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1 Introduction and preliminaries
All graphs considered in this paper are finite, undirected, with no loops and no multiple
edges. Let Γ be a graph. The vertex set and the edge set of Γ are denoted by V (Γ) and
E(Γ), respectively. The complement graph of Γ, denoted by Γ, is the graph whose vertex
set is V (Γ) and whose edges are the non-edges of Γ. Let x, y ∈ V (Γ). The distance
between x and y in Γ is the length of a shortest path from x to y and is denoted by dΓ(x, y).
If the situation is unambiguous, we denote dΓ(x, y) simply by d(x, y). If two distinct
vertices x and y of Γ are adjacent, then we denote this by x ∼Γ y, or shortly by x ∼ y.
Particularly, we denote by x1 ∼ x2 ∼ · · · ∼ xn a path of n vertices in Γ. The diameter
of Γ, denoted by diam(Γ), is the greatest distance between any two vertices. Note that
diam(Γ) = 1 if and only if Γ is a complete graph.

Graphs associated with groups and other algebraic structures have been actively inves-
tigated, since they have valuable applications (cf. [17]) and are related to automata theory
(cf. [15]). The undirected power graph P(G) of a finite group G has vertex set G and
two distinct elements are adjacent if one is a power of the other. The concepts of power
graph and undirected power graph were first introduced by Kelarev and Quinn [16] and
Chakrabarty et al. [10], respectively. In recent years, the study of power graphs has been
growing, for example, Cameron, Manna and Mehatari [9] studied the finite groups whose
power graphs are cographs; Zahirović [25] explored the directed power graph of a torsion-
free group determined by its power graph, and showed that any two torsion-free groups
having isomorphic power graphs have isomorphic directed power graphs; Ma, Feng and
Wang [19] investigated the Lambda number of the power graph of a finite group; Manna,
Cameron and Mehatari [23] studied some forbidden subgraphs of power graphs of groups
and gave a number of open problems. Also, see, for example, [8, 5, 12, 13]. Let us refer
to two surveys [2, 18] for more information pertaining to the research results and open
problems on the power graphs of groups.

In order to measure how close the power graph is to the commuting graph, Aalipour
et al. [1] introduced the enhanced power graph of a group which lies in between. Let G be
a finite group. The enhanced power graph Pe(G) of G is the graph whose vertex set is G,
and two distinct vertices are adjacent if they generate a cyclic subgroup of G. The enhanced
power graph has also appeared in the literature under the name cyclic graph (cf. [11]). In
recent years, the study of enhanced power graphs has received considerable attention. For
example, Bera and Bhuniya [3] showed that there is a one-to-one correspondence between
the maximal cliques in Pe(G) and the maximal cyclic subgroups of G. In 2020, Zahirović,
Bošnjak and Madarász [26] showed that any isomorphism between undirected power graph
of finite groups is an isomorphism between enhanced power graphs of these groups. Ma and
She [21] characterized the metric dimension of an enhanced power graph. Bera, Dey and
Mukherjee [4] completely characterized the abelian groups such that their proper enhanced
power graphs are connected, where the proper enhanced power graph of G is the induced
subgraph of Pe(G) obtained by deleting the identity element of G. Ma et al. [22] classified
all finite groups whose enhanced power graph is split and threshold. The reader is referred
to the survey paper [20] for a large number of results on enhanced power graphs of groups.

Every group considered in this paper is finite. We always use e to denote the identity
element of the group under consideration. Denote by Zn the cyclic group of order n. Let
G be a group. A maximal cyclic subgroup of G is a cyclic subgroup, which is not a proper
subgroup of some cyclic subgroup of G. The set of all maximal cyclic subgroups of G is
denoted by M(G). Note that |M(G)| = 1 if and only if G is cyclic. For a subset S of G,
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define
MS := {M ∈ M(G) : S ⊆ M}.

