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Abstract

We present here a discipline for job shop reschedub
ing based on partial order backtracking. We show
that partial order backtracking offers the rescheduler
a framework for schedule repair, based upon a set of
nocdoods, which impose a systematic paxtial order on
the set of activities to be repaired but allows non sys-
tematic techniques to be used within that framework.
We present rescheduling as partial order backtrack-
ing by explaining the need for rescheduling, describ-
ing our framework (using a generic example), and dis-
cussing the paxticular implementation problems asso-
ciated with repairing job shop schedules which consist
of multi domain types.

Introduction

In a recent paper Ginsberg ~ McAllester (1994) sug-
gested a hybrid search algorithm that combined the ad-
vantages of both systematic and non systematic meth-
ods of solving constraint satisfaction problems. The
systematic search method of constraint satisfaction de-
scribed by Ginsberg and McAllester, dynamic back-
tracking, employs a polynomial amount of justification
information to guide problem solving. The non system-
atic methods, GSAT (Selman, Levesque, & Mitchell
1992) and rain conflict (Minton et al. 1990) offer 
search algorithm freedom to explore the search space
by abandoning the notion of extending a partial solu-
tion to a CSP and instead modelling the search space
as a total, if inconsistent, assignment of values to vari-
ables. A hill-climbing procedure is employed on this to-
tal set of assignments to try and minimize the number
of constraints violated by the overall solution. Gins-
berg and McAllester have called their hybrid algorithm
partial order backtracking.

It is this hybrid algorithm which has been adapted
by the current authors for rescheduling activities in
a job shop environment. As Smith has noted (Smith

1995) in most practical environments, scheduling is an
ongoing reactive process where evolving and changing
circumstances continually force reconsideration and re-
vision on existing schedules. Our aim in this paper is
to describe partial order backtracking as a rescheduling
procedure. To achieve this we will in section 1 outline
the original algorithm as presented by Ginsberg and
McAllester (1994). The next section will introduce our
adaptation of the procedure which allows partial or-
der backtracking to address the job shop rescheduling
problem. The final section will suggest ways of imple-
menting the algorithm on real rescheduling problems.

Partial Order Backtracking

Partial order backtracking brings a systematic search
discipline to non systematic search procedures, such as
GSAT and rain conflicts repair, by applying the dy-
namic backtracking procedure developed by Ginsberg
(Ginsberg 1993) to the search space.

Dynamic Backtracking

Dynamic backtracking maintains search information
by accumulating a set of nogoods. A nogood is an ex-
pression of the form:

(Zl = vl)A...A(zk = vk) , z 4 v

Here, a nogood is used to represent a constraint as
an implication which is logically equivalent to the ex-
pression:

= ,,1) A... A = ,,’k) ̂  (z ,,)]
A special nogood is the empty" nogood, which is tau-

tologically false. If a empty nogood can be derived
from the a given set of constraints, it follows that no
solution exists for the problem being attempted.
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New nogoods are derived by resolving old ones. As
an example, suppose we have derived the following:

(z = o) A (9’ = ,u#,,l
(x = a) A (= = ,u#v=,

(U=b) ,u#va
where vl, v2. and v-~ are the only values in the domain
of .~,. Nogoods are combined to conclude that there are
no solution with:

(x = a) A (9’----- b) A(z 
ILioving Z to the conclusion of the above gives:

(x =a) A(y= , z#c

The usual problem with maintaining a set mr nogoods
is that the set grows monotonically, at each step in the
search a new nogood is added to the list of nogoods.
I)ynamic backtracking deals with this hy discarding
those nogoods whose antecedents no longer mal.ch the
partial solution being extended by the search. Whilst
this and related problems is being addressed by the
RMS cornmunity (Tatar 1994, Kelleher &: van der Gaag
1993) the approach of discarding contextually irreh:-
vant nogoods appears to be a good strategy within the
problems described by this paper.

