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Abstract

In order to ensure manufacturability and mesh-independence in density-based topology opti-
mization schemes it is imperative to use restriction methods. This paper introduces a new class of
morphology based restriction schemes which work as density filters, i.e. the physical stiffness of an
element is based on a function of the design variables of the neighboring elements. The new filters
have the advantage that they eliminate grey scale transitions between solid and void regions. Using
different test examples, it is shown that the schemes in general provide black and white designs with
minimum length-scale constraints on either or both minimum hole sizes and minimum structural
feature sizes. The new schemes are compared with methods and modified methods found in the
literature.

Keywords: topology optimization, regularization, image processing, morphology operators, manu-
facturing constraints.

1 Introduction

It is well-known that the standard “density approach to topology optimization” (Bendsøe, 1989; Sig-
mund, 2001a) is prone to problems with checkerboards and mesh-dependency if no regularization
scheme is applied. As reviewed by Sigmund and Petersson (1998) a large number of works have sug-
gested different regularization schemes to be used in connection with topology optimization. However,
each scheme has its pros and cons and probably the ideal scheme still has to be invented.

In this paper, we present a new family of regularization schemes that are based on image morphology
operators. Although the new schemes, as will be demonstrated, solve many of the known problems
with existing schemes, they require a continuation approach and hence are not very computationally
efficient, thus there is still room left for improvement.

Restriction methods for density based topology optimization problems can roughly be divided into
three categories: 1) mesh-independent filtering methods, constituting sensitivity filters (Sigmund,
1994, 1997; Sigmund and Petersson, 1998) and density filters (Bruns and Tortorelli, 2001; Bourdin,
2001); 2) constraint methods such as perimeter control (Ambrosio and Buttazzo, 1993; Haber et al,
1994), global gradient control (Bendsøe, 1995; Borrvall, 2001), local gradient control (Niordson, 1983;
Petersson and Sigmund, 1998; Zhou et al, 2001), regularized penalty methods (Borrvall and Petersson,
2001) and integral filtering (Poulsen, 2003); and 3) other methods like wavelet parameterizations (Kim
and Yoon, 2000; Poulsen, 2002), phase-field approaches (Bourdin and Chambolle, 2003; Wang and
Zhou, 2004) and level-set methods (Sethian and Wiegmann, 2000; Wang et al, 2003; Allaire et al,
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2004)1. The filtering methods in group 1 are probably the most popular ones due to their ease of
implementation and their efficiency. In general, the constraint methods in group 2 may be difficult to
use because they require a problem and geometry dependent choice and tuning of the constraint value.
The alternative methods in group 3 are mostly still in their infancy and have yet to be successfully
applied to advanced problems with many constraints. There are also methods that are hybrids between
categories 1 and 2 (Zhou et al, 2001; Cardoso and Fonseca, 2003). Here, the box-constraints of the
optimization algorithm are modified according to a filtering scheme, resulting in local gradient control-
like behavior.

The morphology based restriction methods presented in this paper are extensions of the existing
density filtering methods. The exact description of the methods will be given later, but a feature
of both sensitivity and density based filtering methods is that they result in optimized topologies
that have grey (porous material) transition regions between solid and void areas as illustrated in
Fig.1a. These transition regions whose width depends on the filter size (i.e. the minimum length-
scale) may be an advantage or a disadvantage depending on the problem considered. In a standard
compliance minimization problem, the grey transition regions make it easy to perform an automated
post-processing procedure to identify hole shapes and other features by a simple iso-density curve
(Fig.1a). Usually, the post-processed structure has a performance that is very close to the optimized
structure. However, recently the author’s research group has applied the topology optimization to
phononic and photonic crystal design (Sigmund and Jensen, 2003; Jensen and Sigmund, 2004) where
structures with intricate semi-periodic patterns appear as the result of the topology optimization
process. An example of the design of a nano-scale optical splitter from Borel et al (2005) is shown
in Fig.1b. Again grey transition regions due to the filtering are observed. However, in this case a
simple post-processing based on an iso-density curve and thresh-holding results in a structure with a
performance that is degraded and entirely different from the optimized structure. The large difference
is attributed to the localized optical wave patterns that can get significantly altered by even small
geometrical changes. This as opposed to the minimum compliance case where local stress changes
often are ignorable with regards to the global compliance of the structure.

An often used method to obtain crisp boundaries in filter-based topology optimization is to gradually
decrease the size and influence of the filter during the optimization process. Whereas this approach in
many cases goes well, there are other cases where a mesh-dependent design may re-appear during the
continuation approach, and certainly it is impossible to maintain minimum feature sizes (like minimum
hole size or minimum bar thicknesses) if the filter effect is diminished.

In conclusion, there is a need for a regularization technique that preserves the simplicity and efficiency
of the filtering techniques but at the same time results in discrete and easily interpretable designs
that have minimum feature sizes controlled by the filter radius. A number of alternative schemes
that attempt to solve these requirements have appeared recently and will be reviewed in the example
section. In order to provide a basis for comparison of the new schemes suggested in this paper and
the alternatives presented in the literature, a list of requirements for the “ideal restriction method”
could be:

1. Mesh-independent and checkerboard-free solutions

2. Black and white (0/1) solutions

3. Manufacturability (tooling radius, minimum hole size, etc.)

4. No extra constraints

5. Not too many tuning parameters
1Level-set methods can be categorized as restriction methods in two dimensions but not in three dimensions where

topological changes are allowed.
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b)

a)
Result of simple post-processing

Density image as result of topology optimization

Figure 1: Demonstration of grey (porous) transition regions as results of topology optimization using
filtering approaches. a) Grey scale picture of optimized MBB-beam with post-processed version based
on the 50% density contour curve. b) Grey scale picture of a photonic crystal splitter nano-optical
device.
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6. Stable and fast convergence

7. General applicability

8. Simple implementation

9. Low CPU-time

Some comments should be attached to the list. Concerning item 1, a good scheme should result
in designs with smoothly varying geometries with details defined by the radius of the filter. The
need for crisp black and white solution (item 2) was discussed above. Manufacturability (item 3) is
closely related to item 1 but also includes the avoidance of non-manufacturable features such as sharp
corners. Extra constraints (item 4) require difficult and problem dependent choice of constraint values
and should be avoided. Tuning parameters (item 5) that are problem and geometry dependent should
be avoided. With ”stable convergence” (item 6) it is understood that the method is independent of the
problem formulation (and physical setting) and does not require delicate fine-tuning of parameters.
With ”general applicability” (item 7) it is understood that the scheme should be applicable to problems
involving any kind of objective functions, constraints, density interpolation functions and physical
models. With ”simple implementation” (item 8) it is understood that one can use ”black-box” finite
element codes and optimizers.

Depending on the viewpoint, the prioritized list may look different. The suggested list probably
applies to researchers and academicians who are interested in getting as close to the global optimum
as possible whereas software vendors may move ”stable and fast convergence” (item 6) and ”Low
CPU-time” (item 9) up front as items 1 and 2, respectively.

In order to test and compare new and old filter methods this paper suggests three different test prob-
lems. When performing a test and review of different filtering methods it is very difficult to perform a
fair comparison since every author has his preferred parameter settings, interpolation function, opti-
mizer and test problems. A method may work very well in one problem setting or for one test problem,
whereas it may fail in other settings. However, for a method to be generally stable and applicable, it
should be possible to use it in a standard setting. Hence, if a method does not work well for the three
test cases provided in this paper, it will probably not be working well for other formulations either.
The three test cases are therefore not chosen arbitrarily but are carefully selected in order to exploit
the weaknesses of the different filtering methods with regards to the 9 requirements to an ideal filter
method listed earlier.

The paper is organized as follows. In section 2 we set up the three test problems that will be used to
benchmark the performance of new and old filters. In section 3 we review and set up the equations for
the original sensitivity and density filters. In section 4 we present a new family of filtering techniques
based on image morphology operators and in section 5 we briefly review black and white filtering
alternatives from the recent literature. In section 6 we discuss implementation aspects and sensitivity
analysis for the new morphology based filter schemes. In section 7 we present, discuss and compare
the results obtained for the different approaches. Finally, we summarize our findings and try to draw
some general guidelines for the use of filtering methods in density based topology optimization in
section 8.

