The Buffered w-Calculus: A Model for
Concurrent Languages*

Xiaojie Deng', Yu Zhang?, Yuxin Deng', and Farong Zhong?

1 BASICS, Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China
2 State Key Laboratory for Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
3 Department of Computer Science, Zhejiang Normal University, Zhejiang, China

Abstract. Message-passing based concurrent languages are widely used
in developing large distributed and coordination systems. This paper
presents the buffered m-calculus — a variant of the m-calculus where
channel names are classified into buffered and unbuffered: communica-
tion along buffered channels is asynchronous, and remains synchronous
along unbuffered channels. We show that the buffered m-calculus can be
fully simulated in the polyadic m-calculus with respect to strong bisim-
ulation. In contrast to the m-calculus which is hard to use in practice,
the new language enables easy and clear modeling of practical concur-
rent languages. We encode two real-world concurrent languages in the
buffered m-calculus: the (core) Go language and the Core Erlang. Both
encodings are fully abstract with respect to weak bisimulations.

Keywords: process calculus, formal model, full abstraction

1 Introduction

Concurrent programming languages become popular in recent years thanks to
the large demand of distributed computing and the pervasive exploitation of
multi-processor architectures. Unlike the shared-memory concurrency model,
which is now mainly used on multi-processor platforms, message passing based
concurrent languages are particularly popular in developing large distributed,
coordination systems. Indeed, quite a few real-world concurrent languages are
intensively used in industry. The most well-known languages are probably Er-
lang, developed by Ericsson [1], and the much younger language Go, developed
by Google [6]. Both languages achieve their asynchronous communication via
order-preserving message passing.

On the other side, the m-calculus [11,14] has shown its success in modeling
and verifying both specifications and implementations. Its asynchronous variant

* Partially supported by Natural Science Foundation of China (61173033, 61033002,
61161130530, 61100053) and the Opening Fund of Top Key Discipline of Computer
Software and Theory in Zhejiang Provincial Colleges at Zhejiang Normal University.

2 X. Deng, Y. Zhang, Y. Deng, and F. Zhong

[3,8] is a good candidate as the target formal model. Despite the fact that it is
called asynchronous, communication in the asynchronous w-calculus is however
synchronous. It is shown in [2] that the communication modelled by the asyn-
chronous 7-calculus is equivalent to message passing via bags — senders put
messages into some bags, and receivers may get arbitrary messages from these
bags. This result indicates that additional effort should be made to respect the
order of the messages, which is adopted in the implementation of many concur-
rent languages.

In view of this, we may expect a formal model where asynchronous commu-
nication is supported natively. In fact, our primary goal is to achieve a formal
model by which we can easily define a formal semantics of Go and do verification
on top of it. The developers of Go claim that the concurrency feature of Go is
rooted in CSP [7], while we show that the m-calculus should be an appropriate
model for Go as CSP does not support a channel passing mechanism.

In the spirit of the name passing mechanism of the 7m-calculus and the channel
type of the Go language, we extend the w-calculus by introducing a special kind
of names, each associated with a first-in-first-out buffer. We call these names
buffered names. Communication along buffered names is asynchronous, while
that along unbuffered (normal) names remains synchronous. We call this variant
language the buffered m-calculus, and abbreviate it as the m,-calculus.

We develop the mp-calculus by defining its operational semantics as a labelled
transition system and supplying an encoding into the polyadic m-calculus. We
also present translations of the languages Go and Erlang into the m-calculus and
show that the model is sufficient and relatively easier for modeling real-world
concurrent languages.

Beauxis et al introduced the mys-calculus in order to study the asynchronous
nature of the asynchronous 7m-calculus [2]. Their asynchronous communication is
achieved via explicit use of buffers. In case that the buffers are ordered structures
such as queues or stacks, the asynchronous communication modelled by 7y
differs from that by the asynchronous m-calculus. While communication in the
ms-calculus is always asynchronous, we keep both synchronous and asynchronous
communication in the m,-calculus, through different types of names.

