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2 INRIA, École Normale Supérieure, Paris, France
{anael.beaugnon,pierre.chifflier}@ssi.gouv.fr

francis.bach@ens.fr

Abstract

Labelling a dataset for supervised learning is particularly ex-
pensive in computer security as expert knowledge is required
for annotation. Some research works rely on active learning to
reduce the labelling cost, but they often assimilate annotators
to mere oracles providing ground-truth labels. Most of them
completely overlook the user experience while active learning
is an interactive procedure. In this paper, we introduce an end-
to-end active learning system, ILAB, tailored to the needs of
computer security experts. We have designed the active learn-
ing strategy and the user interface jointly to effectively reduce
the annotation effort. Our user experiments show that ILAB
is an efficient active learning system that computer security
experts can deploy in real-world annotation projects.

Introduction

Supervised detection models must be trained on representa-
tive annotated datasets which are particularly expensive to
build in computer security. Expert knowledge is required
for annotation and data are often confidential. As a result,
crowd-sourcing cannot be applied as in computer vision or
natural language processing to acquire annotated datasets at
low cost. Some annotated datasets related to computer secu-
rity are public but they quickly become outdated and they of-
ten do not account for the idiosyncrasies of each deployment
context. Computer security experts can build a representa-
tive training dataset in-situ: they annotate some instances
picked from a pool of unlabelled data originating from the
deployment environment. Experts are essential for annotat-
ing but they are an expensive resource. The labelling process
must thus use expert time efficiently.

Active learning strategies (Settles 2010) have been in-
troduced in the machine learning community to reduce the
number of manual annotations. However, most research
works on active learning overlook the user experience: they
assume that annotators are mere oracles providing ground-
truth labels (Settles 2011; Wagstaff 2012). Active learning
is an interactive procedure where a user interface is needed
to gather the annotations and to provide feedback showing
the usefulness of the annotations. Besides, the user inter-
face must be suitable to computer security experts who are
usually not machine learning experts. Finally, the annotators
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should not waste their time waiting while the next annotation
queries are computed.

We introduce the concept of active learning system: an ac-
tive learning strategy integrated in a user interface. It is cru-
cial to design both components jointly to effectively reduce
experts annotation effort and to foster the adoption of ac-
tive learning in annotation projects (Mac Aodha et al. 2014;
Baldridge and Palmer 2009; Tomanek and Olsson 2009).

We introduce ILAB, an end-to-end active learning sys-
tem, to bridge the gap between theoretical active learning
and real-world annotation projects. ILAB is designed to help
computer security experts to build annotated datasets with a
reduced effort. We make the following contributions:

• We present ILAB, an end-to-end active learning system
composed of an active learning strategy integrated in a
user interface. The active learning strategy is designed to
reduce experts waiting-periods: they can annotate some
instances while the algorithm is computing new annota-
tion queries. The graphical user interface is tailored to the
needs of computer security experts. It has been designed
for annotators who may have little knowledge about ma-
chine learning, and it can manipulate any data type (PDF
or doc files, Windows audit logs, or NetFlow data for ex-
ample).

• We ask intended end-users, computer security experts, to
use ILAB on a large unlabelled NetFlow dataset coming
from a production environment. These user experiments
validate our design choices and highlight potential im-
provements.

• We provide an open source implementa-
tion of the whole active learning system,
github.com/ANSSI-FR/SecuML, to foster com-
parison in future research works, and to allow computer
security experts to annotate their own datasets.

The rest of the paper is organized as follows. First,
we present some related works about active learning sys-
tems. Second, we formalize the problem and introduce the
notations. Third, we describe ILAB, an end-to-end active
learning system designed for computer security annotation
projects. Finally, we present user experiments carried out on
a real-world annotation project.
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Related Work

Active Learning Systems

(Amershi et al. 2014) and (Settles 2010) describe generic
guidelines that any annotation system should follow.

