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Abstract—Over the last year, the correct wearing of facial
masks in public is still a relevant matter in the fight against the
COVID-19 pandemic. A popular approach that helps regulate the
situation by global researchers is building smart systems for face
mask detection. Following such spirit, this paper will contribute
to the literature in two main aspects:
(1) We first propose a new face mask detector model using
the state-of-the-art RetinaFace for face localization in populous
regions and the ResNet50V1 classifier to group the faces under 3
categories: correctly-worn, incorrectly-worn and no-masks-worn.
(2) In order to select the ResNet50V1 as the backbone for the
final model, we also analyzed its performance in accordance
with another 3 classifiers on a face mask dataset beforehand.
Performance metrics from the test phase have shown that
our detector achieved the best accuracy among all the works
compared, with 94, 59% on one test dataset and a less satis-
factory 69.6% on another due to certain characteristics of the
set. The code is available at: https://github.com/barbatoz0220/
Densely-populated-FMD.git

Index Terms—Dense Population Regions, Face Mask, Localiza-
tion, Classification, Covid-19, Deep Learning, MobileNet, ResNet,
AIZOO, Neuralet

I. INTRODUCTION

Unexpected as it may seem, the discovery of the first

COVID-19 case has tragically started a series of ongoing

depressive episodes for many people across the world, while

at the same time presenting a global reordering moment in

many aspects [1]. The pandemic has been listed as an extreme

global crisis when the 1.4 million infected cases in April 2020
[2] have risen to more than 250 million [3]. These statistics

would have been worse had it not been for the intensive im-

plementation and conformance to many suggested preventive

measures [2], from which the subject of our research - the

This research is funded by International University, VNU-HCM under grant
number SV2020-IT-03.

correct wearing of face masks in public - is withdrawn since

it is the most recommended, widely applicable and highly

effective in reducing transmission rate with or without the

implementation of other intervention methods [4].

While there exists a vast body of other technologies that

are being utilized to help relieve the situation, within the

scope of our research, we will solely focus on the use of

Deep Learning in the field of Face Recognition to detect

correct face-masks-wearing in public. Following such premise,

the technology has proven to remain a trending topic as the

latest review of Wang and Deng has introduced and discussed

thoroughly the past, present and future various concepts as

well as researches [5]. Even more so, with respect to growing

concerns regarding the COVID-19 global pandemic up to date,

the technology has definitely gathered enough traction and

gained significant interest when research teams around the

world rushed to develop and propose Deep Learning models

to help protect the health of public communities [6]. Whether

the degree of time was back in the early stages around which

the outbreak occurred or varied through the current year,

many research papers were studied and published in dedication

to the means of carefully monitoring the usage of facial

masks in public place [7]. For example, a three-component

model has been proposed by Loey et al. in their research to

supervise the wearing of medical face masks in public [8].

By using YOLO-v2 with ResNet-50, the hybrid model was

then exclusively trained on 2 datasets featuring medical face

masks and achieved a higher average precision rate (81%) in

comparison to one of its related works’ model, which was

trained on a different dataset with mixed types of face masks

(76.1%). Another approach from Loey et al. is to focus on the

detection of people who are not wearing face masks in public

[9]. Using ResNet-50 combined with Support Vector Machine
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Fig. 1: Face Mask Detection Sequential Model

(SVM) and ensemble algorithm, their results have shown that

the SVM classifier generally performed better than the others

in comparison and also achieved higher accuracy scores using

the same datasets. One interesting and realistic contribution,

as expressed by Rudraraju et al. [10], was to consider the

monitoring of entry and access control as another function to

the face mask detection system. This was also one of the few

works surveyed that also performed extensive research on the

topic of correctness in mask wearing through the architecture

of their application.

However, given how the wearing of different masks types

as well as the validity of mask-wearing itself in crowded areas

has not been broadly reviewed in the literature, we will attempt

to fill in that gap with the proposal of a two-stage face mask

detection model in this research paper. Our contributions can

be summarized as follows:

• We will propose a face mask classification model that

employs transfer learning by combining our head model

with a backbone model.

