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ABSTRACT

Cross-modal retrieval learns the relationship between the
two types of data in a common space so that an input from
one modality can retrieve data from a different modality.
We focus on modeling the relationship between two highly
diverse data, music and real-world videos. We learn cross-
modal embeddings using a two-stream network trained
with music-video pairs. Each branch takes one modal-
ity as the input and it is constrained with emotion tags.
Then the constraints allow the cross-modal embeddings
to be learned with significantly fewer music-video pairs.
To retrieve music for an input video, the trained model
ranks tracks in the music database by cross-modal dis-
tances to the query video. Quantitative evaluations show
high accuracy of audio/video emotion tagging when eval-
uated on each branch independently and high performance
for cross-modal music retrieval. We also present cross-
modal music retrieval experiments on Spotify music us-
ing user-generated videos from Instagram and Youtube as
queries, and subjective evaluations show that the proposed
model can retrieve relevant music. We present the music
retrieval results at: http://www.ece.rochester.
edu/~bli23/projects/query.html.

1. INTRODUCTION

Music retrieval has been explored for many cross-domain
inputs such as text [27], image [5], location [41], video
[32], vocal imitation [42], and sheet music [29]. To our
knowledge there are few reports focusing on cross-modal
music retrieval given videos from unconstrained sources.
With the proliferation of smart phones, people capture
short videos to communicate moments from their every-
day lives. Learning relationships between music and real-
world videos has many applications including novel mu-
sic query scenarios where a playlist is recommended to fit
user’s surrounding scenes, or automatically soundtrack se-
lection to complement and enhance visual messages on so-
cial media, e.g., Snapchat, Instagram, and Facebook.

Real-world videos can contain any form of video in-
cluding edited or raw content, and music is an inherently
diverse content as well [8]. Thus associating music with
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Figure 1. A large music database can be queried by real-
world videos from unconstrained sources.

such videos is more challenging than common sounds and
objects, e.g., barking to a dog [1], which has explicit con-
nection on semantic level. One way to bridge real-world
videos and music is via elicited emotions. Previous work
addresses this problem after recognizing each modality in-
dependently as hand-labeled emotion features [5, 32], but
this is not sufficient since hand-labeled emotions (e.g.,
several human-defined emotion tags) are prone to bias
and subjectivity [39], and bottleneck each modality into
a limited non-learnable space. Thus no scalable solution
has been proposed to query from large music databases.
Later a two-stream network structure is proposed for mu-
sic query by music videos [12], where cross-modal embed-
dings are learned directly from music-video pairs. How-
ever, it requires intensive training on music videos (MV)
where the videos were originally created for specific songs,
and the music retrieval performances given videos from
more varieties of sources are not systematically evaluated.

In this paper, we address the music retrieval task on
videos in the wild (Figure 1). Different from previous
work that models each modality independently, we pro-
pose a two-stream network structure to learn the cross-
modal distance in an end-to-end fashion using music-video
pairs, while emotion tags are applied on each branch to
form latent emotion space. Each branch is pre-trained as
audio/video emotion tagging sub-network before feeding
music-video pairs to both for cross-modal distance learn-
ing. This strategy requires fewer music-video pairs for
training, and makes it possible to collect crowdsourced
pairs of music and videos from independent sources. Note
that the tags are only used during training phase to facilitate
the convergence of cross-modal distance learning, and not
necessary during model inference of music query. When
a video queries the system, the model ranks every item of
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an existing music database by Euclidean distance to the in-
put video on the cross-modal embedding. The top ranked
results represent the best matches to the input.

The main contributions of this paper are :

• A first system to address music retrieval from videos
in the wild via learnable emotion space.

• A two-stream network structure and training strategy
with emotion tags as joint constraints to learn cross-
modal embeddings from fewer music-video pairs.

• Subjective evaluations showing promising retrieval
results on real-world datasets.

2. RELATED WORK

2.1 Music, Videos and Emotions

The emotions associated with music and videos have been
thoroughly studied. It has been suggested that emotions
are one of the primary reasons people engage with mu-
sic [15], and psychological studies reveal that people have
emotional reactions on visual stimuli as well [7]. There-
fore a natural way to retrieve music for videos is through
the associations with emotion.

