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Abstract

Semantic place labeling has been actively studied in
the past few years due to its importance in understand-
ing human mobility and lifestyle patterns. In the last
decade, the rapid growth of geotagged multimedia data
from online social networks provides a valuable oppor-
tunity to predict people’s POI locations from tempo-
ral, spatial and visual cues. Among the massive amount
of social media data, one important type of data is the
geotagged web images from image-sharing websites. In
this paper, we develop a reliable photo classifier based
on the Convolutional Neutral Networks to classify the
photo-taking scene of real-life photos. We then present a
novel approach to home location and vacation locations
prediction by fusing together the visual content of pho-
tos and the spatiotemporal features of people’s mobility
patterns. Using a well-trained classifier, we showed that
the robust fusion of visual and spatiotemporal features
achieves significant accuracy improvement over each of
the features alone for both home and vacation detection.

Introduction
Personalized semantic POI labeling is drawing much atten-
tion recently because of the huge impact it could bring to
the study of human lifestyle, urban planning, and so on. In
such a problem, we need to predict a label for the POIs of
one’s trace. Different from the typical location labeling or
classification problem, personalized semantic POI labeling
considers the various meanings of a single place to different
people. For example, person A takes a vacation at the beach
and person B works at the same beach. In this scenario, to A
the semantic label of the beach should be “vacation” while
to B the label should be “work”. In this paper we propose a
machine learning method to semantically label two impor-
tant POIs in one’s daily life – home and vacation.

Precise home location is increasingly important in vari-
ous researching fields. In urban planning, knowing location-
based behavior can help build more optimal design of ur-
ban environment, including the transportation networks and
pollution management. Research areas such as disease prop-
agation and outbreak modeling all require the knowledge
on where people live. In addition, home plays the role of
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Figure 1: Visualization of a Flickr user’s activity trace in
Boston. The four pins represent the top 4 most frequently-
visited locations, with the home colored as blue and non-
home locations colored as pink. Each pin is shown with a
photo taken at that location.

the origin of daily life for most people; it provides a refer-
ence point to other semantically meaningful places. In other
words, home information helps the prediction of other POIs.
For instance, given the home location of a person then the
places which are quite far away from it are unlikely to be
his/her work place.

Because of the importance of home location to people’s
mobility patterns, in this paper we first work on predicting
the location of people’s homes. Based on our precise and
accurate home location inference we further predict another
important POI in people’s activity trace – vacation locations.

Existing methods that can precisely detect home loca-
tion are all based on surveys, GPS data or cellular tele-
phone records (Krumm and Rouhana 2013; Hoh et al. 2006;
Cho, Myers, and Leskovec 2011). However, the process
of obtaining such continuous data are often resource de-
manding and not scalable. Also, due to the limitation of
the dataset, GPS data and surveys are often not adaptable
for follow-up studies. For example, although the American
Time Use Survey (ATUS) provides comprehensive records
of ATUS respondents’ activity traces and demographic in-
formation, such information is not adaptable for follow-up
investigations since we cannot correlate the user informa-
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tion with any other data sources. In contrast, the availability
of vast amounts of geotagged data available on social net-
works enables a low-cost and more flexible way to detect
home location. Previously, researchers have built models to
infer the home location of a person based on his or her online
activities such as tweeting (Cheng, Caverlee, and Lee 2010)
or check-ins (Pontes et al. 2012b). One of the main existing
issues is that these methods either suffer from coarse gran-
ularity, at only city (Pontes et al. 2012a) or state level, or
result in a low accuracy, at around 50% (Cheng, Caverlee,
and Lee 2010).

A picture is worth a thousand words. In this paper, we
address the home prediction problem by analyzing photos
mined from Flickr. As a popular online photo-hosting com-
munity, Flickr has more than 3.5 million new images up-
loaded per day (Jeffries 2013). We apply machine learning
techniques to geotagged Flickr images and automatically
predict a Flickr user’s home location within a 100-meter
by 100-meter square on the basis of his or her posted im-
ages. Based on the home location, we further extract the
features of locations for vacation prediction, including the
distance from a location to one’s predicted home location.
Using these features, we train another model to automati-
cally label vacation places for each user.

