheD5-braneisindeed CY=(Zn � Zn).
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5 C om m ents on giant gravitons

There exist other BPS string con�gurations. Ofparticular interest are the giant

gravitons,con�gurations ofD3-brane wrapping 3 cycles in the internalspace. It

would be quite interesting to perform a com plete analysisofthe spectrum ofgiant

gravitonson the �-deform ed background. Asshown in [26{31],in the undeform ed

case,thequantisation oftheclassicalsupersym m etricgiantgraviton solutionsgivesa

com pleteinform ation aboutthespectrum and thepartition function ofBPS m esonic

operatorsin the�eld theory.

In the Calabi-Yau case,giantgravitonscan be param eterised by Euclidean D3-

branes living inside the internalsix-m anifold [26,32]. W e restrict to the m inim al

giantgravitonswithoutworld-volum e ux,which param etrize allthe bosonic BPS

states. The argum entgiven in [26]suggeststhatthe sam e param eterisation can be

used in allsolutionswith AdS5 factor.Thesupersym m etricconditionsforEuclidean

D-braneson ageneralised geom etry background havebeen derived in [33]and shown

tobeidenticalto theconditionsfortheinternalpartofspace-�lling branesdiscussed

in [14,15]16,thatwe have already written in (4.3)and (4.4). So they can be easily

applied to an Euclidean D3-brane,given the form ofthe pure spinors discussed in

Section 2.3.

The F-atness condition (4.3)for Euclidean D3-brane wrapping � with F = 0

reducesto


(0)j� = 0 ; (5.1)

wherewerecallthat
(0) istheholom orphic(3;0)on theoriginalCY geom etry.The

condition (5.1)exactly requiresthatthe4-cyclewrapped by theEuclidean D3-brane

m ustbeholom orphicwithrespecttotheCY com plexstructure.Considerforexam ple

four-cyclesin �-deform ed toricvacuade�ned by theem bedding w3 = g(z1;z2;�z1;�z2),

where z1;2;�z1;2 are chosen as coordinates on the cycle. Then the F-atness (5.1)

becom es

dz1 ^ dz2 ^ dg = 0 , �@g = 0 ; (5.2)

which indeed requires that the em bedding is holom orphic with respect to the old

variables. Ofcourse,other supersym m etric em beddings m ight exist which are not

param eterised by z1;2.

On the other hand,the generalD-atness condition is (4.4) in the �-deform ed

toric-vacua,fortheabovefour-cycleswith F = 0,becom es

��(J ^ J ^ J)j� � dx1 ^ dx2 ^ dg^ d�g = 0 , Im (@1g �@�2�g)= 0 : (5.3)

Interestingly,allthe supersym m etric conditions can be written in term s ofthe

originalcom plex coordinatesoftheCalabi-Yau.Thisisin agreem entwith �eld the-

ory,wherethem odulispaceforthedeform ed theoryrem ainsacom plex m anifold and

16Indeed,the resultsofthis section can be equally used to identify and study avorD7-branes

on thisgeneralclassof�-deform ed backgrounds(see [34,35]forwork in thisdirection).
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theoriginalcom plex structureofthem odulispacecan bestillused tocharacterizeit.

W ecan easily �nd m any solutionsofthe F and D-atnessconditions.Forexam ple,

allm onom ialsofde�nite chargew 3 = en1z1en2z2 solve theconstraints.At�rstsight,

weareleftwith m oresolutionsthan expected from thespectrum ofBPS statesofthe

deform ed theory. Howevera m ore carefulanalysisofthe giantgraviton characteri-

zation asEuclidean D3-branes,oftheirglobalproperties,oftheirworld-volum eux

and,in general,ofthequantisation procedureshould beperform ed beforeextracting

correctresults.W eleavethisinteresting analysisforfuturework.

6 T he gauge theory

In this Section we discuss the m odulispace fora �-deform ed quiver gauge theory.

Rather than giving generalproofs for alltoric quiver theories we exam ine various

exam plesand wegivesom egeneralargum ents.

6.1 N on abelian B PS conditions

In orderto understand thefullm esonicm odulispaceofthegaugetheory weneed to

study generalnon-abelian solutionsoftheF term equations.

Before attacking the generalconstruction, we consider N = 4 SYM and the

conifold. In the N = 4 SYM case,we form m esons outofthe three adjoint �elds

(�i)
�
�.Thenon-abelian BPS conditionsforthesem esonic�eldsaregiven in equation

(2.9)and can beconsidered asequationsforthree N � N m atrices.In the conifold

case,we can de�ne four com posite m esonic �elds which transform in the adjoint

representation ofoneofthetwo gaugegroups

x = (A 1B 1)
�
�; y = (A 2B 2)

�
�; z = (A 1B 2)

�
�; w = (A 2B 1)

�
� (6.1)

and considerthefourm esonsx;y;z;w asN � N m atrices.W ecould usethesecond

gauge group without changing the results. W ith a sim ple com putation using the

F-term conditions(2.10)wederivethefollowing m atrix com m utation equations

xz = b
�1
zx

xw = bwx

yz = bzy

yw = b
�1
wy

xy = yx

zw = wz (6.2)

and them atrix equation

xy = bwz (6.3)

which isjusttheconifold equation.Hereand in thefollowing b= e�2i�� .For� = 0

theseconditionssim plify.Allthem esonscom m uteand theN � N m atricesx;y;z;w
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can besim ultaneousdiagonalized.Theeigenvaluesarerequired tosatisfytheconifold

equation (6.3)and therefore the m odulispace isgiven by the sym m etrized product

ofN copiesoftheconifold,asexpected.

