Description An adversary uses a combination of techniques to determine the state of the ports on a remote target. Any service or application available for TCP or UDP networking will have a port open for communications over the network. Extended Description Although common services have assigned port numbers, services and applications can run on arbitrary ports. Additionally, port scanning is complicated by the potential for any machine to have up to 65535 possible UDP or TCP services. The goal of port scanning is often broader than identifying open ports, but also give the adversary information concerning the firewall configuration. Depending upon the method of scanning that is used, the process can be stealthy or more obtrusive, the latter being more easily detectable due to the volume of packets involved, anomalous packet traits, or system logging. Typical port scanning activity involves sending probes to a range of ports and observing the responses. There are four port statuses that this type of attack aims to identify: open, closed, filtered, and unfiltered. For strategic purposes it is useful for an adversary to distinguish between an open port that is protected by a filter vs. a closed port that is not protected by a filter. Making these fine grained distinctions is requires certain scan types. Collecting this type of information tells the adversary which ports can be attacked directly, which must be attacked with filter evasion techniques like fragmentation, source port scans, and which ports are unprotected (i.e. not firewalled) but aren't hosting a network service. An adversary often combines various techniques in order to gain a more complete picture of the firewall filtering mechanisms in place for a host. Typical Severity Relationships This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.Nature | Type | ID | Name |
---|
ChildOf | Meta Attack Pattern - A meta level attack pattern in CAPEC is a decidedly abstract characterization of a specific methodology or technique used in an attack. A meta attack pattern is often void of a specific technology or implementation and is meant to provide an understanding of a high level approach. A meta level attack pattern is a generalization of related group of standard level attack patterns. Meta level attack patterns are particularly useful for architecture and design level threat modeling exercises. | 169 | Footprinting | ParentOf | Detailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal. | 287 | TCP SYN Scan | ParentOf | Detailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal. | 301 | TCP Connect Scan | ParentOf | Detailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal. | 302 | TCP FIN Scan | ParentOf | Detailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal. | 303 | TCP Xmas Scan | ParentOf | Detailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal. | 304 | TCP Null Scan | ParentOf | Detailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal. | 305 | TCP ACK Scan | ParentOf | Detailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal. | 306 | TCP Window Scan | ParentOf | Detailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal. | 307 | TCP RPC Scan | ParentOf | Detailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal. | 308 | UDP Scan |
This table shows the views that this attack pattern belongs to and top level categories within that view. Prerequisites
The adversary requires logical access to the target's network in order to carry out this type of attack. |
Resources Required
The adversary requires a network mapping/scanning tool, or must conduct socket programming on the command line. Packet injection tools are also useful for this purpose. Depending upon the method used it may be necessary to sniff the network in order to see the response. |
Consequences This table specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.Scope | Impact | Likelihood |
---|
Confidentiality | Other | | Confidentiality Access Control Authorization | Bypass Protection Mechanism Hide Activities | |
Notes Other There are four types of port status that this type of attack aims to identify: 1) Open Port: The port is open and a firewall does not block access to the port, 2) Closed Port: The port is closed (i.e. no service resides there) and a firewall does not block access to the port, 3) Filtered Port: A firewall or ACL rule is blocking access to the port in some manner, although the presence of a listening service on the port cannot be verified, and 4) Unfiltered Port: A firewall or ACL rule is not blocking access to the port, although the presence of a listening service on the port cannot be verified. Taxonomy Mappings CAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.Relevant to the ATT&CK taxonomy mapping (also see parent) Entry ID | Entry Name |
---|
1046 | Network Service Scanning |
References
[REF-33] Stuart McClure, Joel Scambray
and George Kurtz. "Hacking Exposed: Network Security Secrets & Solutions". Chapter 2: Scanning, pg. 54. 6th Edition. McGraw Hill. 2009.
|
[REF-128] Defense Advanced Research Projects Agency Information Processing Techniques Office and
Information Sciences Institute University of Southern California. "RFC793 - Transmission Control Protocol". Defense Advanced Research Projects Agency (DARPA). 1981-09.
< http://www.faqs.org/rfcs/rfc793.html>. |
|
[REF-34] Gordon "Fyodor" Lyon. "Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning". Section 4.1 Introduction to Port Scanning, pg. 73. 3rd "Zero Day" Edition,. Insecure.com LLC, ISBN: 978-0-9799587-1-7. 2008.
|
|
Content History Submissions |
---|
Submission Date | Submitter | Organization |
---|
2014-06-23 (Version 2.6) | CAPEC Content Team | The MITRE Corporation | | Modifications |
---|
Modification Date | Modifier | Organization |
---|
2018-07-31 (Version 2.12) | CAPEC Content Team | The MITRE Corporation | Updated Attack_Prerequisites, Description, Description Summary, References, Related_Weaknesses, Resources_Required | 2019-04-04 (Version 3.1) | CAPEC Content Team | The MITRE Corporation | Updated Related_Attack_Patterns, Taxonomy_Mappings | 2019-09-30 (Version 3.2) | CAPEC Content Team | The MITRE Corporation | Updated Related_Attack_Patterns | 2020-12-17 (Version 3.4) | CAPEC Content Team | The MITRE Corporation | Updated Description, Notes | 2022-02-22 (Version 3.7) | CAPEC Content Team | The MITRE Corporation | Updated Description, Extended_Description |
More information is available — Please select a different filter.
|