
Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

19

AN EFFICIENT HEURISTIC ALGORITHM FOR
FLEXIBLE JOB SHOP SCHEDULING WITH

MAINTENANCE CONSTRAINTS

Mohsen Ziaee∗

Department of Industrial Engineering, University of Bojnord, 94531-55111
Bojnord, Iran

Abstract

This paper deals with the flexible job shop scheduling problem with the preventive maintenance constraints
where the objectives are to minimize the overall completion time (makespan), the total workload of
machines and the workload of the most loaded machine. A fast heuristic algorithm based on a constructive
procedure is developed to solve the problem in very short time. The algorithm is tested on the benchmark
instances from the literature in order to evaluate its performance. Computational results show that, the
proposed heuristic method is computationally efficient and promising for practical problems.

Keywords

Scheduling, Multi-Objective Flexible Job Shop, Preventive Maintenance, Heuristic, Local Search.

1.Introduction

The job shop scheduling problem (JSP) is one of the most popular scheduling problems and has
attracted many researchers due to both its practical importance and its complexity [1]. In the n×m
classical JSP, a set of n jobs have to be processed on a group of m machines, where the processing
of each job i consists of Ji operations performed on these machines. Each job has a processing
order on the machines which is fixed and known in advance, i.e., each operation has to be
performed on a given machine. The processing times of all operations are also fixed and known.
Each machine can process at most one operation at a time, and the operations are processed on the
machines without interruption [2,3]. A typical performance indicator for the JSP is the makespan,
i.e., the time needed to complete all the jobs.

The flexible job shop scheduling problem (FJSP) is a generalization of the classical JSP, in which
each operation is allowed to be processed by any among set of candidate machines, instead of a
given machine; and thus, the scheduling problem is to choose for each operation, a machine and a
starting time at which the operation must be processed. The FJSP is more difficult than the
classical JSP because it contains an additional problem which is to determine the job routes, or to
assign the operations to the machines. This problem is known to be strongly NP-hard even if each
job has at most three operations and there are two machines [4].

The FJSP with PM constraints is to assign each operation to an appropriate machine out of a set

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

20

of machines capable of executing it, and to sequence the job operations and PM operations on
each machine, in order to minimize one or more criteria. This paper presents a solution method to
solve this problem in order to minimize the following three objectives:

(1) The maximum completion time of the machines, i.e. the makespan (Cmax).
(2) The total workload of the machines, which represents the total working time of all

machines (WT). This objective is of interest if machines differ with respect to the efficiency.
(3) The maximal machine workload, i.e., the maximum working time spent on any machine

(Wmax). This objective is used to prevent assignment of too much work to a single machine and to
keep the balance of work distribution over the machines.

In this article, the weighted sum of the above three objectives is taken as the objective function.
This approach, i.e. the weighted sum, in dealing with the multi-objective optimization, is easy for
decision makers to understand, convenient for developers to implement, and available to modify
the weights for satisfying the requirements of decision makers. In this study, the PM periods are
also included in the above three criteria, since the PM periods are mandatory and the scheduler
has to schedule them along with the jobs to be processed. The objective function of the studied
problem is therefore computed as (1):

Minimize Obj=W1×Cmax+W2×WT+W3×Wmax (1)such that: W1+W2+W3=1; W1, W2, W3 ≥ 0.

W1, W2, and W3 represent the weight coefficients of the three objectives.

The FJSP with PM constraints is strongly NP-hard, since the problem without PM scheduling is
already strongly NP-hard [4]. Therefore, as it can be seen in the literature review section,
approximate algorithms, mainly metaheuristics, have been used to solve the problem.

In this study, a simple and easily extendable heuristic algorithm based on a constructive
procedure is presented to solve the FJSP with PM constraints (section 3). The main purpose is to
produce reasonable and applicable schedules very quickly. It can also be used to improve the
quality of the initial feasible solution of metaheuristics applied to solve the problem, since the
choice of a good initial solution is an important aspect of the performance of algorithms in terms
of computing time and solution quality [5,6,7]. In order to evaluate the performance of the
proposed heuristic, it is implemented using several benchmark problems and the results of the
computational experiments are presented (section 4). The results show that our novel method can
obtain good solutions in very short time. Concluding remarks are given in the last section.