Our results has shown that the visual content of images
can provide valuable clues complementary to the metadata
captured with photos and can be used to improve personal-
ized semantic POI labelling.

The contributions made in this study are threefold. First,
we develop a reliable classifier by the Convolutional Neutral
Network (Krizhevsky, Sutskever, and Hinton 2012), which
can recognize the photo-taking scene of real-life photos.
Second, we fuse the visual content of user photos with the
spatiotemporal features of a user’s activity to construct a
robust multi-source home predictor, where each of the two
modalities contributes to the improvement in home location.
The precision to which we can locate a person allows var-
ious location-related research in finer granularity and with
higher accuracy. Third, based on the predicted home loca-
tion, we further propose a machine learning framework to
identify the vacation locations.

Related Work
Locations such as home, working places and restaurants are
important in understanding human mobility patterns and au-
tomatically predicting future activities.

Using the GPS data collected from users’ vehicle, Krumm
et. al (2013) extracted several temporal and spatial fea-
tures and developed a rule-based classifier to predict one’s
home location. In their approach, it turns out the feature
‘last location of a day’ is the most significant feature in
home detection. Also using GPS data, Liao et. al (2005a;
2005b) proposed a machine learning approach based on
MCMC to identify a user’s significant POIs as well as dif-
ferent activities taking place at the same location.

Besides taking advantage of GPS data to semantically la-
bel the locations of one’s trace, Krumm et al. (2013) devel-
oped a machine learning algorithm to classify locations into

different categories based on ATUS, a diary survey contain-
ing detailed record on the amount of time and the location
Americans spent doing various activities. They used demo-
graphic and temporal features of people’s activities to infer
a place’s label and their results showed that home location
can be predicted with a high accuracy of 92%.

As people spend more time online, social networks enable
an alternative approach to semantically label geographic lo-
cations. Cheng et al. (2010) used a Twitter user’s tweet con-
tent to predict his or her home city based on the idea that
the frequency and dispersion of a specific word in tweets
should be different across cities due to regional differences.
By purely analyzing the content of a user’s tweet, Cheng
managed to place a user within 100 miles of his or her ac-
tual location with a 51% accuracy.

Our work is also closely related to the study of seman-
tic annotation of web images (Luo et al. 2008; Yuan, Luo,
and Wu 2010; Hays and Efros 2008; Cao et al. 2009;
Zheng et al. 2014). As photographic devices with GPS ca-
pability become more prevalent in the market, the massive
amount of web images serve as an alternative data type to
predict home location. In the last few years, many compu-
tational approaches have been used to recognize objects of
certain types (faces, water, cars, buildings) and the scene
(park, residential area) in a photo. James et al. (2008) es-
timated the geographic location of an image based solely
on its image content. In (Joshi and Luo 2008), Joshi et al.
described a framework to model geographical information.
Based on a series of geotagged photos, Yuan et al. (2010) de-
tected the associated event by fusing visual content and the
associated spatiotemporal traces. Their result substantiated
that the visual content and GPS traces are complementary to
each other, and a proper fusion can improve the overall per-
formance of event recognition. Similarly, a photo taken by a
personal camera and a satellite image are combined to help
improve picture-taking environment recognition in (Luo et
al. 2008).

Data
In this section, we describe how we obtained the dataset used
to train and evaluate the home and vacation predictors.

Since most Flickr user profiles do not have detailed home
address information, we could not build the ground truth
on user profiles. Instead, we used the geotags of a user’s
taken photos to precisely locate his or her actual home. We
selected a set of tags, including “home”, “kitchen”, “liv-
ing room”, “family dinner” and their variants, and refer to
them as home-related tags. Note that we have manually
checked the photos with these home-related tags to make
sure that most of the returned photos are highly related to
home. Using the Flickr API, we collected all geotagged pho-
tos with home-related tags in the following populated areas:
Chicago, Boston, Austin, Columbus, Washington DC, Den-
ver, Houston, Los Angeles, Salt Lake City, the greater NYC
Area, the Bay Area, Phoenix, San Antonio, and Seattle. Each
photo is associated with a geographic tag accurate to the
street-level, which is represented by a pair of longitude and
latitude coordinates. Next, we manually picked out the pho-
tos that are taken at home and used the associated geotags as

554



the actual home locations. Altogether, we have collected the
home locations of 1000 users.