An interesting observation isthat,fortheN = 4 SYM and (6.2)fortheconifold,

the F-term conditions for � 6= 0 can be obtained by using the non com m utative

productde�ned in (2.5)

f � g � e
i��(Q f^Q g)

fg: (6.4)

Thechargesofm esonsforN = 4 and theconifold areshown in Figure2.

The BPS conditions for the Calabi-Yau case,which require that every pair of

m esonic �elds f and g com m ute,are replaced in the �-deform ed theory by a non

com m utativeversion

[f;g]= 0 ! [f;g]� � f � g� g� f = 0: (6.5)

Itis an easy exercise,using the assignm ent ofcharges shown in Figure 2,to show

thatthesem odi�ed com m utation relationsreproduceequations(2.9)and (6.2).

This sim ple structure extends to a generic toric gauge theory. The algebraic

equations ofthe Calabi-Yau give a set ofm atrix equations form esons. In the un-

deform ed theory,allm esonscom m ute,while in the �-deform ed theory the original

com m utation propertiesarereplaced by theirnon com m utative version.In orderto

fully appreciatethesestatem entsweneed tounderstand thestructureofthem esonic

chiralring fortorictheories[36{42].

6.1.1 T he m esonic chiralring

W ebriey review thestructure ofthem esonic chiralring forquivergaugetheories.

Thereaderisreferred to [36{42]foran exhaustivediscussion.Thereaderwho wants

to avoid technicaldetailscan directly jum p to thenextSections,where m ostofthe

exam plesareself-explaining.

>From the algebraic-geom etric pointofview the data ofa conicaltoric Calabi-

Yau are encoded in a rationalpolyedralcone C in Z3 de�ned by a setofvectorsV�
� = 1;:::;d.Fora CY cone,using an SL(3;Z)transform ation,itisalwayspossible

to carry these vectors in the form V� = (x�;y�;1). In this way the toric diagram

can be drawn in the x;y plane (see forexam ple Figure 2). The CY equations can

be reconstructed from thisset ofcom binatorialdata using the dualcone C�. This

is de�ned in equation (2.14) and it was already used to write the m etric as a T 3

�bration.Thetwo conesarerelated asfollow.Thegeom etricgeneratorsforthecone

C�,which arevectorsaligned along theedgesofC�,aretheperpendicularvectorsto

thefacetsofC.

To give an algebraic-geom etric description ofthe CY,we need to consider the

cone C� as a sem i-group and to �nd its generators over the integer num bers. The

prim itivevectorspointingalongtheedgesgeneratetheconeovertherealnum bersbut

wegenerically need to add othervectorsto obtain a basisovertheintegers.Denote
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by W j with j = 1;:::;k a setofgeneratorsofC� overthe integers. To every vector

W j itispossibleto associatea coordinatexj in som eam bientspace.k vectorsin Z
3

are clearly linearly dependentfork > 3,and the additive relationssatis�ed by the

generatorsW j translateinto a setofm ultiplicative relationsam ong thecoordinates

xj.These arethealgebraicequationsde�ning thesix-dim ensionalCY cone.

(b)

2

3

1

(0,−1,1)

(0,0,1)(−1,0,1)

(0,−1,0)

(−1,0,0)

(1,1,1)
(0,0,1) (1,0,1)

(1,1,1)(0,1,1)

(−1,0,1)

(0,−1,1)

(0,1,0)

(1,0,0)

z

y

w

x

(a)

Figure 2: The toric diagram C and the generators ofthe dualcone C� with the

associated m esonic �elds for: (a) N = 4,(b) conifold. The U(1)3 charges ofthe

m esons are explicitly indicated;the �rst two entries ofthe charge vectors give the

U(1)2 globalchargeused to de�nethenon com m utative product.

Alltherelationsbetween pointsin thedualconebecom erelationsam ongm esons

in the�eld theory.In fact,usingtoricgeom etryand dim ertechnology,itispossibleto

show thatthereexistsa oneto onecorrespondencebetween theintegerpointsinside

C� and the m esonic operators in the dual�eld theory,m odulo F-term constraints

[37,40].Toeveryintegerpointm j in C
� weindeed associateam eson M m j

in thegauge

theory with U(1)3 chargem j.In particular,them esonsareuniquely determ ined by

theirchargeunderU(1)3.The�rsttwo coordinates

Q
m j = (m 1

j;m
2
j) (6.6)

ofthevectorm j arethechargesofthem eson underthetwoavourU(1)sym m etries.

SincetheconeC� isgenerated asa sem i-group by thevectorsW j thegenericm eson

willbeobtained asa productofbasicm esonsM W j
,and wecan restrictto thesegen-

eratorsforallourpurposes.Them ultiplicativerelationssatis�ed by thecoordinates

xj becom ea setofm ultiplicativerelationsam ong them esonicoperatorsM W j
inside

the chiralring ofthe gauge theory. Itis possible to prove thatthese relations are

a consequence ofthe F-term constraints ofthe gauge theory. The abelian version

ofthissetofrelationsisjustthe setofalgebraic equationsde�ning the CY variety

as em bedded in C
k. The exam ples ofN = 4 SYM and the conifold are shown in

Figure 2. In the case ofN = 4 ,the three m esons �j correspond to independent
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charge vectors and we obtain the variety C
3. In the case ofthe conifold,the four

m esonsx;y;z;w correspond to fourvectors with one linearrelation and we obtain

thedescription oftheconifold asa quadricxy = zw in C 4.

W e need now to understand the non abelian structure ofthe BPS conditions.

M esons correspond to closed loopsin the quiver and,asshown in [36,38],forany

m eson thereisan F-term equivalentm eson thatpassesfora given gaugegroup.W e

can thereforeassum ethatallm eson loopshaveabasepointataspeci�cgaugegroup

and considerthem asN � N m atricesM �
�. In the undeform ed theory,the F-term

equationsim ply thatallm esonscom m ute and can be sim ultaneously diagonalized.