Dynamic backtracking uses a set of nogoods to both
record information ahout the portion of the search
space that has been eliminated and I,o record the cur-
rent partial assignnmnt being considered by the pro-
cedure. The current partial assignment is encoded in
the antecedents of the current set of nogoods. The
antecedents of any set of nogoods, or, represent a con-
sistent, if partial, solution to a constraint satisfaction
problem (CSP). The next assignment as,st be an ex-
tenskm of this partial assignment. Assignments which
1,aw’ caused dead ends in the search can be detected by
analyzing the conclusion parts of the nogood set. The
dynanfic backtracking, like most systematic search, as-
sumes a static variable ordering. Whenever a nogood is
added to the set of nogoods, the static variable ordering
determines the variable that appears in the conclusion
of the nogood. The most recently tried variable is al-
ways selected to appear in the conclusion of the m’.w
nogood.

POB
Partial order backtracking (POB) replaces the fixed
variable ordering which constrains dynamic backtrack-
ing with a parlialorder that is dynamically sorted dur-
ing the search. When a new nogood is added to the
nogood set, this partial ordering does not [ix a static
sequence on the cl,oice of variable to appear in the
nogoods conclusion. As it turns out, there is consid-
erable freedom as to the choice of the variable whose
value is to be changed during backtracking, thereby
allowing greater control in the directions that the pro-
c,~dure takes in exploring the search space.
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llowever, there is not total freedom: safety condi-
lions need to be maintained that model the partial
ordering of the variables. It is necessary for variables
in the arttecedent of nogoods to precede the variables
in their conclusion. This is because the antecedent
variables are responsible for determining the current
domains of such variables.

Rescheduling
Academic contributions to the scheduling lilerature
have generally ignored tim reactive view of problem
solving and instead focused on the optimization of
scheduling algorithms based upon a set of idealized
problems which assume environmental stability. In
this paper we present a reactiw; rescheduling discipline
which approaches scheduling as a prohler,! of repair
ow~r time. The emphasize of such a perspecliv,, ar-
gues for operationalinterests to take center stage: how
fast is the scheduling system at. responding to environ-
mental change? llow similar is the new w, rsion of th,,
schedule to the old?

From a CSP point of view rescheduling introduces
an extra set of constraints which need to be addressed.
’l’hese are related to the need I.o preserve the old sched-
uh, a.s much as possible. The old schedule represents
a, investment in planned resources, allocation of ma-
chines and people, which should not be disturbed any
more than necessary.

Example

A small fostering problem will dentonstrate resch,:dul-
ing as partial order backtracking. An airline has as-
signed I.ea, ns Hf cabin staff to cover 5 flights ow,r the
next week. The flights are denoted by fligMl, fligM2,
flight3, flight4, and ]light5 and the cabin stal[" by red
crew, ydlow crew, and blue crew.

Operational constraints demand that the sam~ crews
cannot work tht, following flight combinations:

flightl and flight2
flight2 and flight3
flight2 and flight4
flight3 and flight4
fl(qht.3 and flight5
flight4 and flight5

A possihle solution to lhis problem, support,-d by lhe
following nogoods:

flight1 = blue , flight2 ~- bl.u~.
flight2 = red , flight3 5~ red
flight2 = red , flight4 # red
flight3 = yellow ¯ flighl5 ~ yellow
flight3 = yellow , flight4 ~ .qellow
flight5 = red , flight4 ~ red

is
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flightl = blue
flight2 = red
flight3 = yellow
flight4 = blue
flight5 = red

Rescheduling will force a change of assignment on
one of the variables already instantiated to a value.
Let us assume that, for some operational reason, flight3
nmst be covered by the red crew, what is the signifi-
cance of this to the existing schedule? and what are
the procedures necessary to discover this significance?

First, we must remove flight3 = yellow from the
set of nogoods. We also need to post safety-conditions
with the set of nogoods that identify those existing
assignments that are now suspect because ftight3’s
previous assignment determined their hve domains at
the time of their instantiation. These variables are
recorded by the nogoods. In our example, flight4 and
flight5 appear in the conclusion of those nogoods in
which flight3 is the antecedent.

flight1 = blue , flight2 ~ blue
flight2 = red , flight3 y£ red
flight2 = red , flight4 ~ red
flight3 < flight4
flight3 < flight5
flight5 = red ~ flight4 ~ red
flight4 = blue , flight3 ~ blue

The safety-conditions trigger consistency checks on
the reordered variables flight,~ and flight5. We need to
know what affect reassigning flight3 will have on its
future variables, those variables whose instantiations
were determined after flight3 was assigned. Consis-
tency checks show that flight5 -- red is no longer
consistent with the reassignment of flight:]. Flight5 is
therefore removed from the set of assigned variables
and appropriate nogoods posted.

flight1 = blue
flight2 = red .
flight2 = red ¯
flight3 = red ¯
flight3 = red
flight4 = blue .