Categorical and dimensional representations have been
used to represent emotion in music [18]. Discrete cat-
egorical tags include terms such as calmness, sadness,
anger, and more. Gracenote 1 has performed a major ef-
fort around tagging the mood in music and provides mood
taxonomies consisting of over 300 categories organized hi-
erarchically. One work finds that the number of mood
categories does not reflect the richness of emotions per-
ceived by humans, or the taxonomy is inherently ambigu-
ous [15]. Dimensional labels typically represent music on
a 2-D plane of valence and arousal [30]. This continuous
representation does not have the taxonomy problem, but
has trouble distinguishing some psychology and emotion
concepts such as nostalgia.

Emotion associated with images and videos have been
also represented categorically [44] and dimensionally [24],
similar to music. Seven emotion tags have been associ-
ated with videos of facial expressions [16, 17]. Eight basic
emotion tags, with 3 variations on each tag are introduced
for labeling unconstrained videos [38]. Movie scenes have
been characterized in the valence-arousal space [3]. In
[11], “Dominance” is introduced as an additional dimen-
sion for characterizing video emotions.

2.2 Cross-modal Audio-Visual Retrieval

Cross-modal retrieval has received increasing attention in
the recent years. One work proposes a two-stream network
structure for audio-vision cross-modal retrieval of common
objects and their respective sounds, such as an image of a
clock paired with the sound of an alarm [1]. This work
has curated a large training dataset of common objects and
sounds from publicly available sources. The cross-modal
correspondence is learned from audio-visual pairs. Similar

1 www.gracenote.com

work has been described with additional modalities of text
[2] and speech [26].

Related work for music includes cross-modal localiza-
tion [43], association [20, 22], and generation [21] of mu-
sic performances. Earlier work for cross-modal music re-
trieval involves extracting distance measurement between
low-level features from video and music segments [40].
Some approaches synchronize video and music after repre-
senting each modality as sequence of 2-D valence-arousal
features [23, 31, 32]. One work uses stochastic emotion
space to bridge video and music [36], and another reports
recommended music for still photo albums by defining a
cross-modal graph on which synsets of mood tags from
images and music are associated [5]. Pairing in these ap-
proaches recognizes each modality as explicit symbolic
representations independently (e.g., hand-labeled emo-
tions) before learning the association. Also, these systems
mostly emphasize temporal inter-dependence, focusing on
pairing a soundtrack to match the visual event with less de-
mand on learning deep semantic representations on emo-
tions.

Learning cross-modal embeddings end-to-end using
cross-modal pairs could result in a deep representations of
the relationships and improved performance at scale in a
music retrieval setting. As presented in [12], music/video
cross-modal retrieval has been modeled by learning from
music-video pairs and presented on music and their respec-
tive music videos, where the videos were intentionally cre-
ated as MV. Without constraining the cross-modal learning
space, it requires intensive training on music-video pairs,
e.g., existing music videos, and is not systematically eval-
uated on the retrieval results for videos from more sources.
In this paper we also learn the embedding space in an end-
to-end fashion using pairs of video and music, but con-
strain the learning space with emotion tags to form latent
emotion space for each modality.

3. APPROACH

3.1 Network Architecture

3.1.1 Video Branch

The video branch consists of a feature extraction mod-
ule followed by fully-connected layers for emotion tag-
ging, left stream in Figure 2. We use pre-trained Inflated-
3D model (I3D) [4] as the visual feature extractor. I3D
was originally proposed for human action recognition from
videos and was trained on the Kinetics dataset [4]. This
pre-trained network has been successfully used for other
video understanding tasks such as video captioning and
audio-visual localization [34].

We input only the RGB frames and ignore optical flow.
The system outputs a concatenation of the inception mod-
ules. We take a global average pool resulting in a 1024-D
feature vector for each whole video of any duration. Next,
we add fully connected layers. Each layer is followed by a
ReLU nonlinearity, except that the output layer is followed
by a sigmoid nonlinearity. Input video frames are resized
to 224×224, and the RGB values are normalized to [-1,
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Figure 2. The two-stream network architecture with emo-
tion constraints on each branch. The dimensions of fully-
connected layer (fc), channel numbers of convolutional
layer (conv), and pool sizes are marked aside each block.
The kernel size for all the convolutional layers is 3×3.