If S = {s}, then we denote M{s} simply by Ms.
Recently, Cameron [7] introduced aspects of various graphs whose vertex set is a group

and whose edges reflect group structure in some way, and proposed the following two
questions.

Question 1.1 ([7, Question 19]). What is the best possible upper bound for the diameter of
non-trivial connected component of the complement of the power graph, and which groups
attain the bound?

Question 1.2 ([7, Question 20]). Is it true that the complement of the enhanced power
graph has just one connected component, apart from isolated vertices?

Moveover, in [7], Cameron proved the following result.

Theorem 1.3 ([7, Theorem 9.9]). Let G be a finite group which is not a cyclic p-group.
Then P(G) has just one connected component, apart from isolated vertices.

Note by [10, Theorem 2.12] that if G is a cyclic p-group, then P(G) is complete, and
so P(G) has no edges, that is, every vertex is isolated. Thus, for P(G), we always consider
the finite groups G which are not cyclic p-groups. Moreover, in view of Theorem 1.3, if
G is not a cyclic p-group, then all non-isolated vertices of P(G) will induce a connected
component, and we denote the connected component by P(G)∗.

Note that a finite group G is cyclic if and only if Pe(G) is complete (cf. [1, 3]). Thus, if
G is cyclic, then Pe(G) is an empty graph, that is, every vertex is isolated. The cycle [24]
of a group G, denoted by Cyc(G), is defined by

Cyc(G) = {g ∈ G : ⟨g, x⟩ is cyclic for any x ∈ G}.

Clearly, a vertex g in Pe(G) is isolated if and only if g ∈ Cyc(G) (cf. [21]). Denote by
Pe(G)∗ the induced subgraph of Pe(G) by all non-isolated vertices in Pe(G). Namely,

V (Pe(G)∗) = G \ Cyc(G).

For n ≥ 3, the generalized quaternion group (also called dicyclic group) Q2n of order
2n has a presentation

Q2n = ⟨x, y : x2n−2

= y2, x2n−1

= e, y−1xy = x−1⟩. (1.1)

By (1.1), it is easy to check that

Q2n = ⟨x⟩ ∪ {xiy : 1 ≤ i ≤ 2n−1}, o(xiy) = 4 for any 1 ≤ i ≤ 2n−1. (1.2)

We remark that Q2n has the unique involution y2 and

V (P(Q2n)∗) = Q2n \ {e, y2} (1.3)

by [6, Proposition 4] or [7, Theorem 9.1(a)].
In order to state our main results, we first define a class of finite non-p-groups. A finite

group G is called a Ψ-group if the following hold:
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• |G| = pα1
1 pα2

2 · · · pαt
t , where p1, p2, . . . , pt are distinct primes and t ≥ 2;

• For any 1 ≤ i ≤ t, G has a unique subgroup of order pi;

• G has an element of order pβ1

1 pα2
2 · · · pαt

t such that 1 ≤ β1 < α1 and for any prime
p ̸= p1, the Sylow p-subgroup of G is unique.

By [14, Theorem 5.4.10(ii)] and the definition of a Ψ-group, we have the following remark.

Remark 1.4. Suppose that G is a Ψ-group of order pα1
1 pα2

2 · · · pαt
t and has an element of

order pβ1

1 pα2
2 · · · pαt

t , where t ≥ 2 and 1 ≤ β1 < α1. Then G is isomorphic to one of the
following:

H ⋊ Zp
α1
1
, H ⋊Q2n , H × Zp

α1
1
, H ×Q2n ,

where H = Zp
α2
2 p

α3
3 ···pαt

t
and n ≥ 3.

We then define a class of non-cyclic groups. A finite non-cyclic group G is called a
Φ-group if there exist x, y ∈ V (Pe(G)∗) such that the following hold:

• ⟨x, y⟩ is cyclic;

• ⟨x⟩ /∈ M(G) and ⟨y⟩ /∈ M(G);

• For any M ∈ M(G) \M{x,y}, either x ∈ M or y ∈ M .