The additionalF-term constraints require that the m esons,and therefore alltheir

eigenvalues,satisfy the algebraic equations de�ning the Calabi-Yau. This gives a

m odulispacewhich istheN -fold sym m etrized productoftheCalabi-Yau.Thishas

been explicitly veri�ed in [43]forthe case ofthe quivertheories[44]corresponding

to the Lpqr m anifolds. In the �-deform ed theory the com m utation relationsam ong

m esonsarereplaced by �-deform ed com m utators

M m 1
M m 2

= e
�2i��(Q m 1^Q m 2)

M m 2
M m 1

= b
(Q m 1^Q m 2)

M m 2
M m 1

: (6.7)

Theprescription (6.7)willbeourshort-cutforcom puting therelevantquantitieswe

willbeinterested in.Thisfactbecom escom putationally relevantin thegenerictoric

case. Aswe willshow in an explicit exam ple in the Appendix B this procedure is

equivalentto using the �-deform ed superpotentialde�ned in (2.8)and deriving the

constraintsforthem esonic�eldsfrom theF-term relations.

Finally them esonsstillsatisfy a certain num berofalgebraicequations

f(M )= 0 (6.8)

which areisom orphicto thede�ning equationsoftheoriginalCalabi-Yau.

6.2 A belian m odulispace

In thissection,wegiveevidencefrom thegaugetheory sidethattheabelian m oduli

space ofthe �-deform ed theories is a set oflines. There are exactly d such lines,

whered isthenum berofverticesin thetoricdiagram .In fact,thelinescorrespond

to the geom etric generators ofthe dualcone ofthe undeform ed geom etry,or,in

otherwords,theedgesofthepolyedron C� wheretheT3 �bration degeneratesto T 1.

InternalgeneratorsofC� asasem i-group donotcorrespond toadditionallinesin the

m odulispace.Thesestatem entsarethe�eld theory counterpartofthefactthatthe

D3 probescan m oveonly along theedgesofthesym plectic cone.

W eexplained in theprevioussection how toobtain asetofm odi�ed com m utation

relationsam ong m esonic�elds.In theabelian casethem esonsreduceto com m uting

c-num bers. >From the relations (6.7) with non a trivialb factor, we obtain the

constraint

M m 1
M m 2

= 0: (6.9)
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Adding the algebraic constraints (6.8) de�ning the CY,we obtain the fullset of

constraintsfortheabelian m esonicm odulispace.

W e now solve the constraints in a selected set ofexam ples,which are general

enough to exem plify the result. W e analyse N = 4,the conifold,the Suspended

Pinch Point(SPP)singularityandam oresophisticated exam ple,PdP4,which covers

the case where the generators ofC� as a sem i-group are m ore than the geom etric

generators.

6.2.1 T he case ofC 3

The N = 4 theory is sim ple and was already discussed in Section 2.1. The three

linescorrespond to thegeom etricgeneratorsofthedualconeasin Figure2.

6.2.2 T he conifold

The abelian m esonic m odulispace ofthe conifold theory was already discussed in

Section 2.1 using elem entary �elds. From the equations (6.2) we obtain the sam e

result:fourlinescorresponding to theexternalgeneratorsofthedualconeasshown

in Figure2.

6.2.3 SPP

The gauge theory obtained asthe nearhorizon lim itofa stack ofD3-branesatthe

tip oftheconicalsingularity

xy
2 = wz (6.10)

iscalled theSPP gaugetheory [45].Thetoricdiagram and thequiverofthistheory

aregiven in Figure3.Itssuperpotentialis

1

(0,1,0)

(−1,0,1)

(−1,−1,2)

(1,0,0)

(1,0,1)(0,0,1)

(0,2,1)

(1,1,1)

x

w

y

z

3 2

Figure3:Thetoricdiagram and thequiveroftheSPP singularity

W = X 21X 12X 23X 32 + X 13X 31X 11 � X32X 23X 31X 13 � X12X 21X 11 (6.11)

Thegeneratorsofthem esonic chiralring are

w = X 13X 32X 21; x = X 11;

z = X 12X 23X 31; y = X 12X 21: (6.12)
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Thesem esonscorrespond tothegeneratorsofthedualconein Figure3.Theiravour

chargescan beread from thedualtoricdiagram

Q x = (1;0),Q z = (� 1;� 1),Qy = (� 1;0),Qw = (0;1): (6.13)

Using thedeform ed com m utation ruleform esons(6.7)weobtain thefollowing rela-

tions

xw = bwx; zx = bxz; wz= bzw ;

wy = byw ; yz= bzy: (6.14)

In theabelian casethey reduceto

xw = 0; zx = 0; wz= 0;

wy = 0; yz= 0; xy
2
� wz; (6.15)

where the last equation is the additionalF-term constraint giving the originalCY

m anifold. The presence ofthe sym bol\� " isdue to the factthatthe originalCY

equation isdeform ed byan unim portantpowerofthedeform ationparam eterb,which

can alwaysbereabsorbed by rescalingthevariables.Thesolutionstotheseequations

are

(x = 0; y = 0; z= 0)! fwg;

(x = 0; y = 0; w = 0)! fzg;

(x = 0; z= 0; w = 0)! fyg;

(w = 0; y = 0; z = 0)! fxg; (6.16)

corresponding to thefourcom plex linesassociated to thefourgeneratorsofthedual

cone.

6.2.4 PdP 4

This is probably the sim plest exam ple with internalgenerators: the perpendicular

to the toric diagram are enough to generate the dualcone on the realnum bersbut

otherinternalvectorsareneeded to generatethe coneon theintegernum bers.The

discussion in Section 3.2suggeststhatthem odulispaceseen by thedualgiantgravi-

tonsand hencetheabelian m esonicm odulispaceofthegaugetheory areexhausted

by theexternalgenerators.W ewillseeevidence ofthisfact.