• In order to opt for the most prominent backbone, from the

architectures of MobileNetV1 [11], MobileNetV2 [12],

ResNet50V1 [13] and ResNet50V2 [14], we respectively

evaluate their versions of classification models on a

custom dataset that we created using the two sources

Kaggle-12K [15] and the MaskedFace-Net [16].

• Following the integration of our classification model and

RetinaFace, the proposed model’s capabilities will then

be assessed against the AIZOO Face Mask Detector [17]

and Neuralet Face Mask Detector [18] on the two datasets

Face Mask Detection [19] and the MAsked FAce [20].

Following this introduction, Section II will briefly describe

our methodology; then, the specifications of our setups be-

hind the experiences will be detailed in Section III, whereas

Section IV will elaborate further on how each steps in those

experiments are conducted with their corresponding results

to justify our proposed model abilities; and ultimately, our

research paper will be concluded alongside a brief view at

possible future improvements at the end of Section V.

II. METHODOLOGY

The face mask detector that we are proposing will be com-

posed of two stages: the first stage is the identification of facial

regions from an image or a frame and the second one is the

classification of detected faces into pre-defined subcategories.

The stages are demonstrated following the orders in Figure 1.

The design of such sequential model brings 2 benefits to our

detector.

Firstly, the state-of-the-art RetinaFace will be applied to

identify the Region of Interest (RoI) or faces available in one

Fig. 2: Architecture of Our Classification Head Model

image. Being a single-stage dense face localization model, it

can achieve an average precision score of 91.286% [21] on the

hard subset of the WIDER FACE dataset. In other words, the

mentioned face detection model was trained given a dataset

of crowded, diverse types of faces, including normal, masked

and make-up faces. Such process is believed to be beneficial

to our model in terms of increasing detection accuracy.

Secondly, during the second stage of classifying all the

detected faces, transfer learning is applied using the four

backbone models: MobileNetV1, MobileNetV2, ResNet50V1,

ResNet50V2. The experiments to opt for the backbone models

are described in Section IV. Our head model is simple and

light-weighted, including a convolution layer, a max-pooling

layer, and a series of fully connected layers and drop-out.

Details about the head of the classification model can be

found in Fig. 2. The probabilistic output is (p1, p2, p3), where

pi is simply the corresponding probability that the classified

image belongs to one of the three classes discussed later in

Section IV-A. Such architecture allows us to freely opt for the

most prominent backbone model without having to modify our

entire model.

III. IMPLEMENTATION

A. Training details

The model is trained using the binary loss function and

Adam optimizer with the initial learning rate at 10−4, dropout

rate at 0.5 and batch size of 32 on NVIDIA Tesla V100-SXM2

(16GB) using Google Colab environment. Therefore, we will

also upload all the datasets to accessible Google Drive folders

on the same account for ease of execution and reusability. The

training process terminates after 50 epochs.

B. Validating and testing details

1) Validating details: There are three purposes to the

validating process. Evidently, the first is to evaluate the

TABLE I: Testing Dataset Information

Dataset No. images No. faces No. class 1 No. class 2 No. class 3

Kaggle 853 4072 3232 717 123
MAFA 4935 10033 6354 996 -

where No. images, No. faces, No. class 1, No. class 2,
No. class 3 are defined as the number of images, of faces
in total and of faces belonging to each of the correctly-
worn, no-mask-worn and incorrectly-worn class, respectively.
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performance of our classification model. Additional to that,

such process will discover how different base models, or

the so-called backbones, might affect the efficiency of the

classification model once applied. Last but not least, due to

the various sources of our training and validation datasets,

their heterogeneity, and imbalance should be carefully revised

to see whether they are strongly involved in the creation

of our model. The metrics mentioned in this subsection are

determined following said reasons.