, flight2 ~ blue
, flight3 ~ red
, flight4 y£ red
, flight4 y£ red

flight5 ~£ red
, flight5 ~ blue

However. we still have problems: we have to find an
assignment for flight5 that is consistent with the re-
assignment of flight3, and we need to make consistent
those assignments that were made before flight:] was
assigned its air crew; that is, we have to make consis-
tent flight:]’s past variables, whose nogood conclusions
forbid flight:] from being assigned the red value.

We know from the nogoods that flight5 cannot be
assigned to either the red crew or the blue crew, but
we can assign flight5 the yellow crew. This we do:

flight5 = yellow

From the set of nogoods we know that flight2 = red
is inconsistent with flight3 = red. We therefore need
to dynamically backjump to flight2 = red and remove
it from the assigned variable set. This we do, removing
all inconsistent nogoods that were posted after flight~’s
instantiation and posting new nogoods that identi~’
flightFs current live domain.

flight1 = blue ¯
flight3 = red ¯
flight3 = red
flight3 = red
flight4 = blue ¯
flight4 = blue ¯

, flight2 y£ blue
, flight4 ~ red
, flight5 ~ red
:, flight2 ~ red
, flight5 ~ blue
, flight2 ~: bluc

From the set of nogoods we know that the only con-
sistent value that flight’2 can be assigned is yellow. We
now have a consistent solution.

Reseheduling with POB Rescheduling differs
from scheduling in a number of respects which are cru-
cial for partial order backtracking as a rescheduling
technique.

At least one extra constraint is introduced when
rescheduling is initiated. This extra constraint encodes
the forced assignment demanded by the reschedul-
ing procedure. The constraint also imposes an or-
der of repair on the existing schedule, splitting the
pre-rescheduled solution into two new sub-problems:
the problem of making consistent thosc instantiations
which were made prior to the instantiation of the
rescheduled variable, and the problem of making con-
sistent those variables scheduled after the resched-
uled variable. The new solution must, literal]y, be
rescheduled around the changed variable. The first
sub-problem is solved by ’squeezing’ out the inconsis-
tent assignments, moving the changed variable deeper
into the search space if necessary, and the other by
dynamically backjumping to assert a new ordcring on
the sequence of variables. Therefore, the POD proce-
dure described by Ginsberg and McAllester must be
modified to accept a consistent and complete solution,
supported by a set of nogoods, and a new constraint
which encodes a r~,assignment.

Implementation Issues
While our exposition of rescheduling as partial order
backtracking gives the flavor of the procedure, job shop
rescheduling presents a challenge which our simple ped-
agogical example was denied.

Implementation issues relating to thc size and com-
plexity of the problem are relevant here. The example
given above takes as input a set of nogoods which sup-
port the complete and consistent solution. This is not
practical once the number of variables is beyond a triv-
ial amount. In such cases, relevant nogoods would need
to be generated from the given constraints of the CSP
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on tile fly. This has a processing time cost.
Again, our simple pedagogical example skipped over

the question of how the rescheduled variable’s future
variables, those that appear in the conclusions of the
nogoods of which it is antecedent, are to be repaired.
This is an open question; there is no one answer. In the
extreme case, they don’t need to be repaired. The new
assignment of the changed variable is consistent with
all its future variable’s instantiations. Ill other cases,
arc consistency or heuristic repair is required. Which
is the most appropriate depends upon the domain.

Another possibility might occur here, what if the
rescheduled variable’s future variables cannot be made
consistent with the forced assignment? Intuitively
what is required is to push the rescheduled variable
deeper into the search space to introduce more vari-
ables into the pool of relaxed variables for reschedu]-
ing. Ilowever, this assumes that the reassignment of
the changed variable is an hard constraint which can-
not itself be relaxed. Assuming that it. is, then the
possibilities are that we chronologically backtrack into
the rescheduled variable’s past variables, or dynami-
cally backtrack, preserving the instantiated variables
between the rescheduled variable and the backtrack
point. Dynamically backtracking would require the
generation of further nogoods to locate the inconsis-
tent variable’s set. of conflict variables.