First of all, annotation systems must offer an ergonomic
user interface to display the queries and to gather the cor-
responding answers. Special care shall be taken to the er-
gonomics of the interface as it may greatly affect the overall
annotation time. Besides, annotation systems are intended
for application domain experts who are likely to have no or
little knowledge about machine learning. Consequently, the
user interface must be accessible to non-machine learning
experts.

Moreover, people will invest time to improve their model
only if they view the task as more beneficial than costly. An-
notation systems must provide feedback to users to show
them the benefit of their annotations, and that they are on
track to achieve their goal.

At each iteration, the integration of new annotations im-
proves not only the performance of the detection model but
also the relevance of the following queries. Frequent up-
dates are thus beneficial, but they must be performed effi-
ciently to minimize waiting-periods. An annotation system
with long waiting-periods would alter the human-model in-
teraction and is unlikely to be accepted by experts.

Some research works have introduced whole annotation
systems but they are especially designed for image (Kulesza
et al. 2014), video (Ayache and Quénot 2008) or text (Skepp-
stedt, Paradis, and Kerren 2017) annotations. Computer se-
curity detection problems are not based one these conven-
tional data types but on PDF, doc, or exe files, NetFlow,
pcap, or event logs for example. As a result, the annotation
system must be generic and easily adapted to operate with
these diverse data types.

Applications to Computer Security

(Amershi et al. 2011) introduces CueT, an interactive ma-
chine learning system to triage network alarms. This system
works in dynamic, continually evolving environments, but it
cannot be used with any data type.

ILAB active learning strategy has been presented
in (Beaugnon, Chifflier, and Bach 2017) and compared to
other methods designed for computer security (Almgren
and Jonsson 2004; Görnitz et al. 2013; Stokes et al. 2008).
It avoids the sampling bias issue (Schütze, Velipasaoglu,
and Pedersen 2006) affecting (Almgren and Jonsson 2004)
and (Görnitz et al. 2013) and reduces the waiting-periods
compared to (Stokes et al. 2008).

(Almgren and Jonsson 2004) and (Görnitz et al. 2013)
have not set up their strategy in a real-world annotation
project, and they have not mentioned any user interface.
(Stokes et al. 2008) have carried out user experiments with
computer security experts, but they provide no detail about
the user interface. Besides, the interactions between the ex-
pert and the model were poor due to a high execution time.

The expert was asked to annotate 1000 instances each day,
and new queries were computed every night. Computer se-
curity experts are unlikely to accept to perform so many an-
notations without getting any feedback about their useful-
ness.

In this paper, we focus on the whole annotation system
with an active learning strategy and a graphical user inter-
face. On the one hand, the active learning strategy is de-
signed to reduce the waiting-periods. On the other hand, the
user interface is convenient for non-machine learning ex-
perts and provides feedback to show the benefit of the an-
notations. We do not compare ILAB active learning sys-
tem to (Almgren and Jonsson 2004; Görnitz et al. 2013;
Stokes et al. 2008) since they have not designed or they pro-
vide too few details about the user interface.

Problem Statement

Context and Notations Let D = {xi ∈ R
m}1≤i≤N be

the dataset we want to label partially to learn a supervised
detection model M. It contains N instances described by
m real-valued features. For example, each instance xi could
represent a PDF file or the traffic of an IP address. Such unla-
belled data are usually easy to acquire from the environment
where the detection system is deployed (files, network traffic
captures, or logs for example).

Let L = {Malicious,Benign} be the set of labels
and Fy be the set containing the user-defined families of the
label y ∈ L. For example, malicious instances belonging
to the same family may exploit the same vulnerability, they
may be polymorphic variants of the same malware, or they
may be emails coming from the same spam campaign.

Our aim is to create a labelled dataset

DL ⊆ {(x, y, z) | x ∈ D, y ∈ L, z ∈ Fy}
maximizing the accuracy of the detection model M trained
on DL. DL associates a label y ∈ L and a family z ∈ Fy to
each instance x ∈ D. The labelled dataset DL is built with
an iterative pool-based active learning strategy. At each iter-
ation, a security expert is asked to annotate, with a label and
a family, b ∈ N instances selected from the pool of remain-
ing unlabelled instances denoted by DU . During the whole
process, the expert cannot annotate more instances than the
annotation budget B ∈ N.