Encoding programming languages in process calculus have been studied by
many researchers. Milner defines the semantics of a non-trivial parallel pro-
gramming language by a translation into CCS in [9]. In [15], a translation from
a parallel object oriented language to the minimal m-calculus is presented. The
correctness of the translation is justified by the operational correspondence be-
tween units and their encodings. Our treatments to the Go language follows
the approach in [15]. In addition, we show a full abstraction theorem, namely
equivalent Go programs are translated into equivalent 7, processes.

For functional languages, Noll and Roy [12] presented an initial translation
mapping from a Core Erlang [4] to the asynchronous 7-calculus. Later on they
[13] improved the translation by revising the non-deterministic encoding of pat-
tern matching based expressions, and by adding the encoding for tuples. Their
translations, however, are not sound in the sense that the order of messages is

The Buffered m-Calculus: A Model for Concurrent Languages 3

not always respected. By modelling the mailbox structure explicitly by buffered
names in the m,-calculus, we obtain a more accurate encoding which is fully
abstract with respect to weak bisimulation.

The rest of the paper is structured as follows. Section 2 presents the syn-
tax and semantics of the m,-calculus and a simple encoding in the polyadic
w-calculus [10]. We show that this encoding preserves the strong bisimulation
relation. In Section 3 we define a formal semantics for Go and present an en-
coding of Go in the my-calculus. Due to page limit, the encoding of Erlang is
supplied in the full version of the current paper [5], as well as many definitions
and proofs. Finally, Section 4 concludes the paper.

2 The m,-Calculus

We assume an infinite set N of names, ranged over by a,b,c, d,z,y. Processes
are defined by the following grammar:

P,Q,...:=3 ,c;m.P | PlQ ‘ (ve:n)P ‘ (ve)P ‘ P
where 7 = ¢(z) | €(d) | 7.

Most of the syntax is standard:), ; ;. P; is the guarded choice (I is finite),
which behaves nondeterministically as one of its components 7;.P; for some
j € I; composition P|Q acts as P and @ running in parallel; ! P is the replication
of process P; Prefixes ¢(x) and ¢(d) are input and output along name ¢; and 7
is the silent action. We write 0 for the empty guarded choice, it is the process
which can do nothing.

The mp-calculus extends the 7-calculus in the fact that names can be buffered
or unbuffered. Unbuffered names are names in the 7m-calculus, and buffered names
have the buffer attribute specified by a buffer store. A buffer store, denoted by
B, is a partial function from buffered names to pairs (n,l), where n is a posi-
tive integer representing the capacity of the buffer, and [is a list of names in
the buffer, with the same order. Both (v¢)P and (ve : n)P are called new pro-
cesses. The (standard) new process (vc¢)P specifies that ¢ (whether buffered or
unbuffered) is a local name in P. The extended new process (vc : n)P creates
a local buffered name ¢, whose associated buffer has the capacity n for asyn-
chronous communication inside P. Notice that (vc)P only says that the name
c is local and does not imply that ¢ is unbuffered — ¢ can be a buffered name
whose buffer is already created in the buffer store.

Input process ¢(z).P and output process ¢(d).P can communicate with each
other along name ¢ when they run in parallel. If ¢ is an unbuffered name, the
communication is synchronous and happens as in the w-calculus: the object d is
passed from the output side to the input side. If ¢ is a buffered name, then the
communication becomes asynchronous: the output process simply puts d into
the buffer of ¢ if it is not full and continues, or blocks if the buffer is full; the
input process retrieves the oldest value from the buffer of ¢ if it is not empty
and continues, or blocks if the buffer is empty.

As usual, we write ¢ for a sequence of names, and abbreviate (vcy) ... (ve,)P
to (vey ...c,)P. A name z is bound if it appears in input prefix, otherwise it is

4 X. Deng, Y. Zhang, Y. Deng, and F. Zhong

free. We write P{¢/z} for the process resulting from simultaneously substituting
¢; for each free z; in P. The newly created name c in (vc : n)P or (vc)P are
local names. A name is global if it is not localized by any new operator. We use
In(P) and gn(P) for the set of local names and global names occurring in P.