For each user i, we extracted from the photo metadata
a sorted time sequence ti = {ti1, ti2, ...}, where tij repre-
sents the time point of user i’s jth photo taken over a signifi-
cant period. In consideration of home relocation, we queried
Flickr for all public photos posted by these 1000 users in a
one-year period, which is obtained by adding and subtract-
ing half-a-year from the median time point in sequence ti.
Together these users have taken 423047 geotagged photos
in a year.

Home Prediction
Since our first goal is to predict users’ home location, we
only keep the photos that are taken within the bounding
boxes of the fourteen areas we mentioned earlier as our train-
ing dataset. After this procedure, we are left with 183291
geotagged photos taken by 1000 users. We divided the map
into 100-meter by 100-meter squares and represent each ge-
ographic location as the central point of the square it falls
into. Therefore, if we can correctly predict the square, the
distance error will be no more than 70.7 meters.

For each user, a photo taken with a geotag is considered
as one check-in at that geographic location. In the Flickr
dataset, there exists a certain amount of locations which are
visited by more than one user, but a location can only be the
home of one user. Therefore, in order to differentiate a loca-
tion by users, we use a pair (i, j) as a sample ID to represent
a location j being checked-in by user i. Altogether, we have
recorded 31053 unique (user, location) sample IDs by 1000
users.
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Figure 2: Comparison of the number of uploads at
home/non-home locations on a monthly basis. Y-axis repre-
sents the percentage of the number of “home photo”/“non-
home photo” uploaded during a specific month. Note the
strength of home photos in December.

Temporal Features
According to previous work (Pontes et al. 2012b), home is
supposed to be one of the most frequently visited places
in a user’s mobile trace. Therefore, we started by using
the most frequently visited location as a preliminary pre-
diction of a Flickr user’s home location. We consider this
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Figure 3: Comparison of the number of active months at
home/non-home locations during a year. Y-axis represents
the percentage of home/non-home locations that are active
for a specific number of months. The plot on the top right
corner is a magnification of the part in the dotted box. Our
data shows that people rarely stay at non-home locations for
more than one month.

model as the baseline and refer to it as the most check-in
method. In addition to this baseline, we then mine a large
collection of temporal features for each unique (user, loca-
tion) sample. As validated in previous work (Ye et al. 2011;
Gao et al. 2013), human mobile behavior displays strong
temporal cyclic patterns and this temporal regularity can
help improve the performance of location prediction. Fi-
nally, we explore the feasibility to automatically assign a
semantic label to a photo. We test the effectiveness of photo
clue by adding visual content feature to our collection of
temporal features and compare the performance of home
prediction.

Similar to previous work (Ye et al. 2011; Gao et al. 2013),
the Flickr data set shows strong evidence of yearly patterns
(months across a year) of a Flickr user’s photo-taking activ-
ity. Figure 2 demonstrates a significant difference between
the number of photos taken at home and non-home locations
on a monthly basis. December stands out from all the months
in the sense that the number of photos taken at home in De-
cember is significantly higher than that in other months. Nu-
merically, among all photos taken at home, the number of
photos taken in December accounts for nearly 20% of the
total photos. Note that this phenomena is specific for home
since the number of photos taken at non-home locations is
almost evenly distributed over the 12 months. This distribu-
tion is probably because people spend more time at home
with family during Christmas and take plenty of photos dur-
ing that time.

Another important observation is that the photo-taking ac-
tivity at home is more prevalent across time since people can
take photo at home at any time during a day, any day during
a week and any month during a year. We define a (user i,
location j) pair as active during a time period [t1, t2] if user i
takes at least one photo during [t1, t2] at location j. Based on
this definition, we use the number of active months, active
hours and active days (out of a week) to quantify this tem-
poral prevalence feature. Taking month as an example, Fig-
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ure 3 shows that the number of active months at home are
universally larger than those at non-home locations. More
than 50% of the home locations are active for at least three
months while nearly 90% of the non-home locations are ac-
tive for only 1 month. This distribution reveals that although
people may take a massive amount of photos during certain
events such as commencement, wedding and vacation, such
events would only happen once or twice during a year.