We first define the accuracy of the classification model on

the validation set after 50 epochs as follows:

ψclassify(y, ŷ) =
1

m

m−1∑

i=0

1(ŷi = yi), (1)

where m is the size of the validation set and y, ŷ is the set of

classified and ground-truth label, accordingly.

To illustrate the model stability, the variance σ2 of the

classification model for both training and validation sets is

defined in (2).

σ2 =
1

n

n∑

i=1

(ψi − µ)2, (2)

where ψ is the accuracy obtained after each epoch i and n is

the total number of epochs.

Precision will be used to estimate the classification abilities

of our model to not falsely label negative samples. The

calculation of recall will also be adopted to estimate the

sensitivity in finding all positive samples. The general formula

of precision P (y, ŷ) and recall R(y, ŷ) are given in (3) and

(4).

P (y, ŷ) =
TP

TP + FP
(3)

R(y, ŷ) =
TP

TP + FN
, (4)

where TP , TN , FP , FN are respectively true positives, true

negative, false positive, false negative number of classified

cases.

With the imbalance of the dataset under consideration,

a computation is made for the two types of precision and

recall: macro and weighted. While macro metrics ignore the

imbalance of the dataset, weighted metrics take into account

how it can alter the final results. The formula for the macro

and weighted precision and recall are given in (5), (6), (7) and

(8) respectively.

Let L be the set of available classes, y and ŷ are defined

as in (1), we have:

Pmacro(y, ŷ) =
1

|L|

∑

l∈L

P (yl, ŷl) (5)

Pweighted(y, ŷ) =
1∑

l∈L |ŷl|

∑

l∈L

|ŷl|P (yl, ŷl) (6)

Rmacro(y, ŷ) =
1

|L|

∑

l∈L

R(yl, ŷl) (7)

Rweighted(y, ŷ) =
1∑

l∈L |ŷl|

∑

l∈L

|ŷl|R(yl, ŷl) (8)

2) Testing details: In order to reasonably evaluate the

model with the test set, three metrics, namely average

confidence, accuracy of face detection model, and ordinary

accuracy are defined in (9), (11), (10).

Let D be the set of all faces detected by our model, then the

average confidence β, known as its ability to correctly classify

a given face, can be described as:

β = 1− α =
1

|D|

∑

d∈D

ψd, (9)

where α is the significance level and ψ is the accuracy or the

confidence of each detected face.

Assume that T represents the set of all ground-truth faces,

we define ΨRoI as the accuracy of face detection model

computed by the formula:

ΨRoI =
|D|

|T |
(10)

The last metric to be used in the testing process is the final

accuracy, representing the ability of the model to correctly

classify a given face.

Let A ⊂ D, where A is the set of correctly localized and

classified faces, the final accuracy Ψfinal is defined as

Ψfinal =
|A|

|D|
(11)

The evaluation method is given in Algorithm 1, in which

the threshold is set at θlower = 0.5. This parameter is used in

Line 7 under the form of pseudocode.

Algorithm 1 Evaluation using IoU

1: for image = 1, 2 . . . , N do

2: detectedFaces← Detect faces in that image and classify them
3: totalDetectedFaces+ = len(detectedFaces)
4: totalConfidence+ =

∑
detectedFacesConfidence

5: for realFace = 1, 2, . . . do

6: for detectedFace = 1, 2, . . . do

7: if θlower < IoU(realFaceBoundingBox,
detectedFaceBoundingBox) then

8: if realFaceClass == detectedFaceClass then

9: trueV al+ = 1
10: Break the outer for loop since the correct detected

face has been found
11: end if

12: end if

13: end for

14: end for

15: end for
16: Calculate β,ΨRoI ,Ψfinal in (9), (10), (11) respectively.