We assume that there is no adversary attempting to mis-
lead the annotation process: a trusted computer security ex-
pert performs the annotation offline before the detection
model is deployed in production.

Objective Our goal is to conceive an end-to-end active
learning system intended for computer security experts who
deploy detection systems. It must be composed of a query
strategy and a corresponding user interface that fulfil the fol-
lowing constraints.

First, the annotation system must be able to deal with dif-
ferent types of data (PDF, doc files, pcap, NetFlow, etc.). Be-
sides, the design of the active learning strategy must reduce
the waiting-periods induced by the generation of the queries.
Finally, the user interface must be suitable for non-machine
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learning experts and it should provide feedback frequently
to show the benefit of the annotations.

ILAB

Active Learning Strategy

ILAB active learning strategy has been presented
in (Beaugnon, Chifflier, and Bach 2017). We describe
it briefly to allow the reader to understand the design of the
whole active learning system.

The active learning strategy relies on a two-level label hi-
erarchy: binary labels (Malicious vs. Benign) and fam-
ilies of instances sharing similar behaviors.

At each iteration, a binary detection model M is trained
from the binary labels of the currently annotated instances
(see Figure 1). By default a logistic regression model is
trained as the coefficients allow to easily interpret the predic-
tions and training is fast. If this model class is not complex
enough for a given annotation project, other model classes
can be plugged into ILAB but will result in longer waiting-
periods and a loss of understandability.

Once M has been trained, the b annotation queries are
computed. On the one hand, the buncertain instances the
closest to the decision boundary are queried as in uncer-
tainty sampling (Lewis and Gale 1994). One the other hand,
bfamilies (= b−buncertain) instances are queried by means
of rare category detection (Pelleg and Moore 2004).

Not all families are present in the initial labelled dataset
and rare category detection fosters the discovery of yet un-
known families to avoid sampling bias. Rare category de-
tection is applied on the instances that are more likely to
be Malicious and Benign (according to the detection
model M) separately. One might think that we could run
rare category detection only on the malicious instances since
it is the class of interest in intrusion detection. However, a
whole malicious family may be on the wrong side of the
decision boundary, and thus, running rare category detec-
tion on the predicted benign instances is necessary. Here-
after, we only detail the rare category detection run on the
Malicious predictions since the analysis of the Benign
ones is performed similarly.

Let DMalicious
U be the set of instances whose predicted

label by M is Malicious and DMalicious
L be the set of

malicious instances already annotated by the expert. First,
a multi-class logistic regression model is learned from the
families specified in DMalicious

L to predict the family of the
instances in DMalicious

U . Then, the families are modelled
with Gaussian Naive Bayes and two kinds of instances are
queried from each family: 1) low likelihood instances to fos-
ter the discovery of yet unknown families, and 2) high like-
lihood instances to make sure the model is not confidently
wrong.

More and more families are discovered and added to the
annotated dataset across iterations. When a new family is
discovered, it is taken into acount in rare category detection
at the next iteration: the additional family is included in the
training of the multi-class logistic regression and the Gaus-
sian Naive Bayes models.

Short Waiting-Periods The generation of the different
kinds of queries (uncertain, malicious and benign) are com-
pletely independent (see Figure 1). This reduces the expert
waiting-periods in two ways: 1) the computations can be par-
allelized, and, 2) the expert can start annotating while the
remaining queries are generated.

Active Learning System

Initialization The active learning process needs some ini-
tial labelled examples to learn the first supervised detection
model. If a public labelled dataset is available for the de-
tection problem considered, it can be used for the initial su-
pervision. Otherwise, the signatures widely deployed in de-
tection systems can provide Malicious examples at low
cost, and random sampling can provide Benign examples.
In both cases, the initial labelled dataset does not contain all
the malicious families we want to detect, and it is not rep-
resentative of the data in the deployment environment. We
use ILAB to enrich the initial labelled dataset with more di-
verse malicious behaviors and to make it representative of
the environment where the detection system is deployed.