Clearly, there exists a high correlation between time and
the number of photos in the Flickr dataset. Therefore, we
extract a large collection of temporal features to represent
each unique (user, location) sample. Since the distribution
of user uploads are highly skewed (75% of the photos are
uploaded by 20% of the users), we use the upload rate in-
stead of the absolute number of uploads. For example, the
January upload rate for a (user i, location j) pair is given by:

# of uploads in January by user i at location j

total # of uploads by user i
(1)

Altogether, for each (user, location) sample, we extracted
16 temporal features, including the check-in rate, monthly
upload rate, # of active hours, # of active months and # of
active days.

Visual Feature
Different from photo tags and descriptions, which are usu-
ally not available or informative enough, visual content is
always available for each photo. As an inherent feature, vi-
sual content can provide us fundamental insight on where
a photo was taken. For example, a photo of family party
is highly probable to be taken at home. Therefore, to take
advantage of the rich information embedded in photos, we
trained a classifier to distinguish “home-like” photos from
the others.

Figure 4: Examples of real-life and sun database photos clas-
sified as “kitchen”, “living room” and “bedroom” by using
HOG 2×2 features.

Scenes recognition approaches can be employed to ex-
tract the semantic content of pictures. In (Xiao et al. 2010),
HOG2×2 features were used to classify photos into 397 cat-
egories (e.g. living room, kitchen) and achieved a higher ac-
curacy than other single feature based methods. To distin-
guish photos taken at home from the others, we extracted a
300-dimensional HOG feature vector from each photo col-
lected from Flickr. A well-trained SVM model was em-
ployed to classify the photos as home or non-home. Al-
though the HOG feature works well on “clean photos” in

which elements are obvious and well-constructed, the vari-
ability of real-life photos make it extremely challenging for
classification. Real-life photos taken at home have various
kinds of noise, with people and pets appearing in the photo
as the most common one. In Figure 4, we show the classi-
fication result of HOG2×2+SVM. The classifier produces
desirable results on the Sun database, but performed poorly
when we applied it on real-life photos.

Inspired by some recent successes (Ross et al. 2014), we
chose instead to employ a deep network to reliably assign se-
mantic labels to a photo. For our purpose, each photo is clas-
sified as either taken at home (“home photo”) or not taken at
home (“non-home photo”). For each (user, location) sample,
we define the “home photo” rate as:

# of home photos uploaded at location j by user i
total # of home photos uploaded by user i

(2)

and use it as the visual content feature. As described in
(Krizhevsky, Sutskever, and Hinton 2012), we extract a
4096-dimensional feature vector for each photo by using
the Caffe (Jia 2013) implementation of the Convolutional
Neutral Networks. Since our goal is to classify real-life pho-
tos, we chose to also use real-life photos as the training set
to obtain optimal effect. We fine-tuned the pre-trained Im-
ageNet model with an independent photo dataset consisting
of 6000 home photos and 24000 non-home photos. All train-
ing photos are obtained by first querying Flickr for images
with home-related tags and then manually checking to only
keep photos that are taken in real life. Specifically, we fil-
tered out the photos that look too standard, such as photos
of model houses and hotels. We also purposely kept some
photos taken at home with people or pets in the scene.

With the ground truth and the features mentioned above,
we trained an Bayesian Network meta-classifier using the
Weka toolkit (Witten and Frank 2005) over the set of (user,
location) samples. Three different combinations of features:
1)temporal feature alone, 2)visual content feature alone, and
3)temporal+visual content feature, are examined and com-
pared to the baseline method (most check-in). In our exper-
iment, two-fold cross-validation is used to validate the ro-
bustness of our methods.