The PdP4 gaugetheory,[46],isthe theory obtained asthe nearhorizon lim itof

a stack ofD3-branesatthe tip ofthe non com plete intersection singularity de�ned

by thesetofequations

z1z3 = z2t,z2z4 = z3t,z3z5 = z4t

z2z5 = t
2 ,z1z4 = t

2
: (6.17)
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Figure4:Thetoricdiagram and thequiverofthePdP4 singularity

Thetoricdiagram and thequiverofthetheory aregiven in Figure4.Thesuperpo-

tentialofthetheory is

W = X 61X 17X 74X 46 + X 21X 13X 35X 52 + X 27X 73X 36X 62 + X 14X 45X 51

� X51X 17X 73X 35 � X21X 14X 46X 62 � X27X 74X 45X 52 � X13X 36X 61:(6.18)

Thegeneratorsofthem esonic chiralring are

z1 = X 51X 13X 35; z2 = X 51X 17X 74X 45; z3 = X 21X 17X 74X 45X 52;

z4 = X 14X 45X 52X 21; z5 = X 14X 46X 61; t= X 13X 36X 61: (6.19)

>From thetoricdiagram wecan easily read thechargesofthem esonicgenerators

Q z1 = (0;1); Q z2 = (� 1;0); Qz3 = (� 1;� 1); Qz4 = (0;� 1); Qz5 = (1;0):

(6.20)

Togeneratetheconeontheintegersweneed toadd theinternalgeneratort= (0;0;1)

with avour charges Q t = (0;0). The generators satisfy the equations (6.17) for

the PdP4 singularity m odi�ed justby som e irrelevantproportionalfactorsgiven by

powers of b. W e m ust add the relations obtained from the m esonic �-deform ed

com m utation rule(6.7)

z1z2 = bz2z1; z1z3 = bz3z1; z5z1 = bz1z5; z2z3 = bz3z2

z2z4 = bz4z2; z3z4 = bz4z3; z3z5 = bz5z3; z4z5 = bz5z4; (6.21)

thatin theabelian casereduceto

z1z2 = 0; z1z3 = 0; z5z1 = 0; z2z3 = 0;

z2z4 = 0; z3z4 = 0; z3z5 = 0; z4z5 = 0: (6.22)

Thesolutionsto thesetofequations(6.17)and (6.22)are

(z2 = 0; z3 = 0; z4 = 0; z5 = 0; t= 0)! fz1g;

(z1 = 0; z3 = 0; z4 = 0; z5 = 0; t= 0)! fz2g;

(z1 = 0; z2 = 0; z4 = 0; z5 = 0; t= 0)! fz3g;

(z1 = 0; z2 = 0; z3 = 0; z5 = 0; t= 0)! fz4g;

(z1 = 0; z2 = 0; z3 = 0; z4 = 0; t= 0)! fz5g; (6.23)
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corresponding to the �ve externalgenerators. W e observe in particular that the

com plex linecorresponding to theinternalgeneratorstisnota solution.

6.3 N on abelian m odulispace and rational�

TheF-term equations

M m 1
M m 2

= e
�2�i�(Q m 1^Q m 2)

M m 2
M m 1

(6.24)

give a non com m utative ’t Hooft-W eylalgebra for the N � N m atrices M I. By

diagonalizing them atrix �m 1m 2
= (Q m 1 ^ Q m 2)wecan reducetheproblem to various

copiesofthealgebra fora non com m utative torus

M 1M 2 = e
2�i�

M 2M 1 (6.25)

whoserepresentationsarewellknown.

Forgeneric �,corresponding to irrationalvaluesof�,the ’tHooft-W eylalgebra

hasnonon trivial�nitedim ensionalrepresentations:wecan only�nd solutionswhere

allthe m atrices are diagonal,and in particular equation (6.25) im plies M 1M 2 =

M 2M 1 = 0. The problem isthusreduced to the abelian one and the m odulispace

is obtained by sym m etrizing N copies ofthe abelian m odulispace,which consists

ofd lines.Thisisthe rem aining ofthe originalCoulom b branch ofthe undeform ed

theory.

For rational� = m =n, instead, new branches are opening up in the m oduli

space [5,6]. In fact,forrational�,we can have �nite dim ensionalrepresentations

ofthe’tHooft-W eylalgebra which aregiven by n � n m atrices(OI)ij.Theexplicit

form ofthem atrices(O I)ij can befound in [47]butitisnotofparticularrelevance

forus.ForgaugegroupsSU(N )with N = nM wecan havevacua wherethem esons

havetheform

(M I)
�
� = Diag(M a)
 (OI)ij; a = 1;:::;M ; i;j= 1;:::;n; �;� = 1:::N :

(6.26)

The M variables M a are further constrained by the algebraic equations (6.8) and

are due to identi�cations by the action ofthe gauge group. A convenient way of

param eterising the m odulispace isto look atthe algebraic constraintssatis�ed by

theelem entsofthecentreofthenon-com m utativealgebra [5].

W ewillgiveargum entsshowingthatthecentreofthealgebraofm esonicoperators

isthealgebraicvarietyCY=Zn� Zn.HereCY m eanstheoriginalundeform ed variety,

and thetwoZn factorsareabelian discretesub-groupsofthetwoavourssym m etries.

Thisstatem entisthe �eld theory counterpartofthe factthatthe m odulispace of

D5 dualgiantgravitonsistheoriginalCalabi-Yau divided by Zn � Zn.