In this paper, we completely answer Questions 1.1 and 1.2. Our main results are the
following theorems.

Theorem 1.5. Let G be a finite group which is not a cyclic p-group. Then

diam(P(G)∗) =


1, if G ∼= Zm

2 , where m is a positive integer at least 2;
3, if G is a Ψ-group;
2, otherwise.

Theorem 1.6. Let G be a finite non-cyclic group. Then

diam(Pe(G)∗) =


1, if G ∼= Zm

2 , where m is a positive integer at least 2;
3, if G is a Φ-group;
2, otherwise.

In particular, Pe(G) has just one connected component, apart from isolated vertices.

The next results are obtained by applying Theorems 1.5 and 1.6 to p-groups and cyclic
groups.

Corollary 1.7. Suppose that G is a finite p-group which is non-cyclic. Then

diam(Pe(G)∗) =

{
1, if G ∼= Zm

2 , where m is a positive integer at least 2;
2, otherwise.

Corollary 1.8. Suppose that G is a finite cyclic group which is not a p-group. Then

diam(P(G)∗) =

{
2, if |G| is a product of distinct primes;
3, otherwise.
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Corollary 1.9. Suppose that G is a finite nilpotent group which is not a cyclic group. Then

diam(P(G)∗) =


1, if G ∼= Zm

2 , where m is a positive integer at least 2;
3, if G ∼= Q2m × Zn, where m ≥ 3 and n ≥ 3 with 2 ∤ n;
2, otherwise.

2 Proof of Theorem 1.5
In this section, we will prove Theorem 1.5. We next give some lemmas before giving the
proof of Theorem 1.5.

Recall first the following elementary result.

Lemma 2.1 ([14, Theorem 5.4.10(ii)]). A p-group having a unique subgroup of order p is
either cyclic or generalized quaternion, where p is a prime.

Lemma 2.2. Let G be a finite group which is not a cyclic p-group, where p is a prime. For
some divisor p of |G|, if there exists two distinct subgroups of order p, then
diam(P(G)∗) ≤ 2.

Proof. Let ⟨a⟩ and ⟨b⟩ be two distinct subgroups of order p. Assume that x and y are non-
adjacent in P(G)∗. It suffices to prove that d(x, y) = 2. Note that in this case ⟨x⟩ ⊆ ⟨y⟩
or ⟨y⟩ ⊆ ⟨x⟩. Without loss of generality, now let ⟨x⟩ ⊆ ⟨y⟩. If p | o(x), then it follows
that one of a and b can not belong to ⟨x⟩, say a /∈ ⟨x⟩, and so x ∼ a ∼ y is a path, which
implies d(x, y) = 2, as desired. Suppose next that p ∤ o(x). Note that one of a and b must
not belong to ⟨y⟩, say a /∈ ⟨y⟩. It follows that x ∼ a ∼ y is a path, which also implies
d(x, y) = 2, as desired.

Lemma 2.3. Suppose that G is a p-group which is non-cyclic. Then

diam(P(G)∗) =

{
1, if G ∼= Zm

2 for some positive integer m;
2, otherwise.

Proof. Clearly, if every element of G has order at most 2, then G ∼= Zm
2 for some positive

integer m, and so P(G)∗ is complete, which implies diam(P(G)∗) = 1. Thus, in the
following, we may assume that G has an element of order at least 3. In view of Lemma 2.2,
we may assume that G has a unique subgroup of order p. It follows from Lemma 2.1 that
G is a generalized quaternion group. Suppose that x and y are two non-adjacent vertices of
P(G)∗. Without loss of generality, let ⟨x⟩ ⊆ ⟨y⟩. By (1.3), it is easy to see that 4 | o(x).
Combining now (1.1) and (1.2), we have that there exists an element z of order 4 such that
z /∈ ⟨x⟩. It follows that x ∼ z ∼ y is a path, and hence d(x, y) = 2, as desired.