1]. The video network is pre-trained with 27 emotion tags
using binary cross-entropy loss.

3.1.2 Audio Branch

The audio branch consists of a ConvNet structure as a gen-
eral audio tagging framework analogue to [6], right stream
in Figure 2. Each convolutional layer is followed by a
batch normalization and ReLU nonlinearity, and the output
fully-connected layer has a sigmoid nonlinearity. Audio is
trimmed to 10-sec with a sample rate of 12 kHz. Log mel-
spectrograms are computed from input audio with a frame
length of 42.7 ms (with 50% overlapping) and 96 mel-scale
filter banks. The audio network is pre-trained with 7 emo-
tion tags using binary cross-entropy loss.

3.1.3 Cross-modal distance learning

The cross-modal distance learning network is designed to
embed the video and audio into the cross-modal embed-
dings (i.e., the joint feature space in Figure 2) so they can
be directly compared as vector distance. This network
takes the two 256-D penultimate layers from the video
and audio branches to predict if the input music-video pair
match, as a binary classification problem. The 256-D lay-
ers represent latent emotion space that is learned from the
training pairs. The classifier is trained with the contrastive
loss [10] on the Euclidean distance between each modal-
ity’s 64-D cross-modal embedding, after L2 normalization.

3.2 Training

We first pre-train the audio and video branches indepen-
dently as multi-label classifiers to predict emotion tags for

each modality. The training stops when validation loss
does not decrease for 5 consecutive epochs. Then the
cross-modal distance learning framework is trained jointly
while each branch predicts emotion tags. The network is
jointly constrained and the three loss functions are equally
weighted. This strategy constrains the learning space us-
ing emotion tags, and enables cross-modal distance learn-
ing from fewer music-video pairs. We use Adam optimizer
[19], a stochastic gradient descent method, to minimize all
the loss functions. When the model is trained, in practice
all tracks in a music catalog are indexed by the embedding
vector from the cross-modal joint feature space. Given any
query video, the tracks in the database can be ranked by
the Euclidean distance to the embedding vector calculated
from the video. This creates a fast retrieval setup for large
catalogs.

4. DATA

4.1 Training Data

The audio and video branches are pre-trained on indepen-
dent music and video datasets with emotion labels. To train
the cross-modal network we reuse the data from different
modalities to create music-video pairs according to crowd-
sourced annotations about how well each pair matches.

4.1.1 AudioSet

We use the AudioSet [9] to pre-train the audio branch. Au-
dioSet has human-labeled 10-second sound clips drawn
from YouTube videos. We use data from “Music Mood”
Ontology which contains music excerpts that are labeled
with one of 7 music mood categories. We use AudioSet’s
official Unbalanced Train data where we randomly sample
roughly 800 clips from each category for a total of 5.6K
samples. We split it randomly where 80% is used for train-
ing and 20% is used for validation. We use AudioSet’s offi-
cial Eval data as the test set which consists of 354 samples,
roughly 60 for each class, barring invalid download links.
We do not use the videos from AudioSet for cross-modal
distance learning because most contain a specific type of
edited content, which is not suitable for the objective of
retrieving music for videos from unconstrained sources.

4.1.2 Cowen2017

We use the Cowen2017 dataset [7] to pre-train the video
branch. The dataset includes over 2K data samples in-
cluding video clips from daily life, movies, cartoons, game
scenes, artistic work, and more. Each video is annotated by
several subjects who could select up to 27 emotion tags for
each video. The annotations are aggregated so that each
video’s label is 27 emotion tags with a confidence value
between 0 and 1. We split it randomly where and 80% is
used for training and 20% is used to create the test set.

4.1.3 Music-video Pairs

To our knowledge there are no publicly available datasets
that connect diverse videos with music, and contain the
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Figure 3. Visualizations of the emotion tags for the an-
notated music-video pairs from crowdsourced annotations.
The color shows normalized counts.

respective emotion labels. Our goal is to construct a gen-
eralizable dataset that matches samples from one modality
to the other while all samples have emotion labels. So we
apply crowdsourcing to create music-video pairs from the
same samples in AudioSet and Cowen2017. We follow the
respective splits of training and test set as before so clips
from one set do not appear in the other.