Throughout the development of the paper, we assume the following De
Barendregt name convention: Local names are different from each other and from
global names. For instance, we shall never consider processes like @(c).(va)P or
(va)(va)P. We note that this convention is dispensable and we simply adopt it
to make the presentation of the calculus simple and clean. One can also remove
the convention and use syntactic rules to manage name conflicts, but dealing
with names in buffers can be very subtle.

A process can send a local name into a buffer. The fact that a name stored
in buffers is local must be tracked, because it may affect the name scope when
another process retrieves this name from the buffer. The convention also works
for buffer stores. We shall discuss more on this when defining the operational
semantics. Inside a buffer store, a value of the form (vc) indicates that the
name ¢ was sent into the buffer when it was local. Given a buffer store B, we
write gn(B(b)) for the set of global names that occur in b’s buffer, and gn(B) =
Ubeaon(sy 9n(B(b)). Similarly In(B(b)) and In(B) for local names in B(b) and B.
The buffer store B{c/d} is obtained by substituting ¢ for each d in B.

We say a process @ is guarded in P, if every occurrence of @) in P is within
some prefix process. Intuitively, a guarded process cannot affect the behavior
of its host process until the action induced by its guarding prefix is performed.
New operators are guarded in P if all new processes are guarded in P.

The structural congruence =g with respect to the buffer store B is defined
as the smallest congruence relation over processes satisfying the following laws:

1. P = Q, if Q is obtained from P by renaming bound names, or local names
not occurring in B.

P1Q=sQ|PiP|(Q|R) =s(P|Q)|RP|0=sP.

'\P=g P |!P.

(ve)(vd)P =g (vd)(ve)P.

5. (ve)0 =5 0, if ¢ € In(B); (ve)(P| Q) =5 (vc)P | Q, if c € In(B)Ac & gn(Q).

Structural congruence allows us to pull unguarded new operators to the “outer-
most” level.

Buffer store B is valid for process P if each local name of B appears in some
new operator occurring at the outermost level of P, i.e., for every ¢ € In(B),
P =5 (vc)P’ for some P'.

= b

2.1 Operational Semantics

The (early) transition semantics of 7, is given in terms of a labelled transition
system generated by the rules in Table 1. The transition rules are of the form
P,B % P'.B', where P, P’ are processes, B, B are buffer stores and « is an
action, which can be one of the forms: silent action 7, free input ¢(d), free output
¢(d) or bound output ¢(vd). We write n(a) for the set of names occurring in a.

The Buffered m-Calculus: A Model for Concurrent Languages 5

d{c) / /
dom(B dom(B P, B — P'.B
- ¢ & dom(B) ou ¢ ¢ dom(B) OpEN {c/yc}a :

c(x).P,B Y pldjz}, B ed).P,B Y B (ve)P,B X2 pr g
B(b) = (n,[d] = 1) o B(b) = (n,1); 11l <n
b(z).P,B 5 P{d/z}, B[b— (n,1)] b(d).P,B 5 P,Bb — (n,1 : [d))]

IBG B(b) = (n,1); 11l <n; b¢In(P) 0BG B(b) :E(Z; [d] = 1); b & In(P)

P,B Y P Bb s (n,l :: [d)] P,B =% P B[b — (n,1)]

o JELTPLBSPLEPB D p B QB2 @, B; ¢ ¢ dom(B)
Siermi-Pi, B PLB P|QBSP|Q.B
P,B % P’ B’; new operators are guarded in P | Q
P|lQ.BSP | QB
P,B{c/vc} & P',B'; c € n(a) SrrD P=P; PP,BLQ,B;Q=Q
(vc)P,B 2 (vc)P!, B'{vc/c} PB%Q,B
NewB (vb: n)P,B = (vb)P, B[b+ (n,[])]

PAR

Table 1. Transition Rules of

These rules are compatible with the transition rules for the m-calculus. IU and
0U are rules for unbuffered names and synchronous communication is specified by
CoM. IB and 0B define the asynchronous communication along buffered names:
b(z).P performs a 7 action by receiving the “oldest” name d from b’s buffer,
while b(d).P performs a 7 action by inserting d into b’s buffer. Communication
along buffered names is asynchronous because it involves two transitions (IB and
0B) and other actions may occur between them.