Thegenericvacuum (6.26)correspondstoM D5dualgiantsm ovingon thegeom -

etry.Theresulting branch ofthem odulispaceistheM -fold sym m etrized productof

theoriginalCalabi-Yau divided by Zn� Zn.Each D5dualgiantshould beconsidered
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asa fully non-abelian solution ofthe dualgauge theory carrying n colorindicesso

thatthe totalnum berofcolorsisN = nM . W e can obtain a di�erentperspective

on thisbranch ofourgauge theory by considering itasthe world-volum e theory of

D3-branessittingatadiscretetorsion Zn� Zn orbifold oftheoriginalsingularity [48].

In thispicture,the D5 dualgiantscorrespond to the physicalbranessurviving the

orbifold projection. Thisperspective hasbeen discussed in detailsin the literature

forN = 4 SYM [5]and itcan beeasily extended to generictoricsingularities.

6.3.1 T he case ofC 3

Thecaseofthe�-deform ation ofN = 4 gaugetheory issim pleand wellknown [5].

Thegeneratorsofthealgebraofm esonicoperatorsarethethreeelem entary �elds

�1,�2,�3. Equation (2.9)im plies thatitpossible to write the generic elem entof

thealgebra in theordered form

�k1;k2;k3 = �
k1
1 �

k2
2 �

k3
3 (6.27)

Thecentreofthealgebra isgiven by thesubsetofoperatorsin (6.27)such that:

�k1;k2;k3 �1 = b
k3�k 2 �1 �k1;k2;k3 = �1 �k1;k2;k3 ;

�k1;k2;k3 �2 = b
k1�k 3 �2 �k1;k2;k3 = �2 �k1;k2;k3 ;

�k1;k2;k3 �3 = b
k2�k 1 �3 �k1;k2;k3 = �3 �k1;k2;k3 : (6.28)

Since bn = 1,the center ofthe algebra is given by the set of�k1;k2;k3 such that

k1 = k2 = k3m odn.

Thegeneratorsofthecenterofthealgebraare:�n;0;0;�0;n;0;�0;0;n;�1;1;1.W ecall

them x;y;w;z respectively.They satisfy theequation

xyw = z
n (6.29)

which de�nesthevarietyC 3=Zn� Zn.Toseethis,takeC
3 with coordinateZ 1;Z 2;Z 3,

and considertheaction ofthegroup Zn � Zn on C
3

Z
1
;Z

2
;Z

3
! Z

1
�
�1
;Z

2
�� ;Z

3
�
�1 (6.30)

with�n = �n = 1.Thebasicinvariantm onom ialsunderthisactionarex = (Z 1)n;y =

(Z 2)n;w = (Z 3)n;z= Z 1Z 2Z 3 and they clearly satisfy theequation (6.29).

Thisfactcan be represented in a diagram m atic way asin Figure 5. Thisrepre-

sentation oftherationalvalue�-deform ation isvalid forevery toricCY singularity.

6.4 C onifold

The case ofthe conifold isa bitm ore intricate and can be a usefulexam ple forthe

generic CY toric cone. The generators ofthe m esonic algebra x;y;z;w satisfy the
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b =1
n

Figure5:C 3 ! C
3=Zn � Zn in thetoricpicture,b

5 = 1.

equations (6.2). It follows thatwe can write the generic m onom ialelem ent ofthe

algebra in theordered form

�k1;k2;k3;k4 = x
k1y

k2w
k3z

k4 : (6.31)

The centre ofthe algebra isgiven by the subsetofthe operators(6.31)thatsatisfy

theequations

�k1;k2;k3;k4 x = bk4�k 3 x �k1;k2;k3;k4 = x �k1;k2;k3;k4 ;

�k1;k2;k3;k4 y = bk3�k 4 y �k1;k2;k3;k4 = y �k1;k2;k3;k4 ;

�k1;k2;k3;k4 w = bk1�k 2 w �k1;k2;k3;k4 = w �k1;k2;k3;k4 ;

�k1;k2;k3;k4 z= bk2�k 1 z �k1;k2;k3;k4 = z �k1;k2;k3;k4 : (6.32)

Because bn = 1,the elem ents ofthe centre ofthe algebra are the subset ofthe

operatorsoftheform (6.31)such thatk1 = k2,k3 = k4,m od n.

The centre isgenerated by �n;0;0;0;�0;n;0;0;�0;0;n;0;�0;0;0;n;�1;1;0;0;�0;0;1;1;we call

them respectively A;B ;C;D ;E ;G.TheF-term relation

xy = bwz (6.33)

then im pliesthatE and G are notindependent:E = bG. M oreoverthe generators

ofthecentreofthealgebra satisfy theequations

AB = CD = E
n
: (6.34)

Asin the previousexam ple,itiseasy to see thatthese are the equationsofthe

Zn � Zn orbifold oftheconifold.Take indeed the coordinatesx;y;w;z de�ning the

conifold asa quadricem bedded in C 4.Theaction ofZn � Zn is

x;y;w;z! x� ;y�
�1
;w�

�1
;z� ; (6.35)

where�n = �n = 1.Thebasicinvariantsofthisaction areA;B ;C;D ;E ;G,and they

are subject to the constraint (6.33). Hence the equations (6.34)de�ne the variety

C(T1;1)=Zn � Zn.
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=1
n

b

Figure6:C(T1;1)! C(T1;1)=Zn � Zn in thetoricpicture,b
5 = 1

6.5 T he generalcase

Now we want to analyse the generic case and show thatthe centre ofthe m esonic

algebra fortherational�-deform ed (bn = 1)gaugetheory istheZn � Zn quotientof

theundeform ed CY.

Fora generic toric quivergauge theory we take a setofbasic m esons M W j
(we

willcallthem sim ply xj from now on)correspondingtothegeneratorsW j ofthecone

C�. These are the generators ofthe m esonic chiralring ofthe given gauge theory.