2 Problem formulation and definition of test problems

In general, many new procedures and schemes in topology optimization are tested on simple compli-
ance minimization problems with a material resource constraint. However, it is dangerous to draw
general conclusions from such studies since compliance minimization problems have some features that
make them especially easy to solve. First of all, the compliance (objective) function is self-adjoint, i.e.
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the direct solution and the adjoint solution are the same (possibly with opposite signs) and thus sen-
sitivities will always have the same sign. Second, the single volume constraint is linear and monotone
in the design variables providing for easy solution by optimality criteria approaches or other heuris-
tic procedures. Nevertheless, we do include a compliance based test problem here (the MBB-beam)
for comparison with the literature but we also use two other test cases that are harder to solve. In
this connection, it should also be noted that some authors have used a two-bar truss example, i.e. a
very short cantilever beam, as a test case for filtering schemes. The two-bar example (obviously) has
a unique solution (two bars) and thus demonstrating mesh independent solutions for this test case
demonstrates nothing.

A problem that is already much more difficult to solve than simple compliance minimization problems
is the design of a compliant force inverter (Sigmund, 1997, 2000). Here we use a simple formulation as
presented in Sigmund (2000) and Bendsøe and Sigmund (2003) that requires minimization of output
displacement subject to a single (linear) constraint on material resource. This problem is non-self
adjoint, meaning that the sensitivities of the objective function may take both positive and negative
values – a feature that makes the convergence of this problem much more prone to local minima.

The third test case involves wave propagation and has no volume constraint. The latter feature dis-
qualifies many of the existing filter approaches since they rely on an active material resource constraint.

The test cases are all based on the standard ”density based approach to topology optimization”, i.e.
the design variables ρ represent piece-wise constant element densities. We consider linear isotropic
materials and the Young’s modulus of an element is a function of the element design variable ρe given
by the modified SIMP (Simplified Isotropic Material with Penalization) interpolation scheme

Ee = E(ρe) = Emin + ρp
e(E0 − Emin), ρe ∈ [0, 1], (1)

where p is the penalization power, Emin is the stiffness of soft (void) material (non-zero in order to
avoid singularity of the stiffness matrix) and E0 is the Young’s modulus of solid material. Use of the
modified SIMP scheme (1) as opposed to the standard SIMP scheme E(ρe) = ρp

eE0 with ρe ∈]0, 1] has
a number of advantages, including that the minimum stiffness value is independent of the penalization
factor, that the modified formulation also covers two phase design problems and that the modified form
is easier to generalize for use in the various filtering schemes discussed in the present paper. The test
structures are all discretized by 4-node bi-linear finite elements. Otherwise, the implementation is done
in MATLAB as described in Sigmund (2001a). As the optimizer we use the MATLAB implementation
of the Method of Moving Asymptotes (Svanberg, 1987) made freely available for research purposes by
Krister Svanberg.

In the following we define the three problem specific formulations.

2.1 The MBB-beam

The optimization problem for the MBB-beam example may be written as

min
ρ

: f(ρ) = UTKU =
∑
e

uT
e keue

s.t. : KU = F
: g = V (ρ)/V ∗ − 1 =

∑
e

veρe/V
∗ − 1 ≤ 0

: 0 ≤ ρ ≤ 1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (2)

where K, U and F are the global stiffness matrix, displacement vector and force vector, respectively,
lower case symbols indicate element wise quantities, ke = k(ρe) = E(ρe)k0

e, is the element stiffness
matrix, k0

e is the element stiffness matrix for unit Young’s modulus, the sum symbol in the first line
indicates finite element summation, V ∗ is the material resource constraint and ve is the volume of
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element e. The sensitivity expressions are simply found as
∂f
∂ρe

= −uT
e

∂ke
∂ρe

ue,

∂ke
∂ρe

= p (E0 − Emin)ρp−1
e k0

e,

∂g
∂ρe

= ve/V
∗.

(3)

The design domain and its dimensions are shown in Fig. 2a. Due to symmetry we model only half
the design domain which is discretized with 120 by 40 bi-linear quadrilaterals. The Young’s modulus
of solid material is E0 = 1, the minimum stiffness is Emin = 10−9, the Poisson’s ratio is ν = 0.3, the
filter radius (see later) is R = 3.5 and the penalization factor is p = 3.

2.2 The compliant force inverter

In compliant mechanism design, a typical design goal is to transfer work from an input actuator to an
output spring (cf. Sigmund, 2000). For the present case, we consider the force inverter that previously
has been used as a benchmark (Sigmund, 1997). The optimization problem for the force inverter
example may be written as

min
ρ

: f(ρ) = LTU

s.t. : KU = F
: g = V (ρ)/V ∗ − 1 =

∑
e

veρe/V
∗ − 1 ≤ 0

: 0 ≤ ρ ≤ 1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (4)

where L is a unit length vector with zeros at all degrees of freedom except at the output point where
it is one. The sensitivity is simply found as

∂f

∂ρe
= λT

e

∂ke

∂ρe
ue, (5)

where λ is the global adjoint vector found by the solution of the adjoint problem Kλ = −L and λe

is the part of the adjoint vector associated with element e. The design domain and its dimensions
are shown in Fig. 2b. For faster computations we consider only half the structure due to symmetry.
The design domain is discretized with 120 by 60 bi-linear quadrilaterals, the filter radius is R = 2.5,
the input force is Fin = 1 and the input and output spring stiffnesses are kin = 1 and kout = 0.001,
respectively. Otherwise, the parameters are the same as for the MBB example. Remark that the input
and output spring stiffnesses are chosen such that the resulting mechanism without filtering exhibits
so-called one-node-connected hinges. These are numerical artifacts related to checkerboard patterns
which for a compliant mechanism have the (artificial) advantage that they are good in transmitting
forces but deliver no resistance to bending. For higher stiffness of the output spring, the hinge-like
connection becomes more solid (distributed compliant) on the cost of smaller output displacement
(Sigmund, 1997). In order to compare the different filtering methods abilities to prevent hinges, we
here select a small value of the output spring stiffness.

2.3 The wave transmitter

Recently, the topology optimization method has been applied to the design of wave-propagation prob-
lems based on band gap structures both for phononic and photonic applications (Sigmund and Jensen,
2003; Jensen and Sigmund, 2004). A special feature of these problems is that they require no volume
constraint. An optimization problem for a wave transmitter example may be written as

min
ρ

: f(ρ) = −UTLU

s.t. :
(
K + iΩC − Ω2M

)
U = F

: 0 ≤ ρ ≤ 1

⎫⎪⎬
⎪⎭ , (6)
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Figure 2: Design domains and boundary conditions for the three test problems. a) The MBB-beam,
b) the compliant force inverter and c) a wave focussing device
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where L this time is a zero matrix with ones at the diagonal entries corresponding to the degrees of
freedom where the wave amplitude is to be maximized, i is the complex operator and overbars mean
complex conjugate. M and C are the global mass and damping matrices, respectively. The global
mass matrix is defined as M =

∑
e (�min + ρe(�0 − �min))m0

e, where �min and �0 are the specific
mass densities of background material and foreground material, respectively, and m0

e is the element
mass matrix for unit specific mass density. In order to assure black and white solutions we apply the
so-called ”pamping” (penalization damping) method introduced in Jensen and Sigmund (2005). The
global damping matrix is defined as C =

∑
e qρe(1 − ρe)c0

e, where q is the pamping factor and c0
e is

the element damping matrix (here mass proportional, i.e. c0
e = m0

e). The pamping method ensures
black and white solutions in wave transmission problems by introducing an (artificial) damping in
intermediate density elements.