Assumptions considered in this paper are as follows:

(1) There is only one PM operation on each machine during the planning horizon. Each PM
operation has to be performed within a predefined time window, and its duration is determined in
advance.

(2) Jobs are independent of each other.
(3) Machines are independent of each other.
(4) Setup and transportation times are negligible.
(5) Preemption is not allowed, i.e. a started operation (either operation of a job or a PM

operation) can not be interrupted during its processing.
(6) Each machine can process at most one operation (either job operation or PM operation)

at the same time.
(7) An operation can not be performed by more than one machine at the same time.
(8) All jobs have equal priorities.

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

21

(9) Machines never break down and are available throughout the scheduling period.
(10) All jobs are available at time zero.

The notations used throughout the paper are as follows:

n: number of jobs,
m: number of machines,
i,z: index of jobs; i,z=1,…,n,
Ji: number of operations of job i,

maxJ: maximum number of operations per job (i.e., maxJ= iJ
i

max),

j: index of operations; j=1,…, Ji,
k,y: index of machines; k,y=1,…,m,
tijy: processing time of operation j of job i on machine y,
Cij: completion time of operation j of job i,
WT: total workload of machines (the workload of each machine is defined by the sum of
processing times of all operations assigned to it),
Wmax: critical machine workload, i.e. the workload of the most loaded machine,
dury: duration of the preventive maintenance task of machine y,
(tEy , tLy): time window associated with the PM task on machine y, where tEy is the earliest
possible completion time, and tLy is the latest possible completion time.

2.Literature Review

The vast majority of papers dealing with scheduling problems assume that the machines are
continuously available for processing during the whole planning horizon. However, this
assumption may not be true in real industrial settings, since the machines may become
unavailable during the planning period for many reasons such as unforeseen breakdowns
(stochastic unavailability [8]), or due to the use of the equipments for planned activities such as
preventive maintenance (PM) tasks that conflict with scheduling decisions (i.e. deterministic
unavailability, in which the periods of unavailability are known in advance).

Recently, many researchers began to study the scheduling problems with PM constraints, because
PM is considered as a common reason for machine unavailability. PM is used by manufacturing
industries for following reasons: PM can reduce the probability of unforeseen breakdowns; in
manufacturing systems that use PM, if a machine breaks down, then its unavailability time
interval is expected to be significantly reduced; and therefore PM can restore the reliability of
machines and improve the machine utilization ratio. This paper deals with the FJSP with PM
constraints and assumes that the starting time of PM operations is not known in advance and must
be determined during the production scheduling process. However, each PM operation has to be
executed within a given time window. These constraints are referred to as non-fixed availability
constraints in the literature. In fixed availability constraints, each PM operation is started at a
fixed time point which is predetermined by maintenance planning system. We also suppose that
there is only one PM operation on each machine during the planning horizon. This assumption
brings the problem closer to the real manufacturing situations [9].

Scheduling problems under the machine availability constraints have recently been investigated in
numerous papers. Schmidt [10] presents a survey of existing methods for solving deterministic
scheduling problems with availability constraints, as well as complexity results; and most recent
survey of scheduling with deterministic machine availability constraints can be seen in reference