IV. EXPERIMENT AND RESULT

Given the 4 datasets used in our research, namely Kaggle-

12K [15], MaskedFace-Net [16], Kaggle Face Mask [19] and

MAsked FAces (MAFA) [20], we have decided to select them

accordingly for the tasks and to attain even distribution among

the 3 classes of mask-wearing.
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A. Dataset

1) Training and validation dataset: The training dataset

for the classification stage is a human face dataset composed

of all the images collected from two sources, namely, Kaggle-

12K [15] and MaskedFace-Net [16]. These images are then

classified into 3 classes, as seen in Table I. Class 1 represents

the correctly-worn-mask faces, Class 2 being the incorrectly-

worn-mask faces, and Class 3 for the no-mask-worn faces.

The masks used in this dataset are not necessarily medical

masks. The class correctly-worn-mask faces is designated to

faces that are fully covered with fabric or medical masks. On

the contrary, faces are classified into incorrectly-worn-mask

when the people in question are wearing their masks in

such ways that vital parts like noses or mouths are left

uncovered. There are 13338 images in total, in which 3594

of them are in the incorrectly-worn-mask class, 4816 are for

the correctly-worn class, and 4928 for the no-mask faces.

The distribution of images for each class are shown in

Fig. 3. To appropriately train and validate the classification

models, we have divided this dataset into 2 subsets, in which

90% of the images are used as training set and the other

10% are used as validation set. All images contain only 1 face.

2) Testing dataset: Our model will be tested and evaluated

on the two datasets Kaggle Face Mask [19] and MAsked FAces

(MAFA) [20] with their details listed in Table I. Kindly note

that each image in these sets will contain multiple faces for

the sake of testing the entire model, and that the annotation

file in MAFA has declared the “invalid” class to hold various

cases that do not follow our definition of incorrectly-worn-

mask class (for example, the faces in question were occluded,

blurred, or partially shown in their corresponding frames, etc.);

ergo, they have been excluded from our consideration and left

untouched.

B. Comparison of our classification model backbone

In this subsection, we will validate the four classifica-

tion backbone models, namely MobileNetV1, MobileNetV2,

ResNet50V1 and ResNet50V2, and filter out the model with

the best performance possible.

1) MobileNets: For practical purposes, it is ideal that our

face mask detection model can be embedded in cameras or

smaller digital devices. Therefore, small yet powerful archi-

tectures as MobileNets are considered here in our works.

MobileNetV1, proposed by Google in 2017, is a rare model

which combines depth wise separable convolutions and 11

Fig. 3: Training dataset distribution

standard convolutions for its input channels filtering and linear

computation. MobileNetV1 only has 88 layers in total and the

size of 16MB [11]. MobileNetV2, proposed by Google a year

after the introduction of MobileNetV1, is an updated version

of its first version with highlights in the two new features:

linear bottlenecks between the layers, and shortcut connections

between the bottlenecks [12]. It was reported to be lighter and

30− 40% faster on a Google Pixel phone than MobileNetV1

while having an increase in ImageNet Top 1 accuracy [12, 22].

With MobileNets as our backbones to support the head

model described earlier, we are able to provide the information

about the accuracy and loss of the model during 50 epochs in

Table II. In general, the implementation of both MobileNets

as backbones is synonymous with the increase in accuracy

and decrease in loss. We can acknowledge that the validation

accuracy of the model using MobileNetV2 as the backbone

is less stable than the one with MobileNetV1. Withstanding

some minor fluctuations, the loss of MobileNetV2-supported

model on the validation set tends to increase in the later

epochs, whereas its training loss remains the same. For further

evaluation of our usage of MobileNets as backbone, the

mentioned metrics in Section III are calculated in Table II.