Because they satisfy the relations (6.24) it is always possible to write the generic

m onom ialelem entofthem esonicalgebra generated by xj in theordered form

�p1;:::;pk = x
p1
1 x

p2
2 :::x

pk
k : (6.36)

W e are interested in the operatorsthatform the centre ofthe algebra,or,in other

words,thatcom m utewith alltheelem entsofthealgebra.To �nd them itisenough

to�nd alltheoperatorsthatcom m utewith allthegeneratorsofthealgebra,nam ely

x1;:::;xk. The generic operator (6.36) has charge Q p1;:::;pk
under the two avour

U(1)sym m etries,and thegeneratorsxj havechargesQ j.They satisfy thefollowing

relations

�p1;:::;pk
xj = xj �p1;:::;pk

b
Q p1;:::;pk

^Q j : (6.37)

Thisim pliesthatthecentreofthealgebra isform ed by thesetof�p1;:::;pk such that

Q p1;:::;pk ^ Q j = 0 m od n ,j= 1;:::;k: (6.38)

At this point it is im portant to realize that the Q j contain the two dim ensional

vectorsperpendicular to the edgesofthe two dim ensionaltoric diagram . The fact

thatthe toric diagram isconvex im pliesthatthe Q j span the T2 avourtorus. In

particularthe operator�p1;:::;pk m ustcom m ute (m odulo n)with the operatorswith

charges (1;0)and (0;1). The �rst condition gives allthe operators in the algebra

thatare invariant underthe Zn in the second U(1),while the second gives allthe

operators invariant under the Zn contained in the �rst U(1). Alltogether the set

ofoperatorsin the centre ofthe algebra consists ofalloperators�p1;:::;pk invariant

undertheZn � Zn discretesubgroup oftheT
2.

Them onom ialsm adewith thefreex1;:::;xk coordinatesofC
k thatareinvariant

underZn� Zn,form ,byde�nition,thequotientvarietyC
k=Zn� Zn.Thetoricvariety
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V isde�ned starting from aring overC k with relationsgiven by asetofpolynom ials

fq1;:::;qlg de�ned by thetoricdiagram

C[V ]=
C[x1;:::;xk]

fq1;:::;qlg
: (6.39)

Indeed the elem entsofthe centre ofthe algebra are the m onom ialsm ade with the

xj,subjectto the relationsfq1;:::;qlg,invariantunderZn � Zn.Thisfactallowsus

to conclude thatthe centre ofthe algebra in the case bn = 1 isthe quotientofthe

originalCY

Vb =
CY

Zn � Zn

: (6.40)

The�-deform ed N = 4 gaugetheory and the�-deform ed conifold gaugetheory are

specialcases ofthis result. In the appendix we willdiscuss a m ore sophisticated

exam ple,which includesSPP asa particularcase.

7 C onclusions

In this paper we discussed generalproperties ofthe �-deform ation oftoric quiver

gaugetheoriesand oftheirgravitationalduals,which havea very sim plecharacteri-

zation in term sofgeneralised com plex geom etry.

W eanalysed them odulispaceofvacua ofthe�-deform ed theory using D-branes

probes and �eld theory analysis. An im portant class of supersym m etric probes,

the giant gravitons,has stillto be analysed. It would be interesting to study the

classicalcon�gurations ofgiant gravitons in the �-deform ed background and their

quantisation. This should give inform ation about the spectrum ofBPS operators

and,asithappensin the undeform ed theory,itshould help in com puting partition

functionsforthechiralring ofthegaugetheory [27{31,40{42].

On thegravity side,weclari�ed thegeom etricalstructureofthesupersym m etric

�-deform ed background. The description in term s ofpure spinors is rem arkably

sim ple. Itwould be interesting to see whetherthisdescription can be extended to

theanalysisofotherm arginaldeform ationsofsuperconform altheories.In particular

N = 4 SYM and other quiver gauge theories adm it deform ations that breaks the

U(1)3 sym m etry whose supergravity dualisstillelusive. Itwould be interesting to

extend ourm ethodsto thesearch ofthesem issing solutions.
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A �-deform ed N = 4 Super Yang-M ills

Forthe�-deform ation ofN = 4 SYM itispossibleto usethepurespinorform alism

to determ inethepreciserelation between theparam eter entering thesupergravity

background and the � param eter deform ing the superpotentialofthe dualgauge

theory. Even ifthe com putation doesnotapply to the �-deform ation ofa generic

toricCalabi-Yau,wereportitheresinceitprovidesaniceapplicationoftheform alism

ofGeneralised Com plex Geom etry.

The com putation is based on the observation thatfora generic deform ation of

N = 4 SYM itpossible to relate the integrable pure spinorofthe gravity solution

(	̂ � forus)and thesuperpotentialofthedualgaugetheory [11,15].M oreprecisely

it possible to write the superpotentialfor a single D-brane probe,with a world-

volum eux F and wrappingacycle�in theinternalm anifold,in term softheclosed

pure spinor[15]. Since e3A 	̂ � isclosed,one can locally write e3A 	̂ � = d� and the

superpotentialcan bewritten as

W =

Z

�

�j� ^ e
F
: (A.1)

Notice that (A.1) has precisely the form ofthe CS term in the standard D-

brane action,where � plays the role ofthe twisted RR-potentialsC ^ eB . A non-

abelian generalisation ofsuch CS term form ultipleD-braneswasobtained by M yers

in [49],using an argum entessentially based on T-duality.Since thepurespinor	̂ �

transform sprecisely asthe RR-�eld strengthsunderT-duality,the sam e argum ent

can beapplied in ourcase,and theresulting non-abelian superpotentialhasexactly

thesam eform ofM yers’non-abelian CS term ,with C ^ eB substituted by �.