Annotation Interface ILAB comes up with an annotation
interface intended for non-machine learning experts.

By default, each instance is described only by its features
which may be hard to interpret, especially when they are
in high dimension. A custom visualization for a given type
of instances can be plugged into ILAB to ease the annota-
tions considerably. The custom visualization should display
the most important elements to make a decision, and it may
point to external tools or information to provide some con-
text. The custom visualization makes the annotation inter-
face generic regarding the data types.

Experts can annotate the selected instance with the Anno-
tation panel. For each label, it displays the list of the fami-
lies already discovered. Experts can pick a family among a
list or add a new family. The interface suggests a family for
high likelihood queries and pre-selects it. It helps experts
since the model is confident about these predictions. On the
contrary, there is no suggestion for uncertain and low likeli-
hood queries. The model is indeed unsure about the family
of these instances and unreliable suggestions may mislead
experts (Baldridge and Palmer 2009). The next query is dis-
played automatically after each annotation validation.

Monitoring Interface The annotation system must pro-
vide feedback to users to show them the benefit of their an-
notations, and that they are on track to achieve their goal. In
simulated experiments (with an oracle answering the queries
with the ground truth labels), the performance of the detec-
tion model M on an independent validation dataset is usu-
ally reported. This approach is, however, not applicable in a
real-world setting: when you deploy an annotation system to
build a training dataset you do not have access to an anno-
tated validation dataset.

ILAB offers two kinds of feedback across iterations: 1)
the number of malicious and benign families discovered so
far, and, 2) the accuracy of the suggested labels/families. At
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Detection model M

Uncertainty sampling

Uncertain queries

Rare category detection on DMalicious
U

Malicious queries

Rare category detection on DBenign
U

Benign queries

Figure 1: Parallelization of the computations of the annotation queries

each iteration, ILAB suggests a family for the high likeli-
hood queries. At the next iteration, the accuracy of these
suggestions can be computed according to the last annota-
tions performed by the expert.

This feedback can provide insight into the impact of new
annotations. If the number of families discovered and the
accuracy of the suggestions are stable for several iterations,
it may be unnecessary to go on annotating.

The monitoring interface is modular to allow annotators to
go more in depth into the behaviour of the detection model if
they wish. For instance, they can display the most important
features with their corresponding weights, the training and
the cross validation performance (detection rate, false alarm
rate, F-score, ROC, AUC, confusion matrix) of the detection
model. This additional information is not displayed in the
default view since it is not crucial for computer security ex-
perts involved in annotation projects and it may even lead to
confusion.

Annotated Instances and Family Editor At the begin-
ning of the annotation procedure, computer security experts
have little knowledge about the dataset. Answering anno-
tation queries increases their knowledge about the dataset
and may change their decision-making process. Experts
must, however, provide consistent annotations throughout
the whole annotation process not to mislead the detection
model.

ILAB offers two graphical user interfaces to help ex-
perts to remain consistent with their previous annotations.
First, an interface displays the currently annotated instances
grouped according to their associated label or family. Sec-
ond, a family editor, similar to the one presented in (Kulesza
et al. 2014), enables annotators to perform three actions over
the families: Swap Malicious / Benign, Change
Name, and Merge Families. Annotators can clarify the
name of a family, regroup similar families or change the la-
bel corresponding to a given family.

Computer security experts work on diverse data types. A
strength of ILAB is to be generic, so that they can use a
unique annotation system. Once they get used to ILAB on a
given detection problem, they will be more efficient at using
it on other detection problems.

User Experiments

In this section, we collect feedback from intended end-users
to validate our design choices. We aim to show that ILAB
can be deployed in real-world annotation projects on large

Day 1 Day 2

Number of flows 1.2 · 108 1.2 · 108
Number of IP addresses 463913 507258
Number of features 134 134
Number of TRW alerts 72 82

Table 1: NetFlow Datasets

datasets with annotators who are not machine learning ex-
perts.