IBG and 0BG indicate that a buffer store itself may have actions. If b is a
global buffered name, that is (vb) does not occur in P, then we can insert names
to or receive names from b’s buffer directly. In NEw and OPEN, the substitutions
on the buffer store are for the sake of validity. NEwB is the rule for the extended
new process. After creating an empty buffer for b, the capacity parameter n is
dropped, leaving the new operator indicating that b is a local name.

The Par rule describes how processes can progress asynchronously, which
typically happens with buffered names. However, unlike in the 7-calculus, where
we have open/close rules to manage name scope extension, in the m,-calculus, it
is hard (perhaps impossible) to define an appropriate close rule because when
a local name is exported to a buffer, it becomes hard to track which process
will retrieve the name so as to determine the name scope. For instance, consider
the process P;|Py|P3 where Py = (va)b{a).P], Py = b(y).---, P3 = b(2).---
and a valid buffer store B = [b — (2,[])]. In the m-calculus, P; inserts the
local a into b’s buffer by a 7 action, then it can possibly be received by Ps or
Ps, hence tracking the scope of a becomes very hard. Our solution here is to
prevent processes from inserting local names into buffers when they are running
in parallel with other processes. For processes like the above example, we extend

6 X. Deng, Y. Zhang, Y. Deng, and F. Zhong

the scope of a to the entire process by structural congruence laws and obtain
a process in the form (va)(b(a).P]|P;|P;) thanks to the name convention. This
avoids the scope problem.

We have adopted the name convention which simplifies the definition of the
labeled transition system. Dealing with names with buffers is subtle and the
transition rules without the name convention are presented in [5].

The following proposition says that transition rules preserve buffer validity:

Proposition 1. If B is valid for process P and we have the transition P,B =
P’ B, then B’ is valid for P’.

As in the m-calculus, strong bisimulation over the set of 7, processes can be
defined as follows.

Definition 2. A symmetric binary relation R over m, processes is a bisimula-
tion, if whenever (P, Bp)R(Q,Bg) and (P,Bp) = (P',Bp),

H(Q/a BIQ) . (Q?BQ) i> (Qla B,Q) A (PlaB%')R(le B/Q)

Strong bisimilarity ~ is the largest strong bisimulation over the set of m, pro-
cesses. (P, Bp) and (Q, Bg) are strongly bisimilar, written as (P, Bp) ~ (Q, Bg),
if they are related by some strong bisimulation.

2.2 Encoding in the Polyadic w-Calculus

We demonstrate an encoding of the m,-calculus in the polyadic m-calculus.

Intuitively, a 7, name ¢ is encoded into a pair of m names (¢1,c2) by the
injective name translation function N. In the name pair, ¢; is called the input
name and cs the output name of c. In addition, input and output names for
unbuffered names are identical, but not for buffered names. The two translation
names of buffered name b are exactly the names along which a buffer process
modelling the buffer of b receives and sends values.

The translation function [-] takes a m, process and a valid buffer store as
parameters and returns a single 7w process. The encoding of a buffer store is a
composition of buffer processes each representing a buffered name’s buffer. For
processes, the encoding differs from the original process in the new operators and
prefixes. A new operator is encoded into two new operators localizing the pair
of translation names. The encoding of input prefix ¢(x) is also an input prefix
but the subject is ¢’s input name c;, while the encoding of output prefix ¢(d)
has the output name cy as the subject. Finally, in the encoding of an extended
new process (vb: n)P, a buffer process representing b’s buffer is added.

The formal definition of the translation, including the buffer process and the
translation function, are presented in the companion technical report.

The following lemma shows that transitions of a m, process can be simulated
by its encoding, and no more transition is introduced by the encoding.

Lemma 3. (P,B) % (P',B') if and only if [P, B] M), [P, B'].