Forthebackground obtained by �-deform ing AdS5 � S5,using thestandard at

com plex coordinateson theinternalwarped C 3,wehave

e
3A 	̂ � = (z1z2dz3 + cyclic)+ dz1 ^ dz2 ^ dz3 ; (A.2)

43



and thus

� = z
1
z
2
z
3 +

1

3!
�ijkz

idzj ^ dzk : (A.3)

Then,from theaboveargum entand M yers’non-abelian CS action wegetthefollow-

ing non-abelian superpotentialfora stack ofD3-branes(in units�0= 1)

W = Str[e2i��� �� �](0)
� Tr[(1+ i�)�1�2�3 � (1� i�)�1�3�2]; (A.4)

where �i isthenon-abelian scalar�eld describing the D3-braneuctuations,which

iscanonically associated to zi=(2��0). Com paring with (2.2),since we need  � 1

to trustthesupergravity approxim ation,weconcludethat

� =  : (A.5)

B Som e explicit �eld theory exam ples

In this appendix we illustrate few points ofthe �eld theory analysis. Using the

SPP exam ple,we show how the non com m utative productactson the undeform ed

superpotentialand m otivateform ula(2.8).W ealso discussthenon abelian branches

ofthetheoriesLp;q;q forrational�.

B .1 A ction ofthe non com m utative product

To obtain the �-deform ed gauge theory we pass from the sim ple product between

�eldsto thestarproduct:

X iX j ! X i� Xj � e
i��(Q i^Q j)

X iX j (B.1)

whereX i aretheelem entary �eldsin thequiver.

Thestarproductisnon com m utativebutassociativeand theproductofa string

ofn �eldstakestheform :

X a1 � :::� Xan � b
�1=2(

P

i< j
Q ai

^Q aj
)
X a1:::X an (B.2)

Letusconsidertwo genericm esonic�eldswith basepointin thesam egaugegroup:

M = X a1 :::X am ,N = X b1 :::X bn.In theundeform ed theory they com m uteM N =

N M ,butwhen weturn on the�-deform ation thisrelation becom es: ~M � ~N = ~N � ~M ,

forthequantities ~M = X a1 � :::� Xam ,
~N = X b1 � :::� Xbn.Thisgives,using (B.2):

~M ~N = b
(Q M ^Q N ) ~N ~M (B.3)

where we de�ned the chargesofthecom posite �elds:Q M = Q a1 + :::+ Q am ,Q N =

Q b1 + :::+ Q bn.Notethatrelation (B.3)also holdsin the sam e form form esonsM
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and N ,sincethey areproportionalto ~M and ~N respectively,thanksagain to (B.2).

W eobtain thereforeourgeneralm ethod (6.7)forcom puting com m utation relations

form esons.

W ewould likenow tounderstand thestructureofthesuperpotentialW forthe�-

deform ed theory,obtained byreplacingthestandard productwith thestarproductin

(B.1).Firstofall,sinceW isatraceofm esons,consistency requiresthestarproduct

to beinvariantundercyclicperm utationsofthe�elds.Thishappensbecauseofthe

conservation ofcharge 17:thetwo U(1)avourchargesofeach m eson arezero.

Then wewantto show thatW can alwaysbeputinto theform (2.8)by rescaling

�elds. Consider a generic toric gauge theory with G gauge groups,E elem entary

�eldsand V m onom ialsin thesuperpotential.W ehavetherelation [18]:

G � E + V = 0 (B.4)

ThesuperpotentialW oftheundeform ed theory isa sum ofV m onom ialsm I;nJ

m adewith tracesofproductsofelem entary �elds.Every elem entary �eld appearsin

thesuperpotentialW oncewith thepositivesign and oncewith thenegativesign,

W =

V=2X

I= 1

c
+
I m I �

V=2X

J= 1

c
�

J nJ (B.5)

After�-deform ation thecoe�cientsc+
I
,c�J arereplaced by genericcom plex num bers.

Rescaling theelem entary chiral�eldsproducesa rescaling also ofthecoe�cients

c
+
I ,c

�

J ,butnotethatthequantity

Q

I
c
+
IQ

J
c
�

J

= const (B.6)

rem ainsconstantsince every chiral�eld contributesjustoncein thenum eratorand

justoncein thedenom inator.In theundeform ed theory thisconstantis1,while in

the�-deform ed caseitsvaluecan bewritten asb��V=2 ,forsom erational�.

Considertheaction oftheE dim ensionalgroup ofchiral�eldsrescalingsoverthe

V dim ensionalspaceofcoe�cientsc +
I ,c

�

J in thesuperpotential.Thesubgroup that

leavesinvarianta genericpoint(with allcoe�cientsdi�erentfrom zero)isthegroup

ofglobalsym m etriesofthesuperpotential.Itisknown thattorictheorieshaveG + 1

globalsym m etries18,thereforethedim ension ofagenericorbitisE � (G + 1)= V � 1,

thanksto (B.4). Thisshows that(B.6)isthe only algebraic constraintunder�eld

rescalings,and henceitisalwayspossibleto putthesuperpotentialin theform :

17This isthe analog ofthe cyclic invariance ofthe factorexp

�

� i

2
�ij

P

0< �< �< n
ki� kj�

�

in the

n pointvertex interaction ofthe perturbative expansion ofspace-tim e non-com m utative quantum

�eld theories,due to the conservation ofm om enta ateach vertex.
18Thesearethe2 avournon anom aloussym m etriesplusG � 1 baryonicsym m etries(anom alous

and non anom alous).
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W =
X

I

m I � b
�
X

J

nJ (B.7)

Letusexplain in m oredetaila particularcase,SPP.
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Figure7:Dim ercon�guration and toricdiagram fortheSPP singularity.