We ask computer security experts to acquire an annotated
dataset from NetFlow data coming from a production en-
vironment with ILAB. We take a large NetFlow dataset as
example but ILAB is a generic solution that can be applied
on any data type (Beaugnon, Chifflier, and Bach 2017).

Annotation Project

The annotation project consists in acquiring a labelled
dataset from unlabelled NetFlow data in order to learn a
supervised detection model detecting IP addresses with an
anomalous behaviour.

The flows are recorded at the border of a defended net-
work. Each flow is described by attributes and summary
statistics: source and destination IP addresses, source and
destination ports, protocol (TCP, UDP, ICMP, ESP, etc.),
start and end time stamps, number of bytes, number of pack-
ets, and aggregation of the TCP flags for TCP flows.

We compute features describing each external IP address
communicating with the defended network from its flows
during a given time window. We compute the mean and the
variance of the number of bytes and packets sent and re-
ceived at different levels: globally, for some specific port
numbers (80, 443, 53 and 25), and for some specific TCP
flags aggregates (....S, .A..S., .AP.SF, etc.). Besides,
we compute other aggregated values: number of contacted
IP addresses and ports, number of ports used, entropy ac-
cording to the contacted IP addresses and according to the
contacted ports. In the end, each external IP address is de-
scribed by 134 features computed from its list of flows.

The NetFlow data is recorded during two consecutive
working days in 2016 (see Table 1). The features are com-
puted for each external IP address with a 24-hour time win-
dow. The dataset Day 1 constitutes the unlabelled pool
from which some instances are queried for annotation, and
the dataset Day 2 serves as a validation dataset to analyse
the alerts raised by the resulting detection model.

220



The active learning process is initialized with some an-
notated instances. The alerts raised by the Threshold Ran-
dom Walk (TRW) (Jung et al. 2004) module of Bro (Paxson
1999) provide the initial anomalous examples and the nor-
mal examples are drawn randomly. All the initial labels are
checked manually. The initial labelled dataset is composed
of 70 obvious scans detected by TRW, and of 70 normal ex-
amples belonging to the Web, SMTP and DNS families. Ma-
licious activities in well-established connections cannot be
detected without the payload, which is not available in Net-
Flow data, that is why we consider the families Web, SMTP
and DNS to be normal.

ILAB is deployed to enrich this initial labelled dataset.
The detection model should not be restricted to the detection
of obvious scans, additional anomalous behaviours must be
identified from the NetFlow data with ILAB.

Experimental Protocol

Four computer security experts take part in the experiments.
They are used to working with NetFlow data, but they have
no or little knowledge about machine learning. They have
never used ILAB or any other annotation system before. The
experiments are carried out independently with each expert
for half a day.

The task is divided into two parts. First, the users acquire
an annotated dataset with ILAB from the unlabelled pool
Day 1. Then, they analyse the alerts raised on Day 2 by
the detection model trained on the annotated instances. Once
the task is completed, we collect their feedback.

All the experiments are run on a dual-socket computer
with 64Go RAM. Processors are Intel Xeon E5-5620 CPUs
clocked at 2.40 GHz with 4 cores each and 2 threads per
core.

ILAB Deployment ILAB active learning strategy has
only two parameters: b the number of annotation queries
answered at each iteration, and buncertain the number of
uncertain queries. b controls the trade-off between reduc-
ing waiting-periods and integrating expert feedback fre-
quently. We set its value to b = 100 on the following
principle: experts should not spend more time waiting for
queries than annotating, but their feedback must still be
integrated rather frequently to show them the benefit of
their annotations. Some instances near the decision bound-
ary are annotated to help the detection model make de-
cision about these instances, but not too many since they
are often harder to annotate (Baldridge and Palmer 2009;
Settles 2011), and they may lead to sampling bias (Schütze,
Velipasaoglu, and Pedersen 2006). As a result, we run ILAB
with the parameters b = 100 and buncertain = 10.

The global annotation budget B is not set, but we stop the
annotations after 90 minutes while letting annotators com-
plete their current iteration. We timestamp and log all the
users actions in the interface to assess the time required for
annotating and the waiting-periods.