Despite the better performance of MobileNetV2 compared

to its ancestor in ImageNet [12, 22], on our dataset, particu-

larly the validation set, MobileNetV1-supported model results

in a higher accuracy of 0.9981 after 50 epochs with the mini-

mum accuracy being 0.9940 and the maximum 1.0. In contrast,

the accuracy of MobileNetV2-based model ranges from 0.9910
to 0.9985 with the final accuracy at 0.9970. The classification

model based on MobileNetV1 is also more stable than the one

on MobileNetV2. It should be noted that, in spite of being 1.4
times less in training accuracy variance, the MobileNetV2-

supported model scores more in validation accuracy than the

MobileNetV1-based. All the precision and recall metrics of

the classification model with MobileNetV1 are slightly higher

than those of that using MobileNetV2. Additionally, within

the margins of our experiments, the MobileNetV1-supported

model tends to classify in a shorter duration of 1.139 seconds

in comparison with 1.445 seconds of MobileNetV2. Lastly, it

is observed from the weighted and macro precision and recall

metrics that the imbalance of our dataset is trivial, and thus

the validation process strictly follows the performance of the

models. Conclusively, MobileNetV1-supported classification

model is able to achieve higher results on our dataset and

within a shorter period of run time as opposed to the one

employing MobileNetV2 as its backbone.

2) ResNets: Being one of the most groundbreaking archi-

tecture developed in 2015 by Microsoft and won 1st place

in the ILSVRC classification competition with top-5 error

rate of 3.57%, ResNet uses residual blocks, which applied

the idea of skip connections, to overcome the problem of

vanishing gradients while the depth of the convolution network

increases [13]. A few months after the birth of ResNet,

the second version of it was proposed also by Microsoft.

ResNetV2 improved the residual unit, which facilitates the

training process and improves generalization [14].
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TABLE II: Evaluation on Our Classification Model Using MobileNets

Backbone σ2

train σ2

val
ψclassify Pmacro Pweighted Rmacro Rweighted Run Time(s)

MobileNetV1 1.507*10−4 1.759*10−6 0.9981 0.9982 0.9981 0.9980 0.9981 1.139
MobileNetV2 1.053*10−4 1.896*10−6 0.9970 0.9972 0.9970 0.9967 0.9970 1.445

TABLE III: Evaluation on Our Classification Model Using ResNets

Backbone σ2

train σ2

val
ψclassify Pmacro Pweighted Rmacro Rweighted Run Time (s)

ResNet50V1 4.895 ∗ 10−5 4.183 ∗ 10−7 0.9982 0.9984 0.9983 0.9981 0.9982 2.467
ResNet50V2 2.037 ∗ 10−4 4.003 ∗ 10−6 0.9985 0.9986 0.9985 0.9981 0.9985 2.274

Information concerning the loss and accuracy of

ResNet50V1-based and ResNet50V2-based models within 50
epochs is shown in Table. III. It is visible that the accuracy

of the training process for these two models rises sharply and

then stabilizes. Inversely, on the validation set, both models

suffer from minor fluctuations. There are also similarities

in their loss functions as the training loss values of both

swiftly decrease in the beginning then remain constant until

some later epochs where they are to rise one more time.

Their evaluation metrics can be found in Table III. By

comparison, the scoring results obtained from ResNet50V2-

supported model are 0.0002 unit higher than those from

other model roughly. While the run time of the model based

on ResNet50V1 is longer than that on ResNet50V2, the

variance in both train and validation sets’ accuracy scores of

ResNet50V1 based are approximately 4 to 10 times smaller

than of ResNet50V2.

Considering all results, the model based on ResNet50V2

backbone scores the highest in accuracy, precision and

recall (both weighted and unweighted). Meanwhile, the

ResNet50V1-based model emerged with the lowest variance

for both the train and validation sets but at the same time the

slowest classifier. Nevertheless, the duration of run time of

ResNets are about 2 times longer than that of MobileNets. For

the last assessment, the final model, including both localization

and classification stages, is tested on the Kaggle dataset.

There, we were able to localize 3399 faces over 4072 faces,

3215 faces of which are accurately classified by the model

using ResNet50V1. The other three, namely ResNet50V2,

MobileNetV1 and MobileNetV2, respectively made 2992,

2992, 2991 classifications. Based on the small variance on

the previous dataset and the high accuracy on this dataset,

the ResNet50V1-supported model was the reasonably ideal

backbone for the classification model that will be used in the

following subsection.