The sensitivity of the objective function is found as

∂f
∂ρe

= 2�
(
λT

e

[
∂ke
∂ρe

+ iΩ∂ce
∂ρe

− Ω2 ∂me
∂ρe

]
ue

)
,

∂ce
∂ρe

= q(1 − 2ρe)m0
e,

∂me
∂ρe

= (�0 − �min)m0
e,

(7)

where λ is the solution to the adjoint problem
(
K + iΩC− Ω2M

)T
λ = −LU and �(·) denotes the

real part of (·). In practice, the objective function for wave propagation problems may change by
orders of magnitude during optimization which may cause normalization problems for the optimizer.
Therefore, we optimize log(f) instead and the sensitivities are modified accordingly (i.e. ∂f/∂ρe

becomes (∂f/∂ρe)/f).

The design domain and its dimensions are shown in Fig. 2c. The design domain is discretized with 80
by 80 bi-linear quadrilaterals, the filter radius is R = 2.5/80, the pamping coefficient is q = 5 and the
angular frequency is Ω = 10. The material properties used mimic the stiffness and density ratios of
steel and polyester, i.e. E0 = 1, Emin = 0.025, �0 = 1 and �min = 0.15. The structure is supported
by dampers perpendicular to the surfaces at all four edges with damping factors 0.1 and a distributed
vertical input load (i.e. an incoming shear wave) on the left edge. The goal of the optimization
problem is to maximize the vertical amplitude at the center node of the right edge, i.e. to obtain the
most efficient shear wave focussing device.

3 Basic filtering methods

As discussed in the introduction, filtering methods intended for regularization of topology optimization
problems can be divided into density and sensitivity based methods. In the former case, each element
density is redefined as a weighted average of the densities in a mesh-independent neighborhood of
the element, before calling the finite element solver, and afterwards the sensitivities are modified in a
consistent way. In the latter case, the finite element problem is solved in the standard way but after
calculating the sensitivities consistently, they are heuristically modified as weighted averages of the
sensitivities in mesh-independent neighborhoods.

The neighborhood of element e, here named Ne, is generally specified by the elements that have centers
within a given filter radius R of the center of element e, i.e.

Ne = {i | ||xi − xe|| ≤ R}, (8)

where xi is the spatial (center) location of element i.

In order to compare the different methods we perform different simplifications and generalizations.
First, all methods are described in a discrete setting and density and sensitivity information is assumed
constant within each element and is evaluated in element centers. It is clear that especially for small
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filter radius to mesh size ratios this simplification may cause unwanted effects that may distort the
conclusions for the numerical results. Second, some of the filters from the literature are based on
density interpolation schemes being different from piece-wise constant. Again, in order to make a fair
and general comparison, these schemes are reformulated in the standard piece-wise constant density
form. It may be that this reformulation causes not so favorable behavior of the method, however, in
order to be generally applicable, the filtering method should also work in this setting.

A pitfall when working with filtering methods is the treatment of mesh boundaries. In principle one
should expand the filter and include elements outside the mesh at external edges as void elements
and likewise one should expand the filter outside the mesh at symmetry edges and mirror the values
from inside the mesh. Furthermore, supported or non-zero-traction boundaries should be specified to
be solid. In this way, one would obtain consistent filtering and avoid problems at edges and corners.
However, no papers appear to have implemented such a scheme. Instead, it seems to be most common
simply to perform the filtering operations only based on the elements inside the mesh. This is also
the scheme applied here. As will be discussed later, the effect of the simplification seems to vary from
filter scheme to filter scheme.

In the following two subsections, we discuss the two different filtering approaches in more detail.

3.1 Density filtering

Density filters work by modifying the element density and thereby stiffness to be a function of the
densities in a specified neighborhood of an element. The modified element density can be written as

ρ̃e = ρ̃e(ρi∈Ne), (9)

i.e., the modified element density ρ̃e is a function of the neighboring design variables ρi∈Ne . Hence,
the modified stiffness in element e can be written as

Ee = Ee(ρ) = Ee(ρ̃e) = Emin + ρ̃p
e(E0 − Emin), (10)

where ρ̃e is the filtered density. Several ways for implementing the density filtering have been proposed
in the literature and the main ones will be reviewed below. Alternative density filter schemes will be
reviewed in section 5.

An important characteristic of filter operators is volume-preservation, i.e. the volume of material
should be the same before and after the filtering process. In practice, exact volume preservation is
seldomly fulfilled due to boundary influence. Some of the suggested variations of the density filter
that have appeared in the literature do not preserve volume. This is no problem as long as the volume
fraction constraint is modified accordingly and there are no fixed solid or void regions in the design
domain. For the present case, we are operating with a modified density function, hence the volume
constraint must also be imposed on the modified (physical) density field. This means that the volume
fraction constraint for a density filter approach must be defined as

g = V (ρ̃)/V ∗ − 1 =
∑
e

veρ̃e/V
∗ − 1 ≤ 0 (11)

and not as g =
∑
e

veρe/V
∗ − 1 as erroneously defined in some papers. The problem with non-volume

preserving filters and fixed solid or void regions will be discussed in the example section.
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Basic density filtering

Density filtering was introduced by Bruns and Tortorelli (2001) and mathematically proven as a viable
approach by Bourdin (2001). The filtered density measure is

ρ̃e =

∑
i∈Ne

w(xi)viρi

∑
i∈Ne

w(xi)vi

, (12)

where the weighting function w(xi) is given by the linearly decaying (cone-shape) function

w(xi) = R − ||xi − xe|| (13)

as suggested in Bruns and Tortorelli (2001); Bourdin (2001). As defined earlier, vi denotes the volume
of element i.

In order to obtain a smoother weighting function, the Gaussian (bell shape) distribution function

w(xi) = e
− 1

2

(
||xi−xe||

σd

)2

(14)

was suggested in Bruns and Tortorelli (2003); Wang and Wang (2005) for use with the density filtering
(12). In Bruns and Tortorelli (2003) the variance is defined by σd = R/3 and in Wang and Wang
(2005) by σd = R/2. In both cases, the filter is truncated at radius R. For the latter case, it means
that the bell-shape curve is heavily truncated. In tests, the author did not experience any advantages
of the smooth Gaussian function compared to the original linear function, however, it is possible that
there is an advantage when the filtering scheme is used in connection with the element removal and
re-introduction scheme suggested by Bruns and Tortorelli (2003).

For completeness one may also consider a constant weighting function

w(xi) = 1. (15)

together with the density filtering (12).

The effect of the weighting is highest for the constant weighting (15), less for the linear decaying
weighting (13) and least for the Gaussian weighting (14). From a computing time point of view it is
thus more efficient to use the constant weighting function (15) since a smaller filter radius will result
in the same filtering effect. In the comparison studies of the present paper, we will only present result
for the linearly decaying weighting case (13).

When using density filters it is important to do the physically correct interpretation of the design. In
the literature, this has sometimes caused problems although it should be rather simple. The original
design variables ρ have no physical meaning! They are only used as intermediate mathematical
variables. Therefore, one should always show plots of the filtered design variables ρ̃ (the densities
used in the SIMP-interpolation (10)), since they represent the physical density of the elements. One
could also plot ρ̃p which would represent the physical stiffness of the elements. For historical reasons
we prefer the former case (i.e. we will plot the filtered densities ρ̃) but we also include plots of the
(non-physical) design variable fields ρ for illustrative purposes.

3.2 Sensitivity filtering

Sensitivity filtering was introduced by Sigmund (1994, 1997); Sigmund and Petersson (1998) and
has become very popular both in academia and in commercial programs. The main idea is to base
design updates on filtered sensitivities instead of the real sensitivities. Obviously, this is a simple but
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potentially risky approach, especially for line-search based optimization schemes since the sensitivity
data may not represent a descent direction and hence the optimization may stop prematurely. However,
numerous applications and multiple physics settings have proven the method very robust and reliable
using most of the popular optimization tools.

Original mesh-independent sensitivity filter

The original form of the sensitivity filter presented by Sigmund (1997) was

∂̃f

∂ρe
=

∑
i∈Ne

w(xi)ρi
∂f

∂ρi

ρe

∑
i∈Ne

w(xi)
, (16)

where the weighting function w(xi) is the linearly decaying function (13). When the lower bound
on the design variable is 0 as it is here, ρe in the denominator of (16) should be substituted with
max(ρe, ε) where ε is a small number (e.g. 10−3).