Before launching the annotation process, we ask the ex-
perts to check the initial annotated instances, and tell them
that them may change the assigned labels and families as

they wish. This step is crucial to ensure that the annotations
they perform afterwards are consistent with the initial ones.

The first two participants have no information about the
features of the detection model for the purposes of hiding the
machine learning complexity. However, this approach may
lead annotators to create families which cannot be properly
discriminated by the model due to a lack of information in
the features extracted from the NetFlow data. The last two
participants know the features of the model, and we briefly
explain the implications on the families they may create.
Port numbers are a relevant example. The features include
the number of bytes and packets sent and received globally,
and for the port numbers 80, 443, 53 and 25. We emphasize
that it is therefore counterproductive to create families cor-
responding to scans on specific services such as Telnet scans
or SSH scans.

Alerts Analysis Once a dataset has been annotated with
ILAB from Day 1 data, we train a detection model with
it, and ask the expert to analyse the alerts raised on Day 2
data (as if the model is deployed in production). This step is
crucial: the objective of computer security experts is not to
acquire an annotated dataset, but to build a detection model
and to assess its performance.

Feedback Collection Once the users have achieved the
task, we collect their feedback through an informal discus-
sion that covers the following topics: the relevance of the
alerts raised by the resulting detection model, the ease of
use of the interface, the waiting-periods, the usefulness of
the Family Editor and Annotated Instances interfaces, and
the feedback provided across iterations.

Results

Accessible to Non-Machine Learning Experts The par-
ticipants have not faced any difficulty in building a detection
model with ILAB even if they have little or no knowledge
about machine learning. They have reported some minor
ergonomic problems not related to machine learning espe-
cially. These issues will be addressed to further improve the
user experience. Globally, the participants have been pleased
with ILAB, and convinced that it will be beneficial to other
annotation projects.

Annotation Queries and Answers Across iterations,
ILAB has detected stealthier scans than the ones detected
by TRW: slow scans (only one flow with a single defended
IP address contacted on a single port), and furtive scans (a
slow scan in parallel with a well-established connection).
Besides, it has detected TCP Syn flooding activities designed
to exhaust the resources of the defended network. Finally,
ILAB has asked the participants to annotate IP addresses
with anomalous behaviours which are not malicious: mis-
configurations and backscatters.

The participants answer the queries very differently. In
particular, they disagree on the label corresponding to
the misconfigurations. Some consider they are anomalous,
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while others think they are too common in network traf-
fic. Besides, they annotate the instances with different lev-
els of detail. Some create families based on combinations
of services (Web-DNS, Web-SMTP, Web-SMTP-DNS, etc.),
while others differentiate the services depending on whether
the external IP address is the client or the server (Web-
from-external and Web-from-internal for example). They
build scan families with different levels of detail: obvious-
Syn-scans, obvious-Syn-scans-Reset-response, multihosts-
multiports-scans, udp-multihosts-scans, etc.

Table 2a presents the number of families created by each
participant, and the number of families at the end of the an-
notation process after using the Family Editor. It reveals that
the participants begin by creating specific families and they
end up merging some of them to remove needless details.
The participants have declared that the Family Editor and
the Annotated Instances interfaces help them to provide con-
sistent annotations throughout the annotation process. Fur-
thermore, they have stated that these tools are crucial if the
annotation process lasts several days, or if several annotators
are involved.

Annotation Cost The cost of the annotation process is
usually reported as the number of manual annotations (Alm-
gren and Jonsson 2004; Görnitz et al. 2013; Stokes et al.
2008). However, all the annotations do not have the same
cost in terms of time for making a decision and experts have
their own annotation speed. Figures 2c and 2d present the
average annotation cost, i.e., the average time required to
answer annotation queries, with the corresponding 95% con-
fidence interval, for each participant, at each iteration and for
each query type respectively.

Figure 2c shows that the annotation speed varies signifi-
cantly from participant to participant. User 1 annotated par-
ticularly quickly: he had time to run three iterations during
the 90 minutes while the other participants ran only two iter-
ations. However, the annotation cost always decreases across
iterations: they get used to the data they annotate and to the
user interface and so they answer queries faster.