We next consider the finite groups that are not p-groups. For a positive integer n, denote
by π(n) the set of all prime divisors of n.

Lemma 2.4. Let |G| = pα1
1 pα2

2 · · · pαt
t where t ≥ 2. Suppose that for any prime pi, G has

a unique subgroup of order pi where 1 ≤ i ≤ t. If x and y are distinct vertices of P (G)∗

such that ⟨x⟩ ⊆ ⟨y⟩ and |G|/o(y) ̸= pβi

i with 1 ≤ βi < αi, then d(x, y) = 2.
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Proof. Note that o(y) ̸= |G|, since y ∈ V (P (G)∗). If π(o(y)) ̸= π(|G|), taking p ∈
π(|G|)\π(o(y)), we have that G has an element z of order p, and it follows that x ∼ z ∼ y
is a path, as desired.

Thus, in the following, we may assume that π(o(y)) = π(|G|). Let

o(y) = pγ1

1 pγ2

2 · · · pγt

t , 1 ≤ γi ≤ αi.

Since |G|/o(y) ̸= pβi

i with 1 ≤ βi < αi, there exist two distinct primes pi, pj such that
γi < αi and γj < αj . Note that one of pi and pj must not equal to 2, without loss of
generality, say pi ̸= 2. Thus, Lemma 2.1 implies that G has a cyclic Sylow pi-subgroup of
order pαi

i , say ⟨w⟩. In this case, if o(x) is not a power of pi, then it is clear that x ∼ w ∼ y
is a path, and so d(x, y) = 2. Now suppose that o(x) = pli for some positive integer l.
If G has a cyclic Sylow pj-subgroup of order pαj

j , say ⟨u⟩, the x ∼ u ∼ y is a path, and
so d(x, y) = 2, as desired. Otherwise, Lemma 2.1 implies that pj = 2 and the Sylow pj-
subgroup of G is a generalized quaternion group. By (1.1) and (1.2), it follows that there
exists an element v of order 4 such that v /∈ ⟨y⟩. As a consequence, x ∼ v ∼ y is a path,
and hence d(x, y) = 2, as desired.

Lemma 2.5. Let |G| = pα1
1 pα2

2 · · · pαt
t where t ≥ 2. Suppose that for any prime pi, G has

a unique subgroup of order pi, where 1 ≤ i ≤ t. If G has an element of order

pα1
1 pα2

2 · · · pαk−1

k−1 pβk

k p
αk+1

k+1 · · · pαt
t ,

where 1 ≤ k ≤ t and 1 ≤ βk < αk, then diam(P (G)∗) ≤ 3.

Proof. Let x, y be two distinct vertices such that x and y are non-adjacent in P (G)∗. With-
out loss of generality, let ⟨x⟩ ⊆ ⟨y⟩. If |G|/o(y) ̸= pβi

i where 1 ≤ βi < αi, then it follows
from Lemma 2.4 that d(x, y) = 2. Therefore, in the following, we may assume that

o(y) = pα1
1 pα2

2 · · · pαk−1

k−1 pβk

k p
αk+1

k+1 · · · pαt
t ,

where 1 ≤ k ≤ t and 1 ≤ βk < αk. Let a ∈ G with o(a) = pk, and let b ∈ G such
that o(b) is a prime with o(b) ̸= pk. Suppose that for some prime p ̸= pk, G has at least
two distinct Sylow p-subgroups that are cyclic. Let ⟨u⟩ be a Sylow p-subgroup of G with
⟨u⟩ ⊈ ⟨y⟩. If o(x) = pl, then x ∼ a ∼ u ∼ y is a path, and so d(x, y) ≤ 3; If not,
x ∼ u ∼ y is a path, and so d(x, y) = 2.