Job shop Rescheduling

So far we have discussed rescheduling only over an ide-
alized discrete domain with binary constraints. Unfor-
tunately, job shop operations can rarely be described
within such a neatly structured framework. The prob-
lem is in applying the forward checking procedure of
constraint solving to multi-dimensional variables which
range over a number of domains.

By multi-dimensional variables we mean those vari-
ables which are constructed when a one-to-many map-
ping is enforced between a job shop operation and (at
least) two variables which represent the operation as
time and a resource. Associatcd with each variable is a
domain. The variable domains arc the Cartesian prod-
uct of the set of possiblc resources for an operation
with the set of possible times for that operation.

The introduction of multi-dimensional domain types
for each operation means that consistency checks,
when the search procedure makes a tentative assign-
ment of a value to a variable, must be performed both
forward over the assigned value domains and back-
wards over other dependent domains. This complicates
the construction of a nogood label somewhat!

Multi Domain Types There are a number of stan-
dard ways (Cheng-Chung &." Smith 1995, Hasle, Kelle-
her, & Spragg 1995. Presser 1993. Wiig 1995) in which
scheduling problems can be encoded as a CSP. The
scheduling world consists of jobs and operations on
jobs. Let. us assume that we havc the following job
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set as part of a larger scheduling problem. We have
two jobs, job1 and job2, where job1 is cotuposed of the
operations opt.l, opl.2, and job.~ is composed of the Ol)-
erations op’.,,l, op..,...,. Associated with .lob job~ will be
an earliest start time esi, and due date ddi. An opera-
tion opid will have a demand for a resource attd we m~,
have a set of possible resources that will satis~" that n,-
quirement name Pqj. In addition, the processing time
of an operation may be dependent upon tile resource
used to perform that operation. That is. if w," select re-
source ri.j for operation opt,j, where rid E l~i.j, we can
expect a processing time of prij. R.eso,rces of course
have a limited capacity while operations are subject to
technical constraints such as processing ordering, etc.

The simplest rendering of a scheduling problem as a
CSP is to map scheduling operations onto C.SP vari-
ables. However, such a rendering wouhl produce vari-
ables with a number of domain types: resource do-
main, start time domain, inventory domain, ,~tc.. A
better solution would be to represent each scheduling
operation as a number of variables which range owr
their own domain types so that w,, have a one-to-many
mapping between an operation and CSP variables of
tile types, start-time, resource, etc. IIowever, this
muh.i-dimensional CSP representation of th,’ sch,,dul-
ing world presents some problems for both constraint
solving anti the construction of nogood labels.

The job shop schedvling problem is to alloc~d.e an op-
eration to an interval in time on a resource such t l,at all
constraints, including optimization constraints (which
we will ignore here) are satisfied. The C.SP maplfing of
the scheduling world consists of a set of variables of do-
main type resource, {v.rl.1, v.rl,2, V.rv,l, "v.r2,~}. and
a set of variables of domain typc time, {v.ttA. r.tl,2,
v./2,1, v.t2,2}. The domains of the rzsourcc variables
are [rl, r..,], and the domains of the lime variables are
[0 . 100]. The resource rl has a processing time of
3, whilc r., has a processing time of 2. Both rcsourc,,s
have a capacity of I.

hnniediat~ly we see tile problem of emllloying nmll.i-
dimensional domain types. Imagine we wish to nlake
a tentativ,’ assignnleut of, say, rl to variable l’.rl.t, we
need to check both backwards over the time domain
to see for what period the resource is available and
forwards over the resource domain to see if the r,,source
can be renloved from any fllture domains. At this stage
our nogood labelling gets a bit more cornplicat~d but.
becomes essenti:.d for constraint niaintenance. Again
imagine that we assigned rl to variable v.rl.l K)r tim
period [0 . 3], a typical nogood lab~’l wouhl be:

t:.r’l,1 = rl A v.tl.t = [0 . 3]

v.r,,.1 = rl A v.t,.,.1 :/: [{}. 3]
Which is to say that variable v.r..,.l couhl be m~-

sign,’d rl at any oilier tirne oi.h,~r than I.~lween [0 .
3]..q’he co.nchtsion of tlw nogood has become a condi-
tional. This has major implications for nogood r,,solu-
tion, and, indeed, dissolution during rescheduliug. For
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example, if variable v.rl,2 was later assigned rl over
the period [3 . 6] then our nogood would become:

v.rtA = rt A v.rt,2 = rt A v.tt,t = [0 ¯ 3] A v.tt,2 =
[3. 6]

)

V.r2,1 = P1 A V.t2,1 # [0 . 6]

What is the significance of multi domain types to
partial order backtracking and reseheduling?