A modification that accounts for non-regular meshes with varying element volumes ve is

∂̃f

∂ρe
=

∑
i∈Ne

w(xi)ρi
∂f

∂ρi
/vi

ρe/ve

∑
i∈Ne

w(xi)
. (17)

Intuitively, it would have made more sense to multiply by the element volumes (big elements, big
weight and small elements, small weight), however, the motivation for dividing by the volumes is
partly based on numerical experiments and partly based on energy considerations. By dividing by the
element volume, the term inside the summation in the numerator can be interpreted as an averaged
strain energy density (energy per unit volume).

Through time, several researchers have tried to explain the exact workwise of the sensitivity filter, how-
ever, so far without success. Since the sensitivities are modified heuristically, it is probably impossible
to figure out what objective function is actually being minimized but generally it may be stated that
the filtered sensitivities correspond to the sensitivities of a smoothed version of the original objective
function. Despite that the sensitivities are modified in a heuristic way, the author has throughout his
career solved numerous different problems involving up to 20 filtered constraints without convergence
problems. A key point behind the success of the method seems to be the scaling with the density in
the nominator and the denominator in (16). A number of modifications of the filter will be discussed
in section 5.

4 Filtering based on image morphology operators

A common problem for the standard density and sensitivity filters discussed in the previous section
is that a grey transition region between solid and void areas always will appear due to the averaging
nature of the density filter operator. In the following, we will present a new scheme that prevents the
grey transition regions but (mostly) preserves the good features of the density filtering method.

In image analysis, morphology operators are used to quantify holes or objects, restore noisy pictures
and perform automatic inspection of image data (Pratt, 1991). The basic morphology operators are
“erode” and “dilate” and several extensions can be performed by sequentially applying the erode and
dilate operators.
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The work-wise of some basic binary morphology operators are illustrated in the following. An original
binary image is shown in Fig. 3a. In image processing one defines a so-called “structuring element”
which basically corresponds to the neighborhood operator defined in (8). Performing the morphology
operation called erode, verbally corresponds to translating the center of the neighborhood over each
element in the design domain. If any of the pixels covered by the neighborhood is void, then the
center pixel is made void. Oppositely, the dilate operation sets the center pixel to solid if any pixel
covered by the neighborhood is solid. The “open” and “close” operations are defined as an erode
followed by a dilate operation and a dilate followed by an erode operation, respectively. The results
of the four different operations are seen in Fig. 3b-e. The erode and dilate operators are not volume
preserving. In particular, the erode operator removes any feature in the original image that is smaller
than the neighborhood (Fig. 3b). Oppositely, the dilate operator fills any hole that is smaller than
the neighborhood (Fig. 3c). The open and close operators are volume preserving, have almost the
same behaviors as the erode and dilate operators, respectively, but retain the feature sizes above the
filter limit from the original image. Immediately, one recognizes that the morphology operators are
well suited to provide for feature size control in topology optimization, however, in order to make
them practically applicable, the min/max-type operators need to be redefined as continuous and
differentiable functions. This is discussed in the following.

Dilate

In its discrete form the dilation operator is a max operator, i.e. the physical density of element e
takes the maximum of the densities in the neighborhood Ne. The max-formulation is not suitable for
gradient-based optimization hence it must be converted to a continuous form. A continuous form that
uses the Kreisselmeier and Steinhauser (1983) formulation can be formulated as

ρ̃e = log

⎛
⎜⎜⎜⎝

∑
i∈Ne

eβρi

∑
i∈Ne

1

⎞
⎟⎟⎟⎠ /β. (18)

For β approaching zero, the filter corresponds to the original density filter (12) with constant weighting
(15) and for β approaching infinity it corresponds to the max-operator. In order to obtain a numeri-
cally stable scheme β must be gradually increased using a continuation scheme. Based on numerical
experience, the continuation method is started with β = 0.2 and then gradually increased to 200.
Note also that there is no volume dependence in the continuous morphology operator (18) due to its
original max-operator nature.

It should also be noted here that the proposed continuation method maintains the filtering effect and
is only used to enforce black and white solutions. This is in contrast to other continuation methods
where the filtering effect gradually is diminished urging the design into a local (black and white)
minimum. As will be seen in the example section, the filter works as a ”fixed radius deposition tool”,
i.e. no details of the structure are smaller than a circular (deposition) tool with radius R.

As will be seen later, the resulting physical density distributions ρ̄ become quite nice and clear but
the extremely thin (has a low volume fraction) design variable structure ρ makes the physical density
distribution very sensitive to even small variations in the design variables and may explain occasional
instabilities during convergence.

Erode

The morphological opposite of dilation is erosion, which in its discrete form corresponds to a min-
operator, i.e. the physical density of element e is the minimum of the densities in the neighborhood.
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Erode

Dilate

Open

Structuring
element

Close

a)

b)

c)

d)

e)

Original image

Figure 3: Demonstration of basic image morphology operators. The size of the structuring element
is enlarged for illustrative purposes. a) Original image and 5 element structuring element (neighbor-
hood). b) Result of erosion, c) result of dilation, d) result of open (erosion followed by dilation) and
e) result of close (dilation followed by erosion).
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As opposed to the dilation operator, the design variable field is very thick (has a high volume fraction)
and thus less sensitive to variations in the design variables. The Kreisselmeier-Steinhauser formulation
again gives a continuous form of the min-operator

ρe = 1 − log

⎛
⎜⎜⎜⎝

∑
i∈Ne

eβ(1−ρi)

∑
i∈Ne

1

⎞
⎟⎟⎟⎠ /β. (19)

As before, the filter is implemented by a continuation approach. Also, the filter corresponds to the
original density filter (12) with constant weights (15) for β approaching zero and to the min operator
for β approaching infinity. Again, the continuation method starts with β = 0.2 and gradually increases
to 200. Also, as will be seen in the examples, this filter works as a “machining constraint”, i.e. the
resulting topology has no hole features that are smaller than a circle with radius R.

Neither the dilation filter nor the erosion filter are volume preserving. A small extension, however,
resolves this issue as will be shown in the following.

Close

Dilation may be followed by erosion to form a morphological close operation. In image processing,
this corresponds to filling in all details with dimensions smaller than the filter size. If we denote the
dilation operation by tilde and the erosion operation with an overline, the equation for the filtered
density becomes

ρ̃e = ρ̃e

(
ρ̃j∈Ne(ρi∈Nj )

)
. (20)

Results obtained using the close filter are quite similar to those obtained using the dilation filter
although the former seems to be a bit more stable due to the denser design variable field. The close
operator is volume preserving.

Open

Likewise, erosion may be followed by dilation to form the open operator. In image processing, this
corresponds to removing all details with dimensions smaller than the filter size. If we denote the
dilation operation by tilde and the erosion operation with a bar, then the filtered density becomes

ρ̃e = ρ̃e

(
ρj∈Ne

(ρi∈Nj )
)

. (21)

Results obtained using the open filter are quite similar to those obtained using the erosion filter
although the latter seems to be a bit more stable due to the denser design variable field. The open
operator is also volume preserving.

Further morphological operators

In order to obtain minimum hole size and minimum structural detail size simultaneously, one may
combine the open and close operators to form the close-open operator

˜̃
ρe = ˜̃

ρe

(
ρ̃i∈Ne

(
ρ̃j∈Ni

(
ρ̃k∈Nj

(ρl∈Nk
)
)))

, (22)

or the open-close operator

˜̃ρe = ˜̃ρe

(
˜̃ρi∈Ne

(
ρ̃j∈Ni

(
ρk∈Nj

(ρl∈Nk
)
)))

, (23)
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i.e., in both cases one has to perform four consecutive filter operations which in itself is not bad,
however, the computational burden of the associated sensitivity analysis becomes immense. In prac-
tice, the sensitivity of one element becomes a function of its neighbors, which are function of their
neighbors, and so on four times. This overwhelming task is much heavier than the solution of the
finite element problem (see later discussion). A shortcut may be initially to combine the open and
close operators by taking the average of them, i.e.