The Buffered m-Calculus: A Model for Concurrent Languages 7

where M is a bijection relating actions of m,-calculus to actions of 7-calculus. It
follows that the encoding preserves strong bisimulation.

Theorem 4. (P,Bp) ~ (Q,Bg) if and only if [P,Bp] ~ [Q, Bo].

3 The Go Programming Language

The Go programming language is a general purpose language developed by
Google to support easy and rapid development of large distributed systems.
This section presents a formal operational semantics of the (core) Go language
and a fully abstract encoding in the mp-calculus.

The syntax of a core of Go is presented as follows:

Types : t::=int | chan t

Expressions : €, €1,€a,...:=x | n | ch | make(chan t,n) | <e

Statements : $,81,82,...:=mnil |z =e | e1<es | s1;82 | go fler...en)
| select {c1...cn}

where C1,C2,....i=casexr =<€:8 | case €1<eg : S

The channel type, coupled with the concept called Go-routine, constitutes the
core of Go’s concurrency system. Channel types are of the form chan t, where t is
called the element type. Channels (ch) are first-class values of this language, and
they are created by the make expression make(chan t,n), where chan t specifies
the channel type and the integer n specifies the size of the channel buffer. Notice
that n must be non-negative and if it is zero, the created channel will be a
synchronous channel.

Go-routines are similar to OS threads but much cheaper. A Go-routine is
launched by the statement go f(v;...wv,). The function body of f will be ex-
ecuted in parallel with the program that executes the go statement. When the
function completes, this Go-routine terminates and its return value is discarded.

Communication among Go-routines is achieved by sending and receiving op-
erations on channels. Sending statement ch<-v sends v to channel ch, while
receiving <ch, regarded as an expression in Go, receives a value from ch. Com-
munication via unbuffered channels are synchronous. Buffered (non-zero sized)
channels enable asynchronous communication. Sending a value to a buffered
channel can proceed as long as its buffer is not full and receiving from a buffered
channel can proceed as long as its buffer is not empty.

select statements introduce non-deterministic choice, but their clauses re-
fer to only communication operations. A select statement randomly selects a
clause whose communication is “ready” (able to proceed), completes the selected
communication, then proceeds with the corresponding clause statement.

Without loss of generality, we stipulate that a Go program is a set of function
declarations, each of the form func f(x;...x,) {s}. A Go program must specify
a main function, which we shall refer to as fsio+ in the sequel, as the entry
point — running a Go program is equivalent to executing go fstart(...) with
appropriate arguments. For the sake of simplicity, we only consider function

8 X. Deng, Y. Zhang, Y. Deng, and F. Zhong

calls in go statements and we assume that all functions do not return values and
their bodies contain no local variables other than function arguments.

3.1 Operational Semantics

The structural operational semantics of Go is defined by a two-level labelled
transition system: the local transition system specifies the execution of a single
Go-routine in isolation, and the global transition system describes the behavior
of a running Go program.

We first define the evaluation of expressions. An expression configuration is
a triple (e, o, d.), where e is the expression to be evaluated, o is the local store
mapping local variables to values, and d. is the channel store mapping channels
to triples (n,l,g), where n is the capacity of the channel’s buffer, I is a list of
values in the channel buffer, and ¢ is a tag indicating whether the channel is
local (0) or global (1). The transition rules between expression configurations
»i>g are defined as follows, where actions can be either silent action 7, or r(ch,v)
denoting receive action. We often omit 7 from silent transitions.

(e,0,0¢) |i>g (¢/,0,0%)

VAR (z,0,00) —4 (0(x),0,00) RVE

[e3

(<€,0,0c) g (<€, 0,0.)
6C(Ch) = (07 []79) 5C(Ch) = (TL, [U] " lvg); n>0

RvU RvB
(cch, 0,0 " w,0,5) (SR8 =g (0,0, 8cleh = (n.l g))

ch & dom(d,)
(make(chan t,n),0,d.) 4 (ch,0,d:ch— (n,[],0)])

MAK

VAR retrieves the value of = from local store o. Mak creates a fresh local channel
ch. Other rules concern receiving from channels. Once the channel expression is
fully evaluated, the real receive begins following rules RvU and RvB. The value
received from an unbuffered channel is indicated in the label, while the value
received from a buffered channel is the “oldest” value of the channel’s buffer.