Alltheinform ation ofatoricquivergaugetheoryisencoded in adim ergraph [18]

(see Figure 7). The idea is very sim ple: you draw a graph on T2 such that it

containsallthe inform ation ofthe gauge theory: every link isa �eld,every node a

superpotentialterm ,and every faceisagaugegroup.Thereexiste�cientalgorithm s

to com pute the distribution ofchargesai forthe variousU(1)globalsym m etriesof

the gauge theory [50]. The charges for every �elds in the SPP gauge theory are

given in Figure 7. Forthe two globalavoursym m etries we are interested in,the

trialchargesaresuch that
P

i
ai= 0 (conservation ofavourchargesatevery node).

W ecan thuswritethechargesofthem esonic�eldsin term softhetrialcharges:

x = X 11 ! a1 + a2 ,y = X 12X 21 ! a3 + a4 + a5

w = X 13X 32X 21 ! a2 + 2a3 + a4 ,z = X 12X 23X 31 ! a1 + a4 + 2a5

(B.8)

Using the values ofthe m esonic charges given in (6.13) one can now com pute the

charges ai for the elem entary �elds. These willbe a set ofrationalnum bers. W e

can now usethesechargesto passfrom thesim pleproductto thestarproduct(B.1)

in every term in the superpotential. Thisprocedure willgenerate a phase factorin

frontofevery term in the superpotential. The interesting quantity isthe invariant
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constantin (B.6): Q

I
c
+
IQ

J
c
�

J

= e
2i�� = b

�1 (B.9)

Theactualvalueofthisconstantim pliesthatwecan rescaletheelem entary �eldsin

such a way thatthesuperpotentialassum estheform :

W = X 21X 12X 23X 32 + X 13X 31X 11 � b
1=2(X 32X 23X 31X 13 + X 12X 21X 11) (B.10)

Using the F-term equationsfrom the �-deform ed superpotential(B.10)one can re-

producethecom m utation rulesam ongm esons(6.14)given in them ain textplusthe

�-deform ed version oftheCY singularity:wz= bxy2.

B .2 Lp;q;q

In this Section we give another exam ple ofthe m odulispace for rational�. Lp;q;q

with q � p are an in�nite class ofSasaki-Einstein spaces. For som e values ofp;q

these spacesare very wellknown. Indeed L1;1;1 = C(T1;1),and L1;2;2 = SPP. The

realcone overLp;q;q isa toricCalabi-Yau cone thatcan be globally described asan

equation in C 4:

C(Lp;q;q)! x
p
y
q = wz (B.11)

Allthealgebraicgeom etricinform ation regarding thesesingularitiescan beencoded

in atoricdiagram ,seeFigure8.Thevariety isa com pleteintersection in C 4.Indeed

q=p=1x

(1,0,0)

(0,q,1)

(1,p,1)

(1,0,1)(0,0,1)

(0,1,0) w

(−1,0,1)

y

(−q+p,−1,+q)

z

q=2,p=1

Figure 8: The toric diagram softhe C(Lp;q;q)singularity and theirtwo wellknown

specialcases:SPP,C(T1;1).

to each generatorofthedualconewecan assign a coordinatelikein Figure8.These

coordinates are in one to one correspondence with the m esonic �eld in the �eld

theory generating the chiralring,and the �rst two coordinates ofthe vectors are

theirchargesunderthetwo U(1)avoursym m etries.Thegeneratorsofthem esonic

algebra arex;y;w;z and thanksto theircom m utation relations

xy = yx ,xw = bwx ,xz = b
�1
zx

yw = b
�1
wy ,yz= bzy ,wz= b

q�p
zw (B.12)
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wecan writethegenericm onom ialelem entofthealgebra in theordered form :

�k1;k2;k3;k4 = x
k1y

k2w
k3z

k4 (B.13)

Thecenterofthealgebra isgiven by thesubsetoftheoperators(B.13)thatsatisfy

theequations:

�k1;k2;k3;k4 x = bk4�k 3 x �k1;k2;k3;k4 = x �k1;k2;k3;k4

�k1;k2;k3;k4 y = bk3�k 4 y �k1;k2;k3;k4 = y �k1;k2;k3;k4

�k1;k2;k3;k4 w = bk1�k 2�(q�p)k 4 w �k1;k2;k3;k4 = w �k1;k2;k3;k4

�k1;k2;k3;k4 z = bk2�k 1+ (q�p)k 3 z �k1;k2;k3;k4 = z �k1;k2;k3;k4

(B.14)

Becausebn = 1theelem entsofthecenterofthealgebraarethesubsetoftheoperators

oftheform (B.13)such thatk3 = k4,k1 = k2+ (q� p)k4,k1 = k2+ (q� p)k3 m od n.

Thegeneratorsofthisalgebraare�n;0;0;0;�0;n;0;0;�0;0;n;0;�0;0;0;n;�1;1;0;0;�q�p;0;1;1 ;we

callthem respectively A;B ;C;D ;E ;G.Using theF-term relation xpyq = wz wesee

thatG dependson the othergeneratorsthrough: G = E q. M oreoverthe relations

am ong generatorsare:

A
p
B
q = CD ; E

n = AB : (B.15)

In the specialcase ofq = p = 1 these equationsreduce to those forthe quotientof

theconifold.Itiseasy toseethatequations(B.15)de�netheZn � Zn orbifold ofthe

C(Lp;q;q). Take the coordinatesx;y;w;z realizing C(Lp;q;q)asa quadric em bedded

in C 4.Theaction ofZn � Zn is:

x;y;w;z! x�;y�
�1
;w�;z�

�q+ p
�
�1 (B.16)

where�n = �n = 1.Theindependentinvariantsofthisaction areA;B ;C;D ;E ,and

they are subject to the constraints (B.15). Hence the equations (B.15) de�ne the

variety C(Lp;q;q)=Zn � Zn.
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