˜̃ρe ≈
[
ρ̃e + ρ̃e

]
/2 =

[
ρ̃e

(
ρ̃j∈Ne(ρi∈Nj )

)
+ ρ̃e

(
ρj∈Ne

(ρi∈Nj )
)]

/2. (24)

After convergence, one may use the real open-close or close-open operators to provide the final solution.
The open-close, the close-open and the combination operator are all volume preserving.

5 Alternative black and white filtering schemes

Since the review article by Sigmund and Petersson (1998) a number of alternative filtering schemes
that claim black and white solutions have been published. In the following, we briefly review these
methods. The methods are again categorized in density and sensitivity based methods.

5.1 Density filters

Modified density filtering

In order to obtain more discrete solutions than provided by the original density filter (12), Guo and
Gu (2004) have suggested a modification to (10) where they multiply the filtered density with the
original variable, i.e.

Ee = Ee(ρ) = Ee(ρ, ρ̃e) = Emin + ρeρ̃
p
e(E0 − Emin), (25)

where ρ̃e is given by (12) and the linear weighting function (13). The authors claim that their
modification results in improved black and white (0/1) solutions, however, they only show pictures
based on the design variables ρ which have no physical meaning. For density filtering methods, the
vector ρ should only be seen as a mathematical design variable; the physical density distribution to
be plotted is given by the filtered vector ρ̃. When the filtered densities are plotted for the examples
from the paper by Guo and Gu (2004) many grey elements are observed, hence the basic idea of the
method fails. There are two other problems with Guo and Gu’s implementation. First, they use the
integral over the design variable as volume constraint which again does not make physical sense since
their filter is non-volume preserving. However, the correct choice for the material volume constraint
is not obvious for this case - but should probably be based on

∑
e veρeρ̃e. Second, the filter does not

converge to the original SIMP scheme (10) for the radius R going to zero - it actually converges to
ρp+1

e . Due to these shortcomings, no results will be shown for this method.

Bi-lateral density filtering

Wang and Wang (2005) suggest a modification to (12), a so-called bi-lateral filter, which apart from
the distance weighting also includes a density weighting

ρ̃e =

∑
i∈Ne

w(xi)w̃(ρi)viρi

∑
i∈Ne

w(xi)w̃(ρi)vi

, (26)
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where
w̃(ρi) = e−

1
2

(
ρi−ρe

σr

)2

. (27)

Here, the variance factor for the density dependent weighting function w̃ is σr ∈]0, 1]. For the case
of σr = ∞, this filter corresponds exactly to the original density filter (12) with Gaussian weighting
(14) and for σr approaching zero, the effect of the filter is eliminated. Despite lots of effort it was
not possible to reproduce the results of the paper by Wang and Wang (2005). The authors write that
they use a continuation approach to obtain their results, however, no details are given concerning
its implementation. In the present investigation the bi-lateral filter is implemented with a fixed
value of σr = 1. A larger value causes further blurring of boundaries corresponding to the original
Gaussian density filter (14) and a smaller value causes appearance of checkerboard patterns and mesh-
dependency.

Density filtering with a Heaviside step function

In order to obtain 0/1 solutions, Guest et al (2004) have modified the original filter (12) with a
Heaviside function such that if ρ̃e > 0 then the physical element density will become one and only if
the filtered density ρ̃e = 0 will the physical density be zero. The Heaviside function is approximated
as a smooth function governed by the parameter β, thus the physical density ρ̄e becomes

ρ̄e = 1 − e−βρ̃e + ρ̃ee
−β. (28)

For β equal to zero, this filter corresponds exactly to the original density filter (12) with linearly
decaying weighting (13). For β approaching infinity, the modification efficiently behaves as a max-
operator, i.e. the density value of the center pixel is set equal to one if any of the pixels within the
neighborhood is larger than zero. Note that Guest et al (2004) include an extra term in (28) in order
to ensure that the lower bound on the design variable is fulfilled. With the present modified SIMP
interpolation scheme (10), this extra term can be left out. It should also be noted that Guest et al
(2004) propose to use a more elaborate scheme for the density interpolation. Instead of calculating
the filtered density based on the element values within the neighborhood, the paper suggest to use
mapped nodal design variables, which is reported to result in better numerical behavior. In order
to make a fair comparison of methods we here chose to use the standard element density approach.
However, one may keep the idea of Guest et al (2004) in mind for improving convergence also for the
new morphology based schemes presented in this paper. The backside of the idea is the more complex
implementation that requires numerical integration for the computation of each of the element stiffness
matrices instead of just computing one matrix that holds for all elements in a regular mesh using the
standard approach.

For stable convergence the filter is employed using a continuation approach where the value of β is
gradually increased from 1 to 500.

The scheme is very similar to the suggested dilate filter operator (18) described in the previous section.
Basically, the difference lies in the implementation of the max operator. In the erode scheme, the center
pixel is defined as the direct maximum of the neighborhood pixels. In the Heaviside approach, the
center pixel is set equal to zero if any of the pixels in the neighborhood is bigger than zero. For a
discrete image the two filters are equal but for continuous design variables, the schemes will behave
differently.

Modified density filtering with a Heaviside step function

As was the case for the erosion operator compared to the dilation operator, one may reformulate the
idea from Guest et al (2004) discussed above, to turn it into a min-operator based scheme instead of
a max-operator based scheme.
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We reformulate the Heaviside operator to give zero density for ρ̃e < 1 and only density one for ρ̃e = 1,
i.e. basically the center pixel only takes the value one if all neighboring elements have density one.
The modified Heaviside step function is approximated as a smooth function again governed by the
parameter β

ρ̄e = e−β(1−ρ̃e) − (1 − ρ̃e)e−β . (29)

For β equal to zero, this filter corresponds exactly to (12). For β approaching infinity, the Heaviside
function is obtained. The structure corresponding to the design variables is in this case much thicker
than the physical structure, thus providing more stability during iterations. Also, as will be seen in
the examples, this filter works as a “machining” constraint, i.e. the resulting topology has no hole
features that are smaller than a circle with radius R.

Both the direct Heaviside density filter and the modified version are non-volume preserving. However,
in the spirit of the morphology operators, one could combine the two Heaviside filters to produce close
and open operators and thereby get volume preservation and other qualities. This idea, however, has
not been tested here and will be left for future research.

5.2 Sensitivity filters

In the following three modifications of the original sensitivity filter (16) that may be simpler to explain
are presented. In general, however, these modified sensitivity filters seem to be less stable as will be
seen in the example section.

Alternative sensitivity filter

In order to obtain a more discrete (black and white) solution than for the original sensitivity filter
(16), Borrvall (2001) suggests the following modification

∂̃f

∂ρe
=

∑
i∈Ne

w(xi)ρi
∂f

∂ρi∑
i∈Ne

ρiw(xi)
, (30)

i.e., the density weighting in the denominator is moved inside the summation. The effect of this
modification is more black and white solutions at the cost of loss of some mesh-independency effect
as will be shown later.

Sensitivity filter without density weighting

In order to ensure symmetric behavior for multi-phase design problems, the author has previously
(Sigmund, 2001b) suggested to drop the density weighting of the original sensitivity filter (16)

∂̃f

∂ρe
=

∑
i∈Ne

w(xi)
∂f

∂ρi∑
i∈Ne

w(xi)
. (31)

As for the alternative sensitivity filter above, this modification is introduced at the cost of loss of some
of the filtering effect and will thus not be tested for the two-phase problems considered in this paper.
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Mean sensitivity filter

One may also drop the distance weighting of the filter above and simply modify the sensitivities of
element e to become the mean value of the neighboring sensitivities

∂̃f

∂ρe
=

∑
i∈Ne

∂f

∂ρi∑
i∈Ne

1
. (32)

As will be seen in the example section, this filter works surprisingly well in many cases, however,
occasionally, especially for more advanced design problems than compliance minimization, it fails in
producing checkerboard-free and mesh-independent designs.

Bi-lateral sensitivity filter

This alternative filter (indirectly2) proposed in Wang and Wang (2005) is the same as (26), except
that the density outside the weighting functions is interchanged with the sensitivity, i.e.