The local transition system defines transition rules between local configura-
tions. A local configuration is a tuple (s, o, d.), where s is the statement to be
executed, o is the local store and d. is the channel store. Fach Go-routine has its
own local store, but the channel store is shared by all Go-routines of a running
program. Some of the local transition rules are presented as follows. Two addi-
tional actions can occur in local transition rules: s(ch,v) for message sending
over channels and g(f,v; ...v,) for Go-routine creation.

dc(ch) = (0,[1], 9)

SpU s(ch,v)
(ch<v,0,0.) —4 (nil, o, d,.)
dc(ch) = (n,l,9); n>0; |ll <n
SpB

(ch<v,0,6.) <4 (nil,0,d.[ch — (n,l:: [v],9)])

Go (go f(v1...vp),0,0.) Mg (nil, o, d.)

The Buffered m-Calculus: A Model for Concurrent Languages 9

Rules SpU and SpB capture the behavior of sending over unbuffered and
buffered channels respectively. Sending a value v over an unbuffered channel ch
carries a sending label s(ch, v), while sending over buffered channels is silent and
can proceed as long as the target channel buffer is not full. The Go rule says that
a go statement does nothing locally and can always proceed with a transition
with the g label — the label is here simply for notifying the global configuration
to generate corresponding Go-routines. Subexpression evaluation in Go is strict
and leftmost.

Global transitions happen between global configurations which contain infor-
mation of all running Go-routines. A global configuration, denoted by A, A; ...,
is defined as a tuple (I, d.), where I is a multi-set of statement/local store pairs
(s,0), of all running Go-routines, and ¢, is the channel store. A global transition
takes the form 07 (I, 0¢,) —, (I, dc,), where d; is a mapping from function
names to function definitions. A Go program will start from an initial configura-
tion {({(Sstarts Tstart) }y Oinit), Where Ssiqrt is the body of the main function start,
Ostart 18 the local store of start, and d;,4+ is the initial channel store. The global
transition rules are listed in Table 2. A global action can be either 7, r(ch, v) or
s(ch,v).

(8,0,8:) g (8,0, 5.)
S F (T U{(5.0)},00) =4 (T U{(s,0)},00)
(51,01,060) L (st 01,60 (52,09, 60) S (sh, 79, 62)
S F (T U{(51,01), (52, 09)}, 00) = (T U{(}, 1), (5, 02)}, 0c)
(s,0,6.) SL, (9 0,55 64(F) = (fune f(aa ... @) {57})
O F(I"UA{(s,0)},0c) =g (TU{(s",0), (S5, [21 — V1 ... Tm = Um])}, dc)

r(ch,v)

(8,0,0c) ——¢ (s',0,8:); dc(ch) = (0,[],1)

S (T U{(s,0)},00) 2 (P UL(s',0)}, 60
dc(ch) = (n,1,1); n>0; 1ll <n

87 (T 60) 8 (1 be[eh s (n, 1 [o], 1))
(5,0,6.) <y (s',0,8); Selch) = (0,[],1); v & dom(c)
5 F (T U{(s,0)},80) 2 (T U{(s7,0)},6c)
(5,0,80) <L (S 0,6.); Bulch) = (0,[1,1); beleh’) = (1, g)

8 F (LU {(s,0)},00) M (P U{(s',0)}, delch! v (w17, 1)])
de(ch) = (n, [v] :1,1); n > 0; v & dom(dc)
8¢ F(1,8.) 2 (1 8u[eh s (n,1,1)])

de(ch) = (n,[ch'] 1 1,1); n > 0; de(ch’) = (n',1',g")

8¢ (D, 86) 2y (1 Su[eh s (n,1,1), ch! — (7,17, 1)])

LGo

GRU

GRB

s(ch v)
GSU1

GSU2

GSB1

GSB2

Table 2. Global Transition Rules

10 X. Deng, Y. Zhang, Y. Deng, and F. Zhong

Loc specifies the independent transition of a single Go-routine. Asynchronous
communication will also take this transition since RvB and SpB are both silent
transitions. LGo creates a new Go-routine. CoM defines the synchronous commu-
nication between two Go-routines over unbuffered channels. The rules Loc, LGo
and Com all specify internal actions of a running program.