Uncertain queries, close to the decision boundary, are of-
ten considered harder to annotate (Baldridge and Palmer
2009; Settles 2011). The statistics presented in figure 2d sup-
port this statement for two participants out of four. This low
agreement may be explained by the fact that we have run
only a few iterations, and therefore the model has not yet
converged and is still uncertain about instances easy to an-
notate for domain experts.

Figure 2d also points out that the benign queries are
harder to annotate than the malicious ones for two out of four
participants. One explanation is that computer security ex-
perts usually focus on malicious events, and as a result they
are not used to analysing benign behaviours nor to group
them into families.

Resulting Detection Model The performance of the re-
sulting detection models are not evaluated automatically on
a given validation dataset since the ground-truth cannot be

established. Indeed, the participants have made different an-
notation choices both at the label and family levels.

The participants have analysed the alerts raised by their
detection model on Day 2 manually. They have noted that
their detection model detects all the TRW alerts, and also
stealthier anomalous behaviours which are consistent with
their annotations. The top N alerts are obvious scans where
many ports are scanned on many IP addresses. The randomly
selected alerts correspond to the most common anomalies,
i.e., slow Syn scans on port 23.

The participants have pointed out that grouping alerts ac-
cording to their predicted families ease their analysis, and re-
veal more interesting alerts, i.e. less common anomalous
behaviours, than top N and random. They have reported that
the assignment of families to alerts could be more accurate.
Some families have been discovered only at the last itera-
tion and therefore have too few examples to allow a good
generalization of the classification model. The aim of the
experiments was not to build a detection model ready for
production, but to assess ILAB from a user point of view
with an annotation procedure limited to an hour and a half.
Building a detection model for production would require a
longer annotation procedure and to stop the iterations when
the number of families discovered has converged.

Short Waiting-Periods Table 2b presents an analysis
of the cumulated computation times and waiting-periods
throughout the whole annotation process. The duration of
the generation of all the annotation queries by the active
learning strategy is stored in the column Computations.
The column Waiting-Periods corresponds to the cumulated
waiting-periods : the time during which the users are waiting
for the active learning strategy to computer new annotation
queries.

The cumulated waiting-periods are smaller than the cu-
mulated computation times since ILAB parallelizes the an-
notations and the computations: users can annotate some
instances while the remaining annotation queries are com-
puted. Users wait only while the detection model is up-
dated, and the uncertain queries are generated. Then, they
start answering the uncertain queries while the malicious
and benign queries are generated. During our experiments,
the computation of the malicious and benign queries has al-
ways been completed before the users have finished answer-
ing the uncertain queries. As a result, the participants have
waited less than 5 seconds between each iteration. All the
participants have declared that the waiting-periods are short
enough not to damage the expert-model interaction.

ILAB design ensures a good expert-model interaction: the
detection model is updated frequently with expert feedback
without inducing long waiting-periods.

Feedback to Annotators The participants have appreci-
ated the improvement of the detection model across itera-
tions thanks to the clustering of the queries according to
labels and families. They have assessed the false negatives
while annotating the Benign queries, and the false pos-
itives while annotating the Malicious ones. Moreover,
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User # Queries # Created Families # Final Families

1 300 15 10
2 200 16 15
3 200 29 26
4 200 22 17

(a) Number of Created and Final Families

User Whole Process Computations Waiting-Periods

1 1h28min 197.53 sec 10.81 sec
2 1h29min 91.56 sec 7.32 sec
3 1h36min 87.54 sec 7.31 sec
4 1h57min 93.56 sec 7.37 sec

(b) Computations and Waiting-Periods
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Figure 2: Results of the User Experiments

they have evaluated the relevance of the predicted families
with the suggestions.

The two monitoring graphs displayed by ILAB, the num-
ber of discovered families and the precision of the sug-
gestions, have not been mentioned by the participants as
a means of seeing the benefit of their annotations. These
graphs depict a global evolution over several iterations,
while the method used by the participants allow to grasp lo-
cal evolutions between two consecutive iterations. The num-
ber of iterations performed during the user experiments may
be too low to show the relevance of these graphs.