Training a cross-modal network requires positive and
negative music-video pairs. The positive pairs are cre-
ated by collecting binary crowdsourced judgments for ran-
domly paired music and video clips until we have 1000
matches. Detailed crowdsourcing setup is described in
Section 4.3. The negative samples are created from ran-
dom un-annotated music-video pairs. In total we have
class-balanced training set of 2000 pairs. We then perform
the same process to collect another 1000 pairs on the test
set. In Figure 3, we present a heatmap visualization of
the relationship between the emotion tags of the positive
audio-video pairs from the two modalities.

4.2 Real-world Data

To estimate how the system will perform on real-world
data we curate videos and music from popular social media
and music streaming platforms.

4.2.1 Spotify’s Popular Music

We create a dataset of popular music from Spotify, an in-
ternational music streaming platform. We identify popular
Gracenote level 1 worldwide genres where at least 1000
tracks are streamed per day on Spotify. From each of the
30 most popular genres we select 40 of the most popular
songs. The audio is downloaded from Spotify, which re-
sults in 1195 music clips.

4.2.2 The Moments in Time Dataset

We use video clips from the Moments in Time dataset [28]
where each clip is a 3-second video snippet. The dataset
was created for the tasks of action recognition and event
understanding. We pick the first 100 moment categories
(sorted alphabetically) from the Moments in Time Mini (a
subset). From each category we select the first 5 video
samples, totaling 500 video clips as the query videos.

4.2.3 Instagram Videos

Instagram is a social media platform for sharing photos and
short videos. From a new account without search history
we curate the top 20 videos from common photo post cat-
egories [13] : Friends, Food, Gadget, Pets, Activities, Self-
ies, Fashion, and we exclude Captioned Photos because
the text may bias annotators’ judgments and the system is
currently not trained to process text. This results in 140
user uploaded short video clips.

4.3 Crowdsourcing Setup

Crowdsourced judgments are collected to create music-
video pairs in the training and test datasets for cross-modal
distance learning, and for subjective evaluations of music
retrieval performance on real-world datasets. Experiments
are run on the Figure-eight 2 platform which minimizes
malicious activity during annotations and ensure high qual-
ity judgments for researchers.

Annotators are sourced from an international pool and
each annotator is allowed to answer at most 10 questions,
so that relevance judgments would not be overfit to any
small group. Every question is randomly presented to at
least 3 annotators. If the agreement among annotations is
less than 65% per question, the number of annotators is
dynamically increased up to 5 or until there is at least 65%
agreement. Annotators are instructed to “listen in a quiet
place, wear headphones, and watch the entire clip”. The
instructions for each audio-video pair are: “Please tell us
if there is a common emotion theme in the video and the
music, try not to focus on whether you like the music or
the video.” Possible responses are: “yes they match”, “no
they do not match”, and “I am not sure”.

To avoid biasing the pool of contributors we do not use
gold standard screening questions that resemble the an-
notation questions, a common practice on Figure-eight.
Instead to monitor annotation quality and attentiveness,
we monitor whether any annotator’s responses consistently
deviate from the responses of other annotators. If an anno-
tator’s responses are different from the average annotation
in more than 3 questions we flag that individual to analyze
their contributions. We do not find any annotators fall into
this group. In total we have collected thousands of annota-
tions from subjects from 12 countries. Approximately 71%
of the questions have greater than 66% agreement on “yes”
and “no” responses. The remaining has responses split be-
tween “yes”, “no”, and “not sure”, and for this work we
consider the responses as “no” because annotators do not
perceive relevance.

5. EXPERIMENTS

The model performance is evaluated numerically on the
tasks of 1) predicting emotion tags from each branch in-
dependently, 2) predicting if the input audio-video pairs
match, and 3) cross-modal music retrieval, on the anno-
tated datasets. The music retrieval performances are also

2 https://www.figure-eight.com
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Figure 4. Performance of the audio branch for predicting
emotion tags after pre-training. Results are presented as
confusion matrix (left), and AUC on each category (right).
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Figure 5. Performance of the video branch for predicting
emotion tags after pre-training. AUCs are calculated using
a score margin at 0.25.

evaluated on real-world data using crowdsourced subjec-
tive judgments.