∂̃f

∂ρe
=

∑
i∈Ne

w(xi)w(
∂f

∂ρi
)vi

∂f

∂ρi∑
i∈Ne

w(xi)w(
∂f

∂ρi
)vi

(33)

where the sensitivity weighting is defined as

w(
∂f

∂ρi
) = e

− 1
2

( ∂f
∂ρi

− ∂f
∂ρe

σr

)2

. (34)

Here the variance factor is σr ∈]0, 1]. In contrast to the bi-lateral density filter (26), the author was
able to reproduce the examples from Wang and Wang (2005) for the bi-lateral sensitivity filter (33).
However, for alternative design problems, such as modelling half the MBB-beam instead of the full
beam, the scheme did not result in smooth and mesh-independent results. A two-bar truss problem
was also used as a test problem in the paper. Here it was also possible to reproduce the results,
even using half the design domain due to symmetry, however, it does not seem justified to prove
mesh-convergence for a design problem that is known to have a unique (two-bar) solution.

6 Implementation of morphology based filters

Contrary to what one might expect it is not very complicated to implement density based filters in a
standard topology optimization software and they may be implemented using black box finite element
solvers. Also, the extensions to the morphology-based filters are straightforward.

In order to demonstrate the implementation we first show how the procedure works for the simple
original density (12), the dilate (18) and the erode (19) filters.

The sensitivity of an (objective) function f with respect to a change in design variable ρe is found by
use of the chain rule

∂f

∂ρe
=

∑
i∈Ne

∂f

∂ρ̃i

∂ρ̃i

∂ρe
, (35)

2Many of the examples in the paper are apparently run with this modified filter although the equation is not given
explicitly.
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where the sensitivity of the filtered density ρ̃i with respect to a change in design variable ρe is found
as

∂ρ̃i

∂ρe
=

w(xe)ve∑
j∈Ni

w(xj)vj

, (36)

for the original density filter (12). In the case of the dilate operator (18), the sensitivity of the filtered
density becomes

∂ρ̃i

∂ρe
=

eβρe∑
j∈Ni

eβρj
. (37)

The sensitivity expression for the close operator is similar to (37) with ρk interchanged with 1−ρk. The
sensitivity expressions for the open and close operators become a bit more involved and are discussed
later.

The main computational burden of the simple filtering schemes (the original density filter and the
dilate and erode operators) is to find the neighbors to each element. This is especially true in the
case of irregular meshes. Therefore, we suggest to compute a “neighborhood” matrix N that contains
rows with neighbors to each element in the structure once and for all before the optimization begins.
Following this idea, a very simplified flow chart in pseudo code may look like

1. Build neighborhood matrix N

2. Initialize design variable vector ρ, counter iter=0 and change=1

3. while change>0.01 and iter ≤ 1000

4. iter = iter + 1

5. Compute filtered densities ρ̃ using (12) (or (18) or (19))

6. Solve FE problem based on filtered sensitivities ρ̃

7. Calculate intermediate sensitivities based on filtered densities, i.e.

∂f

∂ρ̃e
= −uT

e

∂ke

∂ρ̃e
ue − pρ̃p−1

e uT
e k0

eue (38)

8. Compute final sensitivities from (35) using (36)

9. Update design variables ρnew using MMA

10. Calculate change = ||ρnew − ρ||∞
11. end

For the filters involving β continuation schemes, the value of β is initialized in step 2 and step 9 is
substituted with

9. if { ’mod(iter,50)=1’ or ’change<0.01’ and ’β ≤ βmax’ } then
β = 2β
change = 0.5

end
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where βmax is the maximum value of β which is 200 for the morphology schemes and 500 for the
Heaviside schemes.

Only general guidelines for the sensitivity analysis for the more complex morphology operators will
be given in the following. For the simple erode and dilate schemes, the sensitivity of the objective
function can be written as equation (35) with (37), as discussed above. For the close (combined dilate
and erode) operator it expands to

∂f

∂ρe
=

∑
i∈Ne

∑
j∈Ni

∂f

∂ρ̃j

∂ρ̃j

∂ρ̃i

∂ρ̃i

∂ρe
. (39)

The sensitivity of the open operator is obtained by switching tilde and bars. For the close-open
operator, the sensitivity expression expands to

∂f

∂ρe
=

∑
i∈Ne

∑
j∈Ni

∑
k∈Nj

∑
l∈Nk

∂f

∂
˜̃
ρl

∂
˜̃
ρl

ρ̃k

∂ρ̃k

ρ̃j

∂ρ̃j

∂ρ̃i

∂ρ̃i

∂ρe
. (40)

It is seen that the computational burden is growing immensely for the combined open-close and
close-open schemes. Assuming a design domain discretized by a thousand elements, a neighborhood
comprising 9 elements and ignoring boundary effects, the number of filter summation operations for
the simple erode or dilate filters is 9,000, for the open and close filters it is 81,000 and for the open-
close and close-open filters it is 6,561,000. The general expressions for the number of summation
operations for the three cases is size(Ne)n, size(Ne)2n and size(Ne)4n, respectively, where n is the
number of design elements and Ne is the neighborhood of element e. For a more realistic (but still
rather academic) problem like the MBB test example considered in this paper, size(Ne) = 37 and
n = 4800. This results in 9 × 109 summation operations. This number should be compared to an
estimate of bw2 × ndof multiplication for the decomposition of a symmetric band matrix, where bw
is the bandwidth of the stiffness matrix and ndof is the number of degrees of freedom. In the MBB
test example this corresponds to approximately 70 × 106 multiplication, i.e. a factor of at least 100
times less than for the filter operation. In conclusion, the open-close and close-open filters are not
practically applicable in large scale problems. However, as will be demonstrated in the example section
it is plausible to use the combined filter (24) (with a summation count of 6×106 for the MBB-example)
until convergence followed by a few iterations with the full open-close or close-open filters to obtain
reasonable designs with minimum feature size control for both holes and structural details.

7 Test of the filters

It is difficult to make a fair comparison of the different filter methods. For sure, the efficiency of each
filter has been optimized by the respective authors and fine-tuning of involved parameters may be
important. In the following, we test the different filters with standard parameters for the three test
problems. The main aim is to test and compare the different filters for their stability and efficiency
for practical applications. If a filter technique requires too much fine-tuning of parameters to work
well on a specific example, it will anyway not be worthwhile using it in practice.

All the filters have been implemented in a MATLAB setting and are solved using MMA (Svanberg,
1987) with standard settings. Each test example is run using 15 different filtering schemes and the
results are presented in figures and tables. As discussed earlier, we plot both the non-physical design
variable distribution ρ and the physical density distribution ρ̃ (the densities used in the SIMP inter-
polation scheme (10)) in all figures. For the physical interpretation of a design, it is obviously the
latter plot that must be consulted. In order to have a “measure of discreteness”, i.e. a way to tell
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Filter type Eq. Fig. f V/V ∗ Mnd (%) It.
No filtering - 4a 196.8 0.5 1.45 50
Standard filters
Density w. lin. weight (12),(13) 4b 218.3 0.5 24.02 1000
Bi-lateral density (26) 4c 213.6 0.5 21.92 73
Heaviside (28) 4d 190.0 0.5 0.36 489
Modified Heaviside (29) 4e 192.3 0.5 0.23 435
Sensitivity (17) 4f 210.0 0.5 20.41 119
Mean sensitivity (32) 4g 192.5 0.5 0.48 1000
Bi-lateral sensitivity (33) 4h 186.6 0.5 0.89 225
New morphology-based filters
Dilate (18) 5a 192.9 0.5 2.24 532
Erode (19) 5b 197.3 0.5 1.42 474
Close (20) 5c 195.4 0.5 1.19 414
Open (21) 5d 192.9 0.5 1.84 423
Combi (24) 5e 194.6 0.5 1.71 425
Close-Open (22) 5f 196.2 0.5 2.31 (444)
Open-Close (23) 5g 196.2 0.5 2.50 (439)

Table 1: Results for the MBB example.

whether an optimized design has converged to a discrete solution, we introduce the measure

Mnd =

n∑
e=1

4ρ̃e(1 − ρ̃e)

n
× 100%. (41)

If a converged design is fully discrete, i.e. there are no elements with intermediate density values, Mnd

is 0(%). If the design is totally grey, i.e. all elements densities are equal to 0.5, Mnd is 100(%). Hence,
the measure may be called a Measure of Non-Discreteness (Mnd).