Families Benefits We have noted that families help partic-
ipants to provide consistent annotations throughout the an-
notation process, and afterwards they guide the analysis of
the alerts of the resulting detection model. Families offer ad-
ditional advantages that improve user experience.

In the first iteration, the malicious queries are selected
uniformly among the malicious predictions since all the ini-
tial malicious instances belong to the obvious scans family.
Two participants have reported that answering these queries
is rather annoying: the annotation queries all have the same
behaviour. On the contrary, when more families are discov-
ered rare category detection is executed, and the participants
have appreciated that the queries are clustered according to
families, and present more diverse and less common be-
haviours. Two participants have relied on the aggregation of
similar queries to get an overall view of the queries before
making any decision.

Families provide a context that helps experts to answer the
queries, and allow to query more interesting instances which
exhibit less common behaviours.

Further User Feedback

Features Implications The first two participants had no
information about the features of the detection model to hide
the machine learning complexity. This lack of information
led to the creation of families that could not be discriminated
by the detection model. The first user ended up merging
these too specific families, there was therefore no negative
impact on the resulting detection model. On the contrary, the
second user kept the specific families until the end of the an-
notation process which has damaged the performance of the
detection model. The last two participants knew the features,
and they did not create families that could not be discrimi-
nated properly by the detection model. They had no diffi-
culty understanding the features included in the model, nor
their implications on the families they might create. They,
however, confirmed their desire to build more specific fami-
lies that would necessitate additional features.

ILAB, as the state-of-the-art active learning strate-
gies (Almgren and Jonsson 2004; Stokes et al. 2008; Görnitz
et al. 2013), assumes that the features are set at the beginning
of the annotation process and do not change across itera-
tions. The user experiments have, however, shown that the
discovery of new families may necessitate adding new fea-
tures to allow the detection model to discriminate them prop-
erly. A new avenue of research is to consider active learning
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strategies where the features change across iterations. Hu-
man annotators could change the features manually, or they
could be updated automatically according to the new annota-
tions with a method similar to (Boullé 2014). In both cases,
a particular care shall be taken to maintain short waiting-
periods and to avoid numerical instabilities.

More Than Oracles Computer security experts involved
in annotation projects are not mere oracles. At each iteration,
they want to do more than answering queries: they want to
understand why the model is uncertain about a prediction,
and why it makes a mistake. It is therefore essential to tell
them the features included in the detection model.

Finding the right compromise between hiding all the ma-
chine learning concepts and displaying a very complex mon-
itoring is not an easy task. Besides, it largely depends on
the profile of the annotators, whether they are simply an-
notating, or also involved in the deployment of the result-
ing detection model. ILAB graphical user interface allows
to control this trade-off easily. On the one hand, the default
view is accessible to computer security experts with little or
no knowledge about machine learning. On the other hand,
the modular construction of the interface allows to add more
complex monitoring elements if annotators want to go more
in depth into the evolution of the detection model.

Conclusion

We stress the importance to design an end-to-end active
learning system, composed of an active learning strategy
integrated in a user interface, to effectively reduce experts
annotation effort. We have designed and implemented an
end-to-end active learning system, ILAB, to bridge the gap
between theoretical active learning and real-world annota-
tion projects. We provide an open source implementation of
the whole annotation system to foster research in this area,
and to allow computer security experts to annotate their own
datasets.

First, we present ILAB active learning strategy that is de-
signed to minimize experts waiting-periods: it optimizes the
time spent on annotating to compute queries. Then, we in-
tegrate this strategy in a flexible graphical user interface tai-
lored to the needs of computer security experts. The custom
visualization that can be plugged into the interface makes
it generic regarding data types. Besides, the modular con-
struction of the interface allows to meet the needs of the
annotator. Finally, the user experiments show that ILAB in
an efficient active learning system that can be deployed by
computer security experts in real-world annotation projects.
They also point out some avenues of research to further im-
prove user experience in annotation projects.
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