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

22

[11]. However, for the FJSP, there are only a few papers that deal with the FJSP under resource
constraints. Dalfard and Mohammadi [12] propose two metaheuristics (a hybrid genetic algorithm
and a simulated annealing algorithm) for the multi-objective FJSP with parallel machines,
maintenance costs, jobs due dates and jobs release times to minimize the mean tardiness, the
makespan and the mean flowtime. As there is no similar work in the literature, they compare the
solutions of these metaheuristic methods with those obtained by solving a mathematical model
using the software LINGO. Gao et al. [9] consider the FJSP with non-fixed availability
constraints where each machine is subject to an arbitrary number of PM tasks, and present a
hybrid genetic algorithm (hGA) to solve the problem with a multiobjective function including
makespan, total machine workload and the workload of the most loaded machine. Chan et al. [13]
develop a heuristic based on genetic algorithm (GA), namely iterative GA (IGA), for solving the
bicriteria FJSP under resource constraints. The objectives considered are the minimization of
makespan and machine idle cost. Zribi et al. [14] investigate the multi-purpose machine (MPM)
job shop scheduling problem with fixed machine availability constraints, and apply a GA to solve
the problem. Rajkumar et al. [15] present a greedy randomized adaptive search procedure
(GRASP) to solve the FJSP under non-fixed availability constraints and with the same objectives
as those considered by Gao et al. [9]. Moradi et al. [16] solve the FJSP with PM under two
objectives: the minimization of makespan for the production part and the minimization of system
unavailability for the maintenance part. Vilcot and Billaut [17] study a general job shop
scheduling problem with multiple constraints, coming from printing and boarding industry. They
present an algorithm based on tabu search and GA for minimizing the makespan and the
maximum lateness. Chan et al. [18] consider the distributed flexible manufacturing system (FMS)
scheduling problem subject to machine maintenance constraints, in which the maintenance time is
related to the machine age. The presented method also covers the FJSP with maintenance
activities. Wang and Yu [19] present a heuristic based on the filtered beam search (FBS)
algorithm to solve the FJSP with the non-fixed and fixed machine availability constraints due to
the PM.

3.Proposed Heuristic Approach

In this section, we present a heuristic method to solve the problem. This approach is motivated by
the idea of developing a constructive heuristic that considers simultaneously several factors
affecting the solution quality and intelligently balances their effects in the process of schedule
generation, and the observation that it could lead to good results in some preliminary
computational experiments on a wide range of difficult scheduling problems. This algorithm has a
simple structure, is easy to implement, and requires very little computational effort which makes
it preferable over other more complex and time-consuming approaches. Some notations that will
be used in the algorithm are defined as follows:

Aij: set of machines which are capable to execute operation j of job i,
Nij: number of members of the set Aij,
s′ij: mean processing time of operation j of job i over the machines belonging to the set Aij

(i.e., ijs′ = ij
Ay

ijy Nt
ij

/)(∑
∈

),

sji: total mean processing time of job i (i.e., sji =∑
=

′
iJ

j
ijs

1

),

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

23

sky: total weighted processing time on machine y which is calculated as: sky

=∑ ∑
=

∈
=

′n

i

J

Ayif
j ij

ij
i

ij

N

s

1 1

,

M: a large number.
An outline of the proposed heuristic algorithm is given in Fig. 1 and the pseudocode of the

algorithm is shown in Fig. 2. Some other notations used in these two figures will be defined later.

until all operations of all jobs are scheduled, repeat
{

• For all i, j, k (such that: 1. j ≤ Ji, 2. j=1 or (j-1)th operation of job i is already
scheduled, and 3. jth operation of job i is an unscheduled operation and machine k is
capable of processing this operation), calculate the value of TC.

• For all unscheduled PM operations, calculate the value of TC.
• Select the operation (either job operation or PM operation) with minimum TC and

schedule it on the last position of current partial sequence on the corresponding
machine.

}

Fig. 1. General outline of the proposed heuristic algorithm

Initialization:
• Sort the jobs in increasing order of their sji and call the

resulting set: i_sort. Let i_sortz be zth job of the list
i_sort.

• Sort the machines in increasing order of their sky and call the
resulting set: k_sort. Let k_sorty be yth machine of the list
k_sort.

Constructive Algorithm:
for x1:=L_x1 to U_x1 do
for x2:=L_x2 to U_x2 do

for x6:=L_x6 to U_x6 do
for x7:=0 to 1 do
{

% Beginning of a schedule generation
until all job operations and all PM operations are

scheduled, repeat the following steps:
{

for j:= 1 to maxJ do
{

Set TC*:=M

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

24

for i’:=1 to n do
{

Set i:=x7.(i_sorti’)+(1-x7).(i_sort(n-i’+1)),
Set b:=0,
if (1. j ≤ Ji, and

2. j=1 or (j-1)th operation of job i
is already scheduled, and
3. jth operation of job i is an
unscheduled operation) then

{
for k’:=1 to m do
{

Set k:= k_sort(m-k’+1),
if (machine k is capable of
processing jth operation of job
i) then
{

if (1. PM of machine
k is already
scheduled; or
2.PM task of machine

k is not already
scheduled, and: Cij <= tLk -
durk, (such that,

Cij=max (Cmaxk, Ci,j-
1)+tijk)