5.1 Predicting Audio Emotion Tags

We evaluate the pre-trained audio branch using the la-
beled heldout data from AudioSet. The music emotion
tagging result is evaluated using multi-class classification
metrics. Figure 4 presents the confusion matrix, where
Angry and Scary are likely to get high true positive rates,
while the boundaries between Exciting, Funny, and Happy
are blurred. We observe that angry music is generally noisy
with strong percussion, while scary music has strong inhar-
monic components, as more distinct characteristics.

We also evaluate the model using the area under the
receiver operating characteristic curve (AUC), a statisti-
cal metric that summarizes model’s performance regard-
less of classification threshold. Equivalently, it measures
the performance of binary classifiers (measuring each tag
independently) by ranking scores, i.e., the probability that
a randomly chosen positive is ranked ahead of a randomly
chosen negative. The performance on each emotion tag is
shown in Figure 4, with an average of 87.88%.

5.2 Predicting Video Emotion Tags

The pre-trained video tagging branch is evaluated using
heldout data from Cowen2017. Similar to scored AUCs
[35, 37], we set a score margin on soft ground truth labels
to report the performance. This metric assesses how well
relative differences between video samples in the dataset
can be predicted. It compares the sign of the differences
between any two predictions to sign of the differences of
the respective ground truth ones. Performance is mea-
sured only when the two data points have sufficiently large

Method 2-stream emotion [32] emtoion [5] proposed
Result 38.1% 36.0% 46.8% 68.0%

Table 1. Music retrieval performances on the labeled
datasets compared with three baseline methods.

ground truth differences, e.g., 0.25 as used here. The av-
erage AUC for all tags is 83.79%, as shown in figure 5 on
each tag.

5.3 Predicting Audio-video Pairs

We also evaluate the cross-modal network to understand
overall performance on cross-modal distance learning and
the effects of the emotion tags which constrain the video
and audio branches during cross-modal training. The
cross-modal network predicts the input audio-video pairs
as either positive or negative (matched or not) on the 1000
pairs from test set, and is evaluated as a binary classifier
with a threshold of 0.5. We create a baseline model with
the same two-stream network structure but without pre-
training the branches on emotion tags or joint loss func-
tions. The two models are trained and evaluated with the
same dataset, described in Section 4.1.3. The accuracy of
the proposed model is 79.00% while the baseline achieves
63.30%. Note that this baseline system is a general two-
stream cross-modal distance learning network, e.g., [1],
which usually requires intensive training on a large number
of training pairs. The results indicate that pre-training and
joint constraints on emotion tags is important for cross-
modal distance learning when the training data is limited
and the task includes data with highly diverse.

5.4 Cross-modal Music Retrieval

We reuse the heldout data from Cowen2017 and Audioset
as query videos and the pool of music, respectively, where
for each query video there are on-average 16.2 music sam-
ples from the pool are annotated as ground-truth retrieval.
The music retrieval performance is evaluated by counting
the number of videos that can retrieve a relevant song. For
each query video only the top retrieval is considered, af-
ter ranking all the 354 music tracks. The proposed model
retrieves relevant music for 68.0% of query videos.

We also compare the performance to three baseline
models, as presented in Table 1. The first baseline model is
the same baseline as illustrated in Section 5.3, which share
the same network structure but without emotion tags and
pre-traning to form latent emotion space. It only achieves
satisfactory retrieval for 38.1% of videos.

The second baseline models each modality as continu-
ous emotion representation on the valence-arousal (V-A)
space, analogue to [32]. We implement this by adapt-
ing the proposed model structure, where the output layer
from each branch is replaced with 2-D states to repre-
sent valence and arousal constrained by mean squared er-
ror (MSE) from the ground-truth values as a regression
problem, without the two-stream structure for learning the
cross-modal embeddings. The audio model achieves R2
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Video source Moments in Time Instagram
Result 58.2% 64.3%

Table 2. Music retrieval performance on Spotify music
using query videos collected from new sources.

statistics of 53%/36% for arousal/valence when trained and
evaluated on the 1000Song dataset [33]. The video model
achieves R2 of 75.04%/60.28% for arousal/valence when
trained and evaluated on the AudioSet videos using anno-
tated labels. Both models achieve higher performance than
the original work on emotion prediction [32]. We map the
two modalities in the A-V space and the model achieves
relevant retrievals for 36.0% videos.