C. Result

We now compare our proposed model with another two

models, specifically, AIZOO and Neuralet face mask detectors

(AIZOO FMD and Neuralet FMD for short, respectively).

AIZOO FMD developed by AIZOOTech, is a light-weighted,

single-stage detector with only 1.01 million parameters and

24 layers for location and classification. AIZOO supports

all popular deep learning frameworks model and inference

code. In this comparison, we use only the Tensorflow version

[17]. Neuralet FMD is supported by Neuralet company and is

sponsored by Lanthorn Solutions. It is a two-stage detector

TABLE IV: Summary of Models

Model Dataset β ΨRoI Ψfinal

Proposed Kaggle 0.9960 0.8347 0.9459
MAFA 0.9950 0.9580 0.6960

AIZOO FMD Kaggle 0.8671 0.5454 0.8249
MAFA 0.9325 0.7938 0.6453

Neuralet FMD Kaggle 0.9723 0.4050 0.3220
MAFA 0.9383 0.1886 0.0587

that can both propose region of interests and provide the

needed classification on those regions. Its first stage, known

as the detector stage, uses one of two models for the ×86
configuration, openpifpaf model (model to estimate human

pose estimation) and tinyface model. In this subsection, we run

the model using openpifpaf for detector and OFM Classifier

for the classifier of Neuralet FMD [18].

As shown in Fig. 4 and Fig. 5, the results for accuracy and

confidence of our proposed model are higher than those of

AIZOO and Neuralet on both datasets. By using RetinaFace

for face localization, which was able to detect 900 faces out

of reportedly 1151 people, our proposed model managed to

recognize more faces per photo and returned higher score of

ΨRoI than the other mentioned models on both test datasets.

With ResNet50V1, the accuracy of our model to appropriately

detect the faces across more than 800 images of the Kaggle

dataset is at 0.9459 and is relatively higher than the compared

models. On the other hand, for the MAFA dataset, perhaps

as a consequence of the mentioned omission of incorrectly-

worn masks previously mentioned in section III, the accuracy

we managed to achieve was an unsatisfactory value of 0.696.

Still, this result is the highest one achieved among the three

models, despite the fact that ours was trained to label the same

faces under the three aforementioned categories, while the

conventionally used annotation in the dataset contained only

two labels that both AIZOO and Neuralet could follow. The

proposed model also gave competent results on the scores,

or the so-called confidence, of precisely classifying a given

region of interest.

By achieving good results in ΨRoI and Ψfinal, our model

has therefore showcased its ability to (1) convincingly detect

and classify faces in dense population regions as well as (2)
to separate the detected faces into 3 classes, which enabled a

more appropriate classification of the incorrectly worn mask

faces. Please refer to the resulted illustrations for both cases

that were featured on our GitHub repository using this link:

https://github.com/barbatoz0220/Densely-populated-FMD.git
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Fig. 4: Comparison of Accuracy and Score (Confidence) Among the Proposed Model - AIZOO - Neuralet on Kaggle Dataset

Fig. 5: Comparison of Accuracy and Score (Confidence) Among the Proposed Model - AIZOO - Neuralet on MAFA Dataset

V. CONCLUSION

Given the lack of research on mask detection for crowded

regions, as well as on the classification of face masks with

respect to variety and validity, we have proposed a new

face mask detector model for detection in densely populated

regions and validation of masks wearing following how they

are worn: correctly, incorrectly and without. Our proposed

model correctly localized 83.47% faces and classified 94.59%

of the confined set. While there are still certain limitations

to some of the class variance, the performance metrics have

justified our effectiveness in the combination of ResNet50V1

and RetinaFace. It is certainly possible for our model to be

better optimized and utilized in the foreseeable future. In terms

of data, we firmly believe that extensive attempts to improve

the imbalance in current sets and, perhaps, to modify our

own set from renowned sources will allow us to achieve more

optimistic results. Further researches to exploit more capable

architectures would definitely be considered and integration

with tools, such as OpenCV, will ensure more opportunities

for public usage through real-world application.
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