) then
{

Set TC:=


5

1r
rrr C.x.w

if TC<TC* then
{

Set TC*:= TC
Set z:=i
Set y:=k
Set b:=0

}
}

}
if (PM operation of machine k is an unscheduled operation) then

{
Set TC:=
















5

1r
rrr6 C.x.w.x

if TC<TC* then
{

Set TC*:= TC

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

25

Set b:=1
Set y:=k

}
}

}
}

}
if TC*<M then
{

if b:=1 then schedule the PM task of
machine y on the last position of the
current partial sequence on this machine,
and set its completion time as max (Cmaxy+
dury, tEy).
else schedule jth operation of job z on the
last position of the current partial
sequence on machine y to finish at time czj.

}
}

}
% End of a schedule generation
If the objective value of the obtained sequence (Obj) is
less than the best objective value obtained so far (Obj*),
then set Obj*:=Obj and xr

*=xr (r=1,2,…, 7) corresponding to
Obj*.

}

Fig. 2. Pseudocode of the proposed heuristic method

In the above algorithm, each unscheduled job operation (i, j) (operation j of job i) to be scheduled
on machine y is evaluated by the following criterion (2):

TC =
5

r r r
r 1

w .x .C ,
=

∑ (2)

Also, unscheduled PM operation of machine y is evaluated by the following criterion (3):

TC =
5

6 r r r
r 1

x . w .x .C ,
=

 ′ 
 
∑ (3)

and the unscheduled operation (either job operation or maintenance operation) with minimum TC
is selected for scheduling.

C1 to C5 and C′1 to C′5 are calculated as (4) to (13):

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

26

C1 = max (Cmaxy, Ci,j-1)+ tijy (4)
C2 = max (0,(Ci,j-1 -Cmaxy)) (5)
C3 = tijy (6)
C4 = w′T + tijy (7)
C5 = w′y + tijy (8)
C′1 = max (Cmaxy+ dury, tEy) (9)
C′2 = max (0,(tEy-dury-Cmaxy)) (10)
C′3 = dury (11)
C′4 = w′T + dury (12)
C′5 = w′y + dury (13)

TC is weighted sum of some criteria which are established based on the factors affecting the
objective function value. Minimization of TC in the process of schedule generation leads to
improvement in solution quality. wr (r=1,2,…,5) are constants and xr (r=1,2,…,6) are integer
variables used to increase the flexibility and effectiveness of criterion TC and have a significant
impact on the performance of the algorithm. The constant weights (wr) are preliminary estimated
weights assigned to criteria according to their importance, and the coefficients xr are variables
bounded in a given range and used to refine the TC. Cmaxy is the maximum completion time
across all the operations scheduled on machine y; i.e., the completion time of last operation
(either job operation or PM operation) scheduled on machine y. w′T is the total workload of
machines for the partial schedule. w′y is the workload of machine y for the partial schedule. C1

and C′1 are applied to decrease Cmaxy; C2 and C′2 are used to decrease idle times; clearly, both
these objectives (Cmaxy and idle times) affect the main objective function, i.e. Cmax. The values of
other objective functions, i.e. WT and Wmax, are directly affected by (C4 and C′4) and (C5 and C′5),
respectively. For assigning operations to a machine, their processing time are also taken into
account by C3 and C′3.

Other notations used in the pseudocode of the proposed heuristic are as follows:

TC*: denotes the best value of TC. After each operation is scheduled, TC* is reset to M.
L_xr (r=1,2,…,6): lower limit of xr.
U_xr (r=1,2,…,6): upper limit of xr.
b: a binary variable taking value 1 if PM task of a machine is selected for scheduling, and

0 if an operation of a job is selected for scheduling.