A Go program can communicate with the environment via global channels.
GRU, GSU1 and GSU2 describe how a Go program interact with the environ-
ment via unbuffered channels, and GRB, GSB1 and GSB2 describe interactions
via buffered channels. Because communication over buffered channels are asyn-
chronous, the labels in GRB, GSB1 and GSB2 indicate how a global channel inter-
acts with the environment. For instance, in GRB the label r(ch,v) means that
the channel (buffer) ch receives a value v from the environment. The two rules
GSU2 and GSB2 also describe how a local channel is exposed to the environment
and becomes a global channel, by communication upon global channels. The v
in the label is required only when the value is a local channel (¢’ = 0).

Let t = ay ..., where each a; is a global action, we write ¢ for the ac-
tion sequence obtained by eliminating all the occurrences of 7 in t. We write
PBL, P B itPB, .o 25 P B and P,B =, P/ B/if P,B =,25% =,

. :>ga—">g:g P’,B', where = is the reflexive and transitive closure of L>g.

Definition 5. A symmetric binary relation R over global configurations is a
(weak) bisimulation if A;RAy and Ay <, A} implies 3AY . Ay =, Ay ANAJRAY.
Two global configurations are bisimilar, written as Ay =4 Aa, if they are related
by some bisimulation.

Two Go programs gpi, gpz are bisimilar, if their initial global configurations
(with the same ¢.) are bisimilar.

3.2 Encoding

The encoding of Go in the m,-calculus is achieved by the translation function
[-14(r), which maps Go expressions and statements to m;, processes. The param-
eter r is the name along which the result of an expression is returned or the
termination of a statement is signaled. Some of the encodings are as follows.

MAKE [make(chan 7,0)],(r) = 7.(va)F{a) [make(chan 7,n)]4(r) = (vb: n)7(b)
Recv [<e]y(r) = (') ([ely ()| (y)-y(2) 7(2))

SEND [ej<ea]4(r) = (vr')(LR(er, ez,)| (y, 2).y(z).F)

Go [go fler--en)ly(r) = "reyn) flys - yn) T)

g(r) = (vr")(LR(e1 .. .epn,7")|r

In the encoding, we use synchronous communication via local names to ar-
range the evolution order of m, processes. For instance, in REcv, the right hand
side of the composition will not proceed unless the left hand side outputs along
local name r’.

The Buffered m-Calculus: A Model for Concurrent Languages 11

Make returns the local name denoting the newly created channel. A receive
operation corresponds to an input prefix in REcv, while a send operation cor-
responds to an output prefix in SEnD. Auxiliary process LR captures the left-
to-right evaluation of a sequence of expressions. For the go statement, after
evaluating the argument expressions, these arguments are sent to the function
to which f refers. The statement does not wait for the function, rather it outputs
the termination signal along r immediately.

In the encoding, some prefixes and extended new operators are underlined.
They are the most significant part and will be discussed later. The translation
function can be extended to a mapping from global configurations (with) to
mp processes. We write [A], for the pair (P, B), where P is the encoding of A
and d7, while B is a valid buffer store inferred from channel store ..

3.3 Correctness

The correctness of the encoding is demonstrated by a full abstraction theorem
with respect to (weak) bisimulation. The following lemma says that a global
transition may be simulated by a nontrivial sequence of transitions of its encod-
ing. Usually, the encoding will perform some internal adjustments before and
after the real simulation.
Lemma 6. If A =, A', then [A], o M), [A'g, where M is an bijection.
The lemma is proved by induction on the depth of inference of the premise in
the local transition system. Conversely, a sequence of transitions of [A], should
reflect certain global transitions of A. However it is not always possible, since the
simulation may not yet complete, even worse the transition sequence simulating
one global transition may interleave with transition sequences simulating others.
Fortunately, by observing the proof of the previous lemma, we find that actu-
ally only one transition in the sequence plays the crucial role, as this transition
uniquely identifies a global transition. Other 7 transitions, whether preceding or
following this special transition, are internal adjustments which prepare for the
special transition immediately after them. We call the special transition a sim-
ulating transition, and the other non-special 7 transitions preparing transitions.