Partial Order Backtracking Over Multi
Domain Types
In the job shop rescheduling problem, new jobs can be
added to the set of jobs to be scheduled, jobs can be
removed, resources can be reassigned. The encoding of
nogood conclusions as conditionals furnishes for these
actions sumcient information to allow a partial order
to be maintained over all domains. For exmnple, given
our nogood’s conditional conclusion:

v.r2,1 = r, v v.t2,, ~ [0 . 6]

we know that the variable v.r2.1 cannot be assigned to
rl during the period [0. 6] because of the past choices
encoded in the nogood’s antecedent:

v.rl.1 -" 1"I A v.rl,2 ---- el A t:.lt,1 = [0 . 3] A V./1,2 ----
[3. 6].

What is true of variable v.r2,1 is also true of any new
variable derived from the introduction of an additional
operation into the schedule. That is, if the schedule
user wishes to assign the resource rl to a new variable
t,.rx,y after 0 but before 6 it cannot do so because of the
same reasons that variable v.r~,l cannot be assigned
to that resource during that. period. The nogood must
be copied, substituting v.rz,~ for v.r2,b allowing v.r~,~
to inherit v.r~.,l"s antecedent information. It is this
information which is used to repair the schedule.

Again, the set of nogoods allows consistency to be
maintained once a job has been removed from the
schedule. The removal of variable v.rl,2 for example
will allow our nogood’s conclusion to be rewritten has:

v.r2,1 = rl V v.t~.,, # [0. 3].

The reassignment of a resource is equivalent to the
generic case described above. However, because of the
multi-dimensional search space, additional arc consis-
tency needs to be maintained over temporal domains
representing the start time and duration of an opera-
tion.

Conclusions
We have presented a discipline for job shop reschedul-
ing based on partial order backtracking. We have
shown that partial order backtracking offers the
rescheduler a framework for schedule repair based upon
a set of nogoods which impose a systematic partial or-
der on the set of activities to be repaired. We have
also shown that by representing the conclusion of a

nogood as a conditional statement we can also impose
a partial order between domains; we can determine the
availability of a particular resource by representing its
dependency on its temporal domain.

An interesting point to note about this approach is
that, as a consequence of it’s basis in POB, it makes
what may be called a "strong single context assump-
tion" about the maintenance of dependency informa-
tion in supporting rescheduling. What is meant by this
is that, as POB effectively throws away dependency in-
formation about everything other than the current as-
sumptive context (the assumptions made for the par-
ticular current solution or partial solution being con-
sidered) it can only ever consider information from the
single context within which it is operating. The moti-
vation for this in Ginsberg’s work is the desire to avoid
the overhead in memory of maintaining unwanted de-
pendencies. One might argue about the tradeoffs be-
tween systems that. maintain such information and pro-
vide other benefits - such as the emerging generation of
focussed RMS - but the fact remains that in embracing
POB one is accepting the efficacy of a single context
in supporting dependency based reasoning.

Making this strong single context assumption has
an interesting side-effect when rescheduling is consid-
ered. The rescheduling approach described here is in-
dependent of the evolution of the schedule, we are not
reasoning with dependencies about how we reached a
schedule only with those dependencies relating to the
development of a particular schedule (the current one).
As a consequence we may use the approach to provide
rescheduling capability to any scheduling system, ir-
respective of the way in which the system operates.
We can add on rescheduling to any system straightfor-
wardly and efficiently provided some simple informa-
tion is available to us, namely a set of constraints and
variables describing the initial problem and the sched-
ule being modified. The idea is that we realize the
solution in the CSP described by the initial problem
state maintaining the dependency information as we
go. From this information we may perform reschedul-
ing as described in the body of this paper. Further
detail on the approach and related work may be found
in Kelleher & Spragg (1996), Itasle, Kelleher, & Spragg
(1995) and Spragg & Kelleher (1995).
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