As it can be seen in Fig. 2, the algorithm first sorts the jobs in increasing (decreasing) order of
their sji and then uses this order for evaluating their operations. Therefore, if two unscheduled
operations belonging to two different jobs have the same value of TC, then according to this
sorting of the jobs, the operation of job with smaller (greater) sji is selected for scheduling sooner
than the other operation. Binary variable x7 is applied for setting the order of the sorting (i.e.
either increasing order or decreasing order), it takes a value of 1 for increasing order and 0 for
decreasing one. Similarly, the algorithm first sorts the machines in decreasing order of their sky

and then uses this order to evaluate assigning the operations to each of them. In our preliminary
computational experiments, we used these sortings of the jobs and machines instead of randomly
selecting them, and interestingly observed that these sortings can lead to better solutions.
Specially, the results showed that in most cases, the sorting of the machines in decreasing order of
their sky leads to better solutions in comparison with increasing order. It is because the machines
with larger sky which are firstly selected for scheduling have more sensibility and effect on the
objective value. In other words, the schedule of these machines determines the performance of
overall schedule of the problem. Therefore, we have used only decreasing order of them in the
computational experiments. xr

*(r=1,2,…,7) are the best values of variables xr (i.e. the values

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

27

corresponding to the best solutions). Indeed, for various values of xr (r=1,2,…,7), the algorithm of
Fig. 1 is run and a complete schedule is generated. Among all these schedules, the one with
minimum Obj is reported as the final solution. The values of variables xr for this best solution are
also reported and denoted by xr

* (see Table 2). This best schedule obtained from the heuristic is
next improved by a shift neighborhood based local search procedure. The pseudocode of this
local search is shown in Appendix.

As mentioned earlier, the evaluation of the operations for scheduling them is done using the
criterion TC, i.e. the unscheduled operation with minimum TC is selected for scheduling.

4.Computational Results

This section describes the computational experiments conducted in order to evaluate the
performance of the proposed heuristic method. First, some preliminary experiments have been
conducted for the parameter settings. Regarding the test on various values for the parameters of
the algorithm and considering the computational results, we used the settings of Table 1 for
benchmarking the presented algorithm.

Table 1. Parameter settings for the heuristic

Parameter Value Parameter Value Parameter Value
L_x1 0 U_x1 2 w1 1
L_x2 0 U_x2 2 w2 1
L_x3 0 U_x3 2 w3 1
L_x4 0 U_x4 2 w4 0.5
L_x5 0 U_x5 2 w5 0.2
L_x6 0 U_x6 2

The algorithm was coded in C language and run on a Pentium IV, 2.2 GHz and 2.0 GB RAM PC.
The benchmark problems used were the set of 4 instances presented by Kacem et al. [20,21,22]
and extended by Gao et al. [9] and Rajkumar et al. [15] to problems involving maintenance
constraints. All these instances have exactly one PM activity on each machine in the planning
horizon. Table 2 shows a comparison of the results of our algorithm with those of two recently
published algorithms: the hybrid genetic algorithm (hGA) presented by Gao et al. [9] and the
greedy randomized adaptive search procedure (GRASP) developed by Rajkumar et al. [15]. The
results are obtained under two objective functions: Obj1=0.3×Cmax+0.5×WT+0.2×Wmax, and
Obj2=0.2×Cmax+0.5×WT+0.3×Wmax. Weights denotes the weights of the objectives. Name and
Size refer to the name of each instance and its size in terms of the number of jobs, machines and
operations, respectively. Cmax, WT and Wmax stand for the makespan, total workload and
maximum workload, respectively. RPD is the relative percentage deviation and calculated as (14):

100×
−

=
*

*
lga

Obj

ObjObj
RPD , (14)

where Objalg is the objective function (Obj) value generated by the algorithm and Obj* is the best
value of Obj obtained from the three algorithms. Sol.1 and Sol.2 show the results obtained by the
heuristic algorithm and local search procedure, respectively. Time(s) indicates the computational
time to solve each instance by the heuristic (including the time spent on the local search) in
seconds. The best values of variables xr (i.e. xr