Experiments
In this section, we first present the result of home photo clas-
sification by CNN. The deep network is tested on all 47793
images scrawled from Flickr. Since it is impossible to label
the whole dataset, we manually check the photo classifica-
tion results to verify that the overall performance is reliable.
We then evaluate the effectiveness of the proposed fusion of
temporal and visual content features in predicting home lo-
cation on the Flickr data. Prediction accuracy is used as the
performance measure and is defined as:

# of correctly predicted users
# of total users

(3)

The second metric we use is the distance error. It represents
the granularity level of home prediction and is defined as
the distance from the geographic coordinate of the predicted
home to that of the actual home. We compare the prediction
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Figure 5: Examples of photos classified by the trained deep networks as (a) “home photo” and (b) “non-home photo”. Photos
marked in red boxes are misclassified.
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Figure 6: The performance of the baseline and the fusion
home-predictor. The plot shows the prediction accuracy with
increasing distance error tolerance (70 meters to 1000 me-
ters).

accuracy of all four methods mentioned above with different
distance error tolerance.

A few representative examples of photos are presented in
Figure 5 to illustrate the performance of photo classification
by CNN. Each photo is associated with an estimated score,
which can be considered as the probability of being a “home
photo”. The “home photo” examples show that the photo
classifier can accurately identify certain home-related ob-
jects such as tables, shelves and sofas (photo #2, #5 and #7).
However, some confusing scenes might be falsely classified
as at home due to its similar structure or layout to a home.
For example, the court (photo #4) and a discarded TV on the
street (photo #6) are misclassified as at home. Overall, the
main confusion comes from home-related objects or home-
like structures, which are difficult to differentiate by a com-
putational or even manual approach. The “non-home photo”
examples reveal that the photo classifier can accurately iden-
tify outdoor photos even for portrait-oriented photos. Com-
paring photo #3 with photo #11, we see that the classifier
can correctly distinguish between home and non-home as
long as the background occupies roughly half of the photo.

In Figure 6, we show the prediction accuracy of four
methods with increasing distance error tolerance. Clearly,
our fusion predictor outperforms any other baseline methods
with evident increase in prediction accuracy at every reso-
lution level, from 70 meters to 1 km. Numerically, for the
70-meter distance tolerance, the relative improvement for
the fusion predictor is 6% compared to photo feature alone,
12% compared to temporal feature alone and 16% compared
to the baseline. With distance error tolerance equal to 1 km,
the fusion predictor achieves a high accuracy at 79%. To put
this in perspective, the New York City area covers a land area
of 790 km2 and the San Francisco area covers 121 km2.

To further illustrate the reliable prediction performance of
the fusion home predictor, Figure 7 shows two representa-
tive user examples, where example (a) is an incorrect home
prediction of a user from the greater New York Area and ex-
ample (b) is a correct home prediction of a user from the Bay
Area. In example (a), we see that both photo #1 and #2 are
taken indoors. However, human eyes can tell from the light
screen and the empty room that photo #2 is much more likely
to be taken at a photo studio rather than at home, while the
computational approach cannot identify such subtlety. Also,
we noticed that user (a) took a fair amount of various portrait
photos at location #2, which further implies that location #2
is his or her working place. Due to these reasons, the fusion
home predictor understandably assigned a high probability
of being home to location #2.

The positive performance of fusion predictor indicates
that the visual and the temporal feature provides comple-
mentary information to each other. For example, restaurant
is a type of location where temporal feature can help the
visual content. A photo of someone eating at restaurant is
likely to be classified as eating at home, but the time and
the frequency people dining out is different from that people
stay at home. Thus, the unique temporal features can help
the classifier distinguish between a restaurant and someone’s
home. On the other hand, offices is a typical example where
visual feature can help the temporal feature. Since people
spend a lot of time at work, sometimes even during the night,
it is possible for a classifier to mistake an office with home
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Figure 7: Two representative user examples showing the per-
formance of our home predictor. For each user, the three pins
represent the top 3 most frequently-visited locations, with
home colored as blue and non-home locations colored as
pink. The location marked in red box is predicted as home.

by using temporal feature alone. However, based on the vi-
sual content, the photo classifier can filter out offices to a
certain extent.

In addition, the home classifier with photo feature alone
outperforms the classifier with temporal feature for all dis-
tance error tolerances. It implies that the visual feature offers
more reliable and definite clue to home location prediction.

Vacation Location Inference
The accurate home location prediction of Flickr user allows
us to better understand and predict other points of interest. In
this paper, we further propose a robust approach to predict a
Flickr user’s vacation locations based on the predicted home
location and photo content.