The third baseline matches modalities according to
hand-labeled emotion tags, analogue to [5]. To imple-
ment this we modify the model structure to build the cross-
modal distance learning structure from the predicted emo-
tion tags from each branch, instead of the 256-D latent
emotion space. This model achieves relevant retrievals for
46.8% videos.

These experiments show that the proposed approach
outperforms three baseline solutions. Two of the baselines
join the modalities directly on predicted emotion states:
arousal-valence values or explicit emotion tags. It sug-
gests that our model learns deeper relationships between
the modalities in the cross-modal space. Comparing to the
other baseline, the results indicate that when the model is
not constrained with emotion tags, only 2000 audio-video
pairs as training set is too small for the network to learn the
cross-modal embeddings to represent underlying the rela-
tionships between the cross-modal inputs.

5.5 Performance on Real-world Data

We assess how well our proposed model works on real-
world data by collecting human judgments using the
crowdsourcing setup in section 4.3. We use the 500 sam-
ples from the Moments in Time dataset and 140 user-
generated videos from Instagram to retrieve music from a
pool of music clips downloaded from Spotify. The model
can successfully retrieve music for 58.2% and 64.3%
videos, respectively. Music retrieval performance is bet-
ter on Instagram than Moments in Time.

Note that Instagram videos are uploaded by users to vi-
sually share an experience or a mood that incites an emo-
tion [14]. Instead, Moments in Time was created to cap-
ture different actions objectively without capturing senti-
ment [28]. This difference may explain why performance
is higher on the Instagram videos.

5.6 Qualitative Analyses

We qualitatively analyze the latent emotion space learned
from the two-stream model. We take the latent emotion
space from the audio branch and create a t-SNE visualiza-
tion [25], as plotted in Figure 6, to study how the matched
videos localize in this 2-D space. Each dot represents a
music sample from AudioSet, and we color the ones with

Figure 6. The t-SNE visualization of the latent emotion
space from the audio branch. Samples from the “Tender”
tag are in gray. Four randomly selected regions for tender
music are presented in colors representing different emo-
tion concepts: gloomy, ambient, delicate, sweet, each with
the thumbnails of the paired videos displayed.

the original label “Tender” in grey. Among these samples,
we randomly select some from different regions and they
are presented using different colors and with the thumb-
nails of the paired videos from model output. It indicates
that samples close together with similar granular emotions
are usually associated with similar videos. For example,
samples in yellow represent music that sounds serene or
soothing, and associated with outdoor nature scenes. This
suggests that the proposed framework constrained with
emotion tags enables the model to learn a interpretable
emotion space and cross-modal correspondence including
nuances that are no represented in the original tags.

We also investigate some failure retrieval cases and find
most are due to incorrect predictions of video emotions.
Also, several retrievals are matched on emotions but mis-
matched on cultural signals. For example, a video with
people bowing to Beyonce as she wears a crown is paired
with music that sounds “mystical” or “heavenly”, which is
annotated as “mismatch” likely because annotators recog-
nize Beyonce and they are expecting her music. If cul-
tural signals are ignored these retrievals may have been
reasonable matches. Overall, the results indicate that the
system is effective for music retrieval, and we expect im-
provements by incorporating more signals such as culture
or genres.

6. CONCLUSION

We have addressed the problem of music retrieval using
real-world videos from unconstrained sources. We haved
proved that emotion tags can constrain the learning space
and enable cross-modal distance learning from fewer an-
notated cross-modal pairs. Experiments show that our
model can retrieve promising results for user-generated
query videos. As an application, this model can offer novel
music query solutions for daily life videos which can en-
hance visual messages to make sharing more enjoyable.
We also expect this work to have product implications in
the music streaming business. In the future we plan to per-
sonalize the music that is retrieved for users’ tastes.
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