In the following, we discuss the results for the three different test cases.

7.1 The MBB test example

The results for the MBB test example are shown in Figs. 4 and 5 and the data for the results are
given in Tab. 1.

An examination of Figs. 4 and 5 reveals that the resulting topologies may be very different for the
various filters even though the filter radius R is the same. However, the cases which do not correspond
to the simple MBB topology in Fig. 4b are the cases where the filter radius is not directly connected
with topological features. If our goal is to select methods that impose minimum length-scales and
manufacturability, we can at this point already dispose of the two Bi-lateral filter methods (Figs. 4c
and h) and possibly the mean sensitivity filter (Fig. 4g). The rest of the topologies are very similar
with the exceptions of the original density filter result (Fig. 4b) and the sensitivity filter result (Fig.
4f) which (as expected) show grey transitions between the solid and void regions. These filter-enforced
grey regions are also reflected in the obtained compliances that are approximately 10% higher than
for the discrete designs.

The results for the Heaviside (Fig. 4d), dilate (Fig. 5a) and open (Fig. 5d) filters are very similar.
It is seen that the filters correspond to deposition tools, i.e. there are no structural details below the
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h) Bi-lateral sensitivityg) Mean sensitivity

b) Density w. lin. weight

Filter size

a) No filtering

d) Heavisidec) Bi-lateral density

e) Modified Heaviside f) Sensitivity

Figure 4: Results for the MBB test example with standard filters. For each filter, two images are
shown. The upper one shows the (non-physical) design variable field ρ and the lower one shows the
filtered (physical) density field ρ̃. a) No filtering, b) Density filter with linearly decaying weighting
(12), (13), c) Bi-lateral density filter (26), d) Density filter with a Heaviside step function (28), e)
Modified density filter with a Heaviside step function (29), f) Original sensitivity filter (17), g) Mean
sensitivity filter (32) and h) Bi-lateral sensitivity filter (33).
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e) Combi f) Close-Open

g) Open-Close

Filter size

a) Dilate b) Erode

d) Openc) Close

Figure 5: Results for the MBB test example with new morphology based filters. For each filter, two
images are shown. The upper one shows the (non-physical) design variable field ρ and the lower one
shows the filtered (physical) density field ρ̃. a) Dilate filter (18), b) Erode filter (19), c) Close filter
(20), d) Open (21), e) Combination of the Close and Open filters (24), f) Close-Open filter (22) and
g) Open-Close filter (23).
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Filter type Eq. Fig. f V/V ∗ Mnd (%) It.
No filtering - 6a -1.33 0.25 1.43 57
Standard filters
Density w. lin. weight (12),(13) 6b -2.05 0.25 15.18 463
Bi-lateral density (26) 6c -2.03 0.25 8.46 182
Heaviside (28) 6d -2.34 0.25 0.35 552
Modified Heaviside (29) 6e -2.31 0.25 0.04 467
Sensitivity (17) 6f -2.20 0.25 12.00 844
Mean sensitivity (32) 6g -2.27 0.25 0.63 1000
Bi-lateral sensitivity (33) 6h -2.16 0.25 0.68 410
New morphology-based filters
Dilate (18) 7a -2.26 0.25 0.90 624
Erode (19) 7b -2.27 0.25 1.08 503
Close (20) 7c -2.22 0.25 2.35 378
Open (21) 7d -2.24 0.25 0.88 468
Combi (24) 7e -2.19 0.25 1.03 525
Close-Open (22) 7f -2.18 0.25 2.00 (538)
Open-Close (23) 7g -2.23 0.25 1.67 (571)

Table 2: Results for the inverter example.

size of the filter, however, nothing prevents small crack-like air holes from being formed. Although
these holes will be diminished with mesh refinement, sharp re-entrant corners also form that may be
unwanted for stress reasons. As an alternative, the modified Heaviside (Fig. 4e), erode (Fig. 5b)
and close (Fig. 5c) filters all provide topologies with smoothed corners no sharper than allowed by
the filter radius. In principle, the latter filters allow smaller structural details than the filter size but
such features are not seen in this example. It is also noted how the latter filters work as machining
tools, i.e. the topologies could all be machined with a tool of the size of the filter. In order to ensure
both minimum hole and minimum structural feature sizes, the combi, close-open and open-close filters
(Figs. 5e-g) could do the job, but again, this is not demonstrated with the MBB example.

Examining Tab. 1 it is noted that the lowest compliances are obtained for the bi-lateral sensitivity
filter but this is obtained on the cost of mesh-dependence. Otherwise, the compliances are fairly
constant with the exception of the original sensitivity and density filters. It is noted that the Heaviside
filters seem to be slightly better in compliance and discreteness than their morphological counterparts.
This may partly be attributed to the higher β value and partly because there is a built-in artificial
penalization in the Heaviside filter. This postulate is supported with a small example. Assuming
that the neighborhood comprises three elements with the values 0.2, 1 and 0.2, respectively, then the
modified Heaviside filter will result in a filtered center density that approaches 0 as β approaches
infinity. For the corresponding erode operator, the filtered center density will approach 0.2 as β
approaches infinity (i.e. it is a true min-operator). The results of this difference will be more clearly
seen in the wave transmitter example.

7.2 The inverter test example

The results for the inverter test example are shown in Figs. 6 and 7 and the data for the results are
given in Tab. 2.

Most of the conclusions drawn for the MBB example also apply for the inverter example but some weak
points of the different filter schemes are exhibited even more clearly in the hinge regions of the resulting
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g) Mean sensitivity h) Bi-lateral sensitivity

Filter size

b) Density w. lin. weighta) No filtering c) Bi-lateral density

f) Sensitivitye) Modified Heavisided) Heaviside

Figure 6: Results for the inverter test example with standard filters. For each filter, two images are
shown. The upper one shows the (non-physical) design variable field ρ and the lower one shows the
filtered (physical) density field ρ̃. a) No filtering, b) Density filter with linearly decaying weighting
(12), (13), c) Bi-lateral density filter (26), d) Density filter with a Heaviside step function (28), e)
Modified density filter with a Heaviside step function (29), f) Original sensitivity filter (17), g) Mean
sensitivity filter (32) and h) Bi-lateral sensitivity filter (33).
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f) Close-Open

g) Open-Close

Filter size

a) Dilate b) Erode c) Close

d) Open e) Combi

Figure 7: Results for the inverter test example with new morphology based filters. For each filter, two
images are shown. The upper one shows the (non-physical) design variable field ρ and the lower one
shows the filtered (physical) density field ρ̃. a) Dilate filter (18), b) Erode filter (19), c) Close filter
(20), d) Open (21), e) Combination of the Close and Open filters (24), f) Close-Open filter (22) and
g) Open-Close filter (23).
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Filter type Eq. Fig. f V/V ∗ Mnd (%) It.
No filtering - 8a -5.78 0.53 16.25 1000
Standard filters
Density w. lin. weight (12),(13) 8b -5.42 0.71 22.67 566
Bi-lateral density (26) 8c -5.57 0.70 19.19 539
Heaviside (28) 8d -6.55 0.90 0.87 563
Modified Heaviside (29) 8e -6.45 0.28 1.06 856
Sensitivity (17) 8f -6.32 0.90 4.81 929
Mean sensitivity (32) 8g -6.37 0.81 3.45 635
Bi-lateral sensitivity (33) 8h -6.31 0.63 10.29 643
New morphology-based filters
Dilate (18) 9a -5.86 0.88 2.75 694
Erode (19) 9b -5.18 0.63 4.96 867
Close (20) 9c -4.97 0.79 5.30 652
Open (21) 9d -5.31 0.83 1.87 606
Combi (24) 9e -5.25 0.80 4.46 839
Close-Open (22) 9f -5.09 0.81 5.81 (1147)
Open-Close (23) 9g -4.84 0.86 4.53 (1164)

Table 3: Results for the wave transmitter test example.

inverter topologies. As mentioned in Section 2, a weak point of the topology optimization method
in its application to compliant mechanism design is the modelling and design of hinges. Basically,
the optimizer wants to make optimal but non-physical one-node connected hinges that can transfer
forces without bending resistance. The problem is mostly due to modelling issues. In reality, infinite
stresses would appear in the hinges which would then fail. In order to prevent this, stresses in the
hinge regions should be modelled correctly with higher order elements and mesh-refinement and stress
constraints should be imposed. However, this is impractical and may not resolve the problem entirely.
Ideally a filter should take care of the problem but as is seen in Figs. 6 and 7 most of the filters do
not. The only filter schemes that result in slender non-corner-connected hinges and discrete results
are the modified Heaviside, close, combi and close-open filters (Figs. 6e, 7c, e and f). In principle,
the dilate, open, open-close and Heaviside filters should also prevent the hinges with mesh-refinement,
however, due to the staircase nature of the neighborhood region, it is often possible for the optimizer
to find topologies where two circle like regions are only touching in one corner, resulting in a one-node
connected hinge. Defining the design variables in the nodal points (as in Guest et al (2004)) may
relieve the problem although it has not been tested.