Similar to home, a vacation location should also be user-
specific since the same place might be a vacation spot to
some people but not to others. From the spatial aspect, vaca-
tion locations should be away from home, say, at least 200
miles. For example, if a person living in Los Angeles went
to Santa Monica beach, it should not be considered as a va-
cation since it is only about half an hour driving from the
center of Los Angeles. However, if a person from New York
checked in at Santa Monica beach, it is highly possible that
he/she was going on a vacation. Therefore, we again used a
pair (user i, location j) to differentiate a location checked in
by different users.

Since a vacation spot can cover a large area from several
square kilometers as a beach to tens of square kilometers in
a national park, we retained two decimal places of each lo-
cation’s latitude and longitude values and clustered all pho-
tos by their geographic location. The error distance between
the original geo-coordinate and the rounded geo-coordinate
varies with the latitude and is bounded by 1.67 km.

To predict vacation locations, we kept the users who took
at least 100 photos outside their home city and are left
with 404 such users. These users have taken 423047 photos
worldwide and resulted in about 31000 unique (user, loca-
tion) samples. Ground truth is obtained by manually check-
ing the photo collection at each location and thus we also
filtered out those (user, location) samples with less than 20

photos since we are unable to determine the category of a
location with less than 20 photos. This process resulted in
4142 unique (user, location) samples and manual checking
gives us 900 vacation locations and 3242 non-vacation loca-
tions.

Spatiotemporal Feature
Similar to home location, vacation locations should share
some temporal characteristics that is important to vacation
inference.

The Flickr dataset shows an imbalanced distribution of
vacation trips across the year: August, July, May and April
are the top four most popular months for vacation while De-
cember and February are the off-seasons for vacation. Note
that only 5 percent of the vacations are in December and
this phenomena is consistent with the previous discover that
people tend to stay at home during December.

Another important temporal feature is that people should
go to a place for vacation only once or twice during a year
and are expected to take a large volume of photos within a
few days. So we again used the number of active months as a
feature and discovered that 73% of the vacation locations are
active for less than or equal to two months. Since we expect
a large volume of photos to be taken during a vacation trip,
we define two metrics to measure the efficiency of the photo-
taking activity at each location. For each (user i,location j)
sample, we define its raw efficiency as:

# of photos taken at at (user i, location j)
# of active days at (user i, location j)

(4)

Since users show different order of magnitude when taking
photos, we define user i’s average efficiency as:

# of photos taken by user i
# of active days of user i across the year

(5)

and divided the raw efficiency by its corresponding user’s
average efficiency to get a normalized measure of the photo-
taking efficiency for each (user i, location j) sample. Alto-
gether we have extracted 15 temporal features including the
check-in rate, # of active months, monthly rate and normal-
ized efficiency.

Besides exploiting temporal features, we also want to fil-
ter out locations that are very close to home by using the spa-
tial feature. For each (user i, location j) sample, we applied
a sigmoid function with the origin at 1000 km to normal-
ize the distance between location j and user i’s predicted
home location obtained from the previous experiment into
the interval [0,1]. This normalized distance was fused with
the set of temporal features mentioned above to make up
a 16-dimensional spatiotemporal feature vector as our spa-
tiotemporal baseline. Using 10-fold cross-validation and a
Bayesian Network classifier over the 4142 samples, we find
that the classifier has 0.468 precision and 0.468 recall, and
0.781 AUC (Area under curve) as depicted in Figure 9, indi-
cating that the overall quality of the spatiotemporal baseline
is decent.

One shortcoming of the spatiotemporal baseline is that it
cannot identify a vacation location if the user did not take
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a sufficient amount of photos during that vacation trip. On
the other hand, misclassification of non-vacation events as
vacations may occur for situations such as: international stu-
dents going back to home country during school break, com-
mencement, birthday and other occasions where a burst of
photos will be taken, as well as business trips and academic
visits. Therefore, to determine vacation locations more accu-
rately, we extract the visual content from Flickr users’ photo
collections as a complementary clue to vacation inference.