Thus, we may assume that for any prime p ̸= pk, the Sylow p-subgroup of G is unique.
Suppose that the Sylow pk-subgroups of G are cyclic. Let ⟨c⟩ be a Sylow pk-subgroup
of G. If o(x) = plk where l is a positive integer, then x ∼ b ∼ c ∼ y is a path, and so
d(x, y) ≤ 3. For the remaining cases, x ∼ c ∼ y is a path, which implies d(x, y) ≤ 2, as
desired.

Suppose now that a Sylow pk-subgroup Pk of G is non-cyclic. Then Pk is isomorphic
to a generalized quaternion group of order at least 8 by Lemma 2.1. Then we can choose
an element h of order 4 such that h /∈ ⟨y⟩ by (1.1) and (1.2). It follows that x ∼ b ∼ h ∼ y
is a path for o(x) = 2l, and x ∼ h ∼ y is a path for other cases, as desired.

Lemma 2.6. Let G be a Ψ-group. Then diam(P (G)∗) = 3.
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Proof. By the definition of a Ψ-group, let |G| = pα1
1 pα2

2 · · · pαt
t with t ≥ 2, and let y ∈ G

with
o(y) = pα1

1 pα2
2 · · · pαk−1

k−1 pβk

k p
αk+1

k+1 · · · pαt
t ,

where 1 ≤ k ≤ t and 1 ≤ βk < αk. Take x ∈ ⟨y⟩ with o(x) = pk. By Lemma 2.5, we can
deduce d(x, y) ≤ 3. Clearly, we have d(x, y) ≥ 2. Now, it suffices to prove d(x, y) ̸= 2.

Suppose for the sake of contradiction that d(x, y) = 2. Let z be an element such that
x ∼ z ∼ y is a path.

Case 1. pk ∤ o(z).
Since for any prime p ̸= pk, the Sylow p-subgroup of G is unique, it follows that every

Sylow subgroup of ⟨z⟩ is contained in ⟨y⟩. Hence, we have ⟨z⟩ ⊆ ⟨y⟩, and so z and y are
non-adjacent in P (G)∗, a contradiction.

Case 2. pk | o(z).
Note that for any prime divisor p of |G|, G has a unique subgroup of order p. We

conclude that ⟨x⟩ ⊆ ⟨z⟩, and it follows that z and x are non-adjacent in P (G)∗, a contra-
diction.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. By Lemmas 2.3 and 2.6, we only need to prove that if G is not
p-group and is not a Ψ-group, then diam(P (G)∗) = 2.

Suppose now that G is not a Ψ-group with |G| = pα1
1 pα2

2 · · · pαt
t , where t ≥ 2. Clearly,

diam(P (G)∗) ≥ 2. In view of Lemma 2.2, for any prime divisor p, we may assume that G
has a unique subgroup of order p. Let now x, y be two distinct vertices such that x and y
are non-adjacent in P (G)∗. Without loss of generality, we say ⟨x⟩ ⊆ ⟨y⟩. It follows from
Lemma 2.4 that we may assume that

o(y) = pα1
1 pα2

2 · · · pαk−1

k−1 pβk

k p
αk+1

k+1 · · · pαt
t ,

where 1 ≤ k ≤ t and 1 ≤ βk < αk. Since G is not a Ψ-group, we deduce that there exists
at least one prime p ̸= pk such that G has two distinct Sylow p-subgroups. Consequently,
we can choose a Sylow p-subgroup P of G such that P ⊈ ⟨y⟩. Note that |P | is not a prime.
Also, Lemma 2.1 implies P is either cyclic or generalized quaternion. It follows that there
exists an element a such that its order is a power of p and a /∈ ⟨y⟩.
Case 1. pk ̸= 2.

Let ⟨w⟩ be a Sylow pk-subgroup of G. If o(x) = pl, then x ∼ w ∼ y is a path,
as desired. Otherwise, there exists a prime p′ ̸= p such that p′ | o(x). This forces that
x ∼ a ∼ y is a path, as desired.

Case 2. pk = 2.