Judging from the objective function in Tab. 2 it is clear that all the discrete filters perform almost
equally well with the hinge-preventing schemes (close, close-open and combi) being a bit worse since
the distributed hinges are structurally non-efficient (with the finite element model applied). Again,
the Heaviside filter result in more discrete solutions for the reasons discussed under the MBB example.

7.3 The wave transmitter test example

The results for the wave transmitter test example are shown in Figs. 8 and 9 and the data for the
results are given in Tab. 3.

Due to the non-existing volume constraint and the special nature of wave propagation problems, the
transmitter example really exhibits the differences between filters. Examining the result plots in Figs.
8 and 9 and Tab. 3 it is clear that topologically extremely different structures may have very similar
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g) Mean sensitivity h) Bi-lateral sensitivity

Filter size

a) No filtering b) Density w. const. weight c) Bi-lateral density d) Heaviside

e) Modified Heaviside f) Sensitivity

Figure 8: Results for the wave transmitter test example with standard filters. For each filter, two
images are shown. The upper one shows the (non-physical) design variable field ρ and the lower one
shows the filtered (physical) density field ρ̃. a) No filtering, b) Density filter with linearly decaying
weighting (12), (13), c) Bi-lateral density filter (26), d) Density filter with a Heaviside step function
(28), e) Modified density filter with a Heaviside step function (29), f) Original sensitivity filter (17),
g) Mean sensitivity filter (32) and h) Bi-lateral sensitivity filter (33).
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f) Close-Open g) Open-Close

b) Erodea) Dilate

e) Combi

Filter size

c) Close d) Open

Figure 9: Results for the wave transmitter test example with new morphology based filters. For each
filter, two images are shown. The upper one shows the (non-physical) design variable field ρ and the
lower one shows the filtered (physical) density field ρ̃. a) Dilate filter (18), b) Erode filter (19), c)
Close filter (20), d) Open (21), e) Combination of the Close and Open filters (24), f) Close-Open filter
(22) and g) Open-Close filter (23).
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objective function values which means that we are dealing with an optimization problem with a highly
non-unique solution. It is also clear that filtering is absolutely essential for getting any structurally
interpretable design.

For the black and white filters, the results can be divided into the dilate-type filters with minimum
structural detail size but very small hole (epoxy) features, i.e. the Heaviside (Fig. 8d), dilate (Fig. 9a)
and open (Fig. 9d) filters; the erode-type filters with minimum hole sizes, i.e. the modified Heaviside
(Fig. 8e), erode (Fig. 9b) and close (Fig. 9c) filters; and the filters that take care of both minimum
hole and structural sizes, i.e. the combi (Fig. 9e), close-open (Fig. 9f) and open-close (Fig. 9g).
Again, the Heaviside filters result in the best objective function values. Their superiority in providing
discrete designs is more clear in the present case where the morphology filters exhibit some problems
with intermediate density features. Although this problem could be resolved by raising the pamping
parameter, the Heaviside filters are to be preferred here, since they have a “built-in” discreteness
which diminishes the need for the penalization and/or pamping of intermediate densities.

7.4 Summary of examples

The only filters that have worked well for all examples are the new morphology and the Heaviside
filters. In all cases, the Heaviside filters have provided the best and most discrete designs, tightly
followed by the morphology based schemes. The alternative black/white filters like the two bilateral
filters, and the mean sensitivity filters may in many cases provide nice black and white solutions, but
there is no enforcement of a strict length-scale, hence they cannot be recommended as general purpose
filters.

In many cases it is fine to work with the non-volume preserving filters such as the Heaviside filters,
and the dilate and erode filters. However, if there are fixed solid or void regions involved in the design
problems which was not demonstrated in the three test cases, it is preferable to work with volume
preserving filters (such as the open or close filters). The reason is that details with features smaller
than the neighborhood area may appear at boundaries adjacent to the passive regions as illustrated
in Fig. 10.

In conclusion, we recommend the open and close filters as stable and general filters which still are
computationally efficient. The sensitivity analyses for the open-close and close-open operators are very
CPU-time consuming and cannot be recommended for general use. However, the combined scheme
(24) composed as the average of the open and close operators constitutes a satisfactory replacement.

The reason for not directly recommending the Heaviside schemes is that they are not volume preserving
and hence fail to provide length-scale constraints for the fixed solid/void domain case as discussed
above. However, it should be plausible to combine the Heaviside schemes into “Heaviside close and
open” morphological schemes just as done for the open and close operators. Although not tested here,
the author believes that this idea will be rewarding with respect to computational stability and the
enforcement of black and white solutions. This will also avoid the need for the special precautions
in the β-continuation approach discussed in Guest et al (2004), since the filters now become volume
preserving.

Finally, it should be mentioned that all the proposed filters can be applied to nodal-based design
variables as well. In fact this has been tested by the author for the MBB example with the same
conclusions as above and the results have therefore been omitted from the paper.

8 Conclusions

This paper has suggested a new family of morphology based density filtering schemes for topology
optimization that provides mesh-independent, discrete and manufacturable solutions. The methods
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Figure 10: Demonstration of problems with non-volume-preserving filters and fixed solid domains. a)
Design domain with fixed solid region and indication of neighborhood size. b) Left: image of design
variable field and right: filtered density field after erosion operation. The width of the lower hole is
smaller than the neighborhood diameter. c) Left: image of design variable field and right: filtered
density field after close operation. The small scale lower hole has been eliminated using the close filter
which is volume preserving.
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have been tested on three different test examples and have been compared with methods and modified
methods from the literature.

With the check list in section 1 in mind, it must be concluded that the new morphology based filters
together with the Heaviside filters provide interesting new methodologies for topology optimization
with manufacturing constraints. The only check point that is not fulfilled is point 6: “Stable and fast
convergence”. Due to the required continuation approach for the β parameter, the proposed methods
typically use between 500 and 1000 iterations to converge. Whereas this number may be satisfactory
from an academic point of view, it will not be accepted for industrial applications, hence the ideal
restriction method probably still remains to be invented.

As a suggestion for future work, it is recommended to implement and test the extension of the Heav-
iside filters (basic version proposed in Guest et al (2004)) to be used as morphology operators, i.e.
sequentially applying the Heaviside and the modified Heaviside schemes in order to make open and
close operators. It is expected that this will result in a stable convergence to more discrete solutions
than in the proposed Kreisselmeier-Steinhauser min-max formulation.

Other possible extensions include anisotropic filters, e.g. by selecting oblong instead of circular struc-
turing elements one may favor certain angles of features in the optimized topologies (for application in
architecture). Another interesting possibility is to use the morphology-based operators for perimeter
control. The difference between the design variable image ρ and the filtered (eroded or dilated) image
ρ̃ correspond to the contour of the topology and hence the number of elements making up the contour
is a measure of the perimeter. Finally, there is an option for using different structural elements for
the open and close operators which will make it possible to impose different minimum length-scales
for holes and structural features. All these extensions are left open for future research.
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