Visual Feature
The photo collection at a vacation location should rep-
resent some natural or city scenes such as forest scenes,
beach scenes and building scenes. In order to recognize the
photo-taking scenes, we manually selected 35 categories of
vacation-likely photos from the SUN Database (Xiao et al.
2010) as the training dataset, with some examples shown
in Figure 8. We trained another CNN on this independent
image dataset and generated a 35-dimensional score vector
for each photo representing the probability of this photo be-
longing to the corresponding vacation category. With the vi-
sual feature as the second baseline, the visual feature predic-
tor achieved 0.787 and the precision-recall curve is mostly
above the one for the spatiotemporal baseline, as shown in
Figure 9 .

Figure 8: Sample vacation photos representing ocean, hills,
basilica, bridge, camping and harbor selected from SUN
Database.

Visual feature performs well when people took a signifi-
cant amount of scenic photos during the vacation. However,
false negatives may occur for users who only take photo of
indoor scenes (e.g. food, shows, and museums) during the
vacation, and false positives may occur for parks or lakes
near home. Therefore, to further improve the robustness of
our vacation-predictor, we fused the spatiotemporal features
with the visual feature to obtain a fused vacation predictor.

By fusing spatiotemporal and visual features, we obtain
the red precision-recall curve shown in Figure 9 and AUC
is now up to 0.854. The highlighted round points, which are
the intersections between the precision-recall curve and the
45 degree line from the origin, show precision and recall
both equal to 0.468, 0.507 and 0.594 for the spatiotemporal
baseline, visual baseline and the fused vacation-predictor,
respectively. The highlighted triangles are the points where
the F1-measures are maximized, at 0.514, 0.524 and 0.609
for spatiotemporal, visual and the fused vacation predictor,
respectively. These results indicate that the fused predictor
outperforms the two baselines with respect to different met-
rics.

To further illustrate the robustness of the fused vacation
predictor, we show two user examples in Figure 10. The
user of the left example lives in Los Angeles and checked
in at Las Vegas (location #1) and the Levis&Clark National
Forest (location #2) in Montana state. Location #2 is cor-
rectly classified as vacation but location #1 is misclassified
as non-vacation. Most photos at location #1 were taken at
the famous St. Mark’s Square in Las Vegas and it is clearly
a vacation trip. However, since the photo are taken indoors
and the user only took a small amount of photos there, the
vacation predictor misclassified it as non-vacation. The ex-
ample on the right shows a user living in New York and both
two locations he/she visited are correctly classified. Loca-
tion #2 is the Central Park in New York and it is classified as
non-vacation since it is near the user’ predicted home. Loca-
tion #1 represents some mountain views and is classified as
vacation.

recall

pr
ec
is
io
n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

visual
spatiotemporal
visual+spatiotemporal

Figure 9: The performance of the baselines and the fused
vacation predictor.

Figure 10: Two user examples showing the performance of
the fused vacation predictor. For each user, the blue pin rep-
resents his/her predicted home location and the pink pins
represent two of the user’s visited locations shown with
a representative photo taken at that location. The location
marked in red is misclassified.
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Conclusion and Future Work
In this paper, we present a novel multi-source approach to
predicting Flickr users’ POI locations with high precision
and accuracy. The home predictor achieves an accuracy of
71% with a 70.7 meter error distance and the vacation pre-
dictor shows 0.594 precision and 0.594 recall. To accom-
plish this, we extract various features from a user’s geo-
tagged photos posted online. We employ a deep learning en-
gine to semantically label photos to explore the visual con-
tent of real-life photos. By manually checking the results,
we are convinced that our photo classifier based on CNN
performs at a satisfactory precision in distinguishing real-
life photos ( Figure 5), compared with an SVM based scene
recognition classifier ( Figure 4). In addition to the visual
content, we also take advantage of the temporal and spatial
features of one’s mobile trace as indicated by the photo geo-
tags, such as the visiting rate of a location and the temporal
regularity of a user’s movement. Facilitated by the synergy
of these features, our predictors for both home and vacation
locations achieve remarkable overall performance.

In the future, we will expand the POI location category
to include other significant locations such as work places.
Moreover, based on the predicted home and vacation expe-
rience of Flickr users, we can build a vacation recommen-
dation system that optimizes both location and time of the
year. We also plan to improve our home detection method
by adding richer spatio-temporal features such as the dis-
tance between the consecutive locations visited by people.
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