Definition 7. A transition P, B = P', B’ is a simulating transition if the ac-
tion « is induced by the underlined prefizes and extended new operators specified
in the encoding in Section 3.2. Otherwise, it is a preparing transition.

Definition 8. Let A be a global configuration, the set T, is defined as follows:

1. [A]y € Ta.
2. (P,B) € Ty and (P,B) — (P, B) is a preparing transition, then (P',B) € Tx.
3. (P,B) € Ty and (P',B) — (P, B) is a preparing transition, then (P',B) € Ty.
Any of the processes in T4 can be seen as the encoding of A.
Lemma 9. If (P,B) € Ty and (Q, B) € Ty, then we have (P, B) = (Q, B).
As a consequence, bisimulation is preserved by the encoding.
Theorem 10. A, =4 Ay if and only if [A1]4 =~ [A2],.

12 X. Deng, Y. Zhang, Y. Deng, and F. Zhong

4 Conclusion

We have presented the mp-calculus which extends the m-calculus by buffered
names. Native asynchronous communication is achieved via buffered names. We
have provided a fully abstract encoding of an imperative concurrent language in
the mp-calculus with respect to weak bisimulation. A fully abstract translation
from Core Erlang to the m,-calculus can also be obtained. Since Erlang processes
are communicated via Erlang mailboxes, the main difference of the encoding of
Erlang from that of Go is the explicit modelling of Erlang mailboxes by sequences
of buffered names. The details are relegated to the technical report [5].

Acknowledgement. The authors would like to thank Hao Huang for interesting
discussion on Erlang.

References

1. Armstrong, J.L.: The Development of Erlang. In: ICFP. pp. 196-203 (1997)

2. Beauxis, R., Palamidessi, C., Valencia, F.D.: On the Asynchronous Nature of
the Asynchronous m-Calculus. In: Concurrency, Graphs and Models. pp. 473-492
(2008)

3. Boudol, G.: Asynchrony and the m-calculus. Rapport de recherche RR-1702, INRIA
(1992), http://hal.inria.fr/inria-00076939

4. Carlsson, R.: An introduction to Core Erlang. In: PLI’01 Erlang Workshop (2001)

5. Deng, X., Zhang, Y., Deng, Y., Zhong, F.: The Buffered 7m-Calculus: A Model for
Concurrent Languages (Full version) (2012), available at http://arxiv.org/abs/
1212.6183

6. Google Inc.: The Go Programming Language Specification (2012), http://golang.
org/ref/spec

7. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the ACM
21(8), 666-677 (1978)

8. Honda, K., Tokoro, M.: An Object Calculus for Asynchronous Communication. In:
ECOOP. pp. 133-147 (1991)

9. Milner, R.: Communication and Concurrency. PHI Series in computer science,
Prentice Hall (1989)

10. Milner, R.: The Polyadic w-Calculus: a tutorial. Tech. Rep. ECS-LFCS-91-180,
Computer Science Dept., University of Edinburgh (1991)

11. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Parts I and II.
Information and Computation 100(1), 1-77 (1992)

12. Noll, T., Roy, C.K.: Modeling Erlang in the m-calculus. In: Erlang Workshop. pp.
72-77 (2005)

13. Roy, C.K., Noll, T., Roy, B., Cordy, J.R.: Towards Automatic Verification of Erlang
Programs by m-Calculus Translation. In: Erlang Workshop. pp. 38-50 (2006)

14. Sangiorgi, D., Walker, D.: The w-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press (2001)

15. Walker, D.: Objects in the w-Calculus. Information and Computation 116(2), 253~
271 (1995)