If every Sylow pk-subgroup of G is cyclic, then it is similar to Case 1, the desired result
follows. Assume now that every Sylow pk-subgroup of G is generalized quaternion. Then
by (1.1) and (1.2), we can choose an element u of order 4 such that u /∈ ⟨y⟩. If o(x) = pl,
then x ∼ u ∼ y is a path, as desired. Otherwise, there exists a prime p′ ̸= p such that
p′ | o(x), and so x ∼ a ∼ y is a path, as desired.

We conclude diam(P (G)∗) = 2, the proof is now complete.
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3 Proof of Theorem 1.6
In this section, we will prove Theorem 1.6.

Lemma 3.1. Let G be a finite non-cyclic group. Then diam(Pe(G)∗) ≤ 3.

Proof. If Pe(G)∗ is complete, then diam(Pe(G)∗) = 1, as desired. Thus, in the following
we may assume that Pe(G)∗ is not complete. Let x, y be two distinct non-adjacent vertices
in Pe(G)∗. Then ⟨x, y⟩ is cyclic. Suppose that one of x and y can generate a maximal
cyclic subgroup of G. Without loss of generality, say ⟨y⟩ ∈ M(G). Since ⟨x, y⟩ is cyclic,
we have x ∈ ⟨y⟩. Note that x /∈ Cyc(G). It follows that there exists ⟨z⟩ ∈ M(G) such
that x /∈ ⟨z⟩. Clearly, ⟨z⟩ ≠ ⟨y⟩. As a result, x ∼ z ∼ y is a path, and so d(x, y) = 2.

Thus, in the following, we may assume that ⟨x⟩ /∈ M(G) and ⟨y⟩ /∈ M(G). Note
that Mx ̸= M(G), My ̸= M(G) and M{x,y} ̸= M(G). If there exists ⟨u⟩ ∈ M(G) \
M{x,y} such that {x, y} ∩ ⟨u⟩ = ∅, then it is clear that x ∼ u ∼ y is a path, and so
d(x, y) = 2, as desired.

Thus, now we may assume that for any M ∈ M(G)\M{x,y}, either x ∈ M or y ∈ M .
Namely, in this case, G is a Φ-group. Taking now ⟨a⟩ ∈ M(G) \ M{x,y}, without loss
of generality, we let x ∈ ⟨a⟩. Hence d(y, a) = 1. Since Mx ̸= M(G), there exists
⟨b⟩ ∈ M(G) such that x /∈ ⟨b⟩. As a consequence, we have d(b, x) = 1. Also, it is
straightforward that ⟨a⟩ ̸= ⟨b⟩, and so d(a, b) = 1, which implies that x ∼ b ∼ a ∼ y is a
path. Therefore, we have d(x, y) ≤ 3, as desired.

By the proof of Lemma 3.1, the next result is valid.

Lemma 3.2. Let G be a non-Φ-group. Then diam(Pe(G)∗) ≤ 2.

Lemma 3.3. Let G be a Φ-group. Then diam(Pe(G)∗) = 3.

Proof. Let x, y ∈ V (Pe(G)∗) such that the three conditions in the definition of a Φ-group
hold. Then x and y are non-adjacent in Pe(G)∗. By Lemma 3.1, it suffices to prove
d(x, y) = 3.

Suppose for a contradiction that d(x, y) = 2. Let x ∼ z ∼ y is a path in Pe(G)∗. Then
both ⟨x, z⟩ and ⟨y, z⟩ are non-cyclic. Let now ⟨w⟩ ∈ M(G) with z ∈ ⟨w⟩. It follows that
{x, y} ∩ ⟨w⟩ = ∅, and so ⟨w⟩ ∈ M(G) \ M{x,y}, this contradicts the condition that for
any M ∈ M(G) \M{x,y}, either x ∈ M or y ∈ M .

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. For a non-cyclic group G, it is clear that diam(Pe(G)∗) = 1 if and
only if G is an elementary abelian 2-group. Thus, Theorem 1.6 follows from Lemmas 3.1,
3.2 and 3.3.
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