*), r=1,2,…,7; are also reported in Table 2. Symbol

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

28

‘−’ denotes that the result was not presented in the given reference. As it can be seen in the table,
for the results corresponding to Obj2, i.e. cases with larger weights for Wmax, the value of x7 is
equal to 0.25, i.e. near to zero. It means that the sorting of the jobs in decreasing order of their sji

leads to better solutions in comparison with increasing order. It is because the jobs with larger sji

which are firstly selected for scheduling have more impact on Wmax. The results of Table 2 also
show that the value of x6 is equal to zero in almost all instances, meaning that TC for PM
operations is set to zero, i.e. PM operations are started at earliest possible time. This intuitively
gives more opportunities to job operations to be inserted in good positions of the overall schedule.
The average value of each variable xr, r=1,2,…,5 can be considered as the relative effect of the
corresponding criterion on the quality of solutions. Of course, as it can be seen in the table, the
values of each variable xr, r=1,2,…,5 have relatively high variance, meaning that they are
strongly dependent on the specifications of problem instance under consideration and on the
values of other variables xr. The proposed algorithm selects for each instance, best combination of
xr values leading to best result.

In Table 2, an interesting observation is that the proposed heuristic is better than the other two
metaheuristic algorithms in terms of the average RPD, considering that it is very fast and needs
only 0.5 sec. on average. Figures 3 and 4 show a graphical comparison of the RPD of the three
methods for Obj1 and Obj2, respectively.

Table 2. Computational results for benchmark instances

Weights Name Size Cm ax W t Wm ax Obj1 x1 x2 x3 x4 x5 x6 x7 Cm ax W t Wm ax Obj1 RPD Time(s)
4-5-nfa 4,5,12 15 40 9 26.3 1 1 1 2 1 0 0 13 40 9 25.7 0 0.05
8-8-nfa 8,8,27 31 103 16 64 0 0 0 1 1 0 0 20 103 16 60.7 0.998 0.22

10-10-nfa 10,10,30 11 60 8 34.9 2 1 1 0 2 0 1 9 60 8 34.3 0.587 0.38
15-10-nfa 15,10,56 20 108 13 62.6 2 1 2 0 1 1 1 15 104 14 59.3 0 1.45

1.25 0.75 1 0.75 1.25 0.25 0.5 0.396 0.52

Weights Name Size Cm ax W t Wm ax Obj2 x1 x2 x3 x4 x5 x6 x7 Cm ax W t Wm ax Obj2 RPD Time(s)
4-5-nfa 4,5,12 15 40 9 25.7 1 1 1 2 1 0 0 13 40 9 25.3 0 0.05
8-8-nfa 8,8,27 31 103 16 62.5 0 0 0 1 1 0 0 20 103 16 60.3 0.668 0.22

10-10-nfa 10,10,30 11 60 8 34.6 2 1 1 0 2 0 1 9 60 8 34.2 0.885 0.36
15-10-nfa 15,10,56 27 104 14 61.6 0 0 0 2 2 0 0 14 105 12 58.9 0 1.09

0.75 0.5 0.5 1.25 1.5 0 0.25 0.388 0.43

Weights Name Size Cm ax W t Wm ax Obj1 RPD Cm ax W t Wm ax Obj1 RPD
4-5-nfa 4,5,12 − − − − − 16 40 9 26.6 3.502
8-8-nfa 8,8,27 17 105 15 60.6 0.832 18 103 16 60.1 0

10-10-nfa 10,10,30 8 61 7 34.3 0.587 9 60 7 34.1 0
15-10-nfa 15,10,56 12 109 12 60.5 2.024 16 107 13 60.9 2.698

1.147 1.55

Weights Name Size Cm ax W t Wm ax Obj2 RPD Cm ax W t Wm ax Obj2 RPD
4-5-nfa 4,5,12 − − − − − 16 40 9 25.9 2.372
8-8-nfa 8,8,27 17 105 15 60.4 0.835 18 103 16 59.9 0

10-10-nfa 10,10,30 8 61 7 34.2 0.885 9 60 7 33.9 0
15-10-nfa 15,10,56 12 109 12 60.5 2.716 16 107 13 60.3 2.377

1.479 1.187

w
1=

0.
3

w
2=

0.
5

w
3=

0.
2

w
1=

0.
2

w
2=

0.
5

w
3=

0.
3

 Average

 Average

GRASP

Heuristic
Sol.1 Sol.2

hGA

 Average

 Average

w
1=

0.
3

w
2=

0.
5

w
3=

0.
2

w
1=

0.
2

w
2=

0.
5

w
3=

0.
3

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

29

0

0.5

1

1.5

2

2.5

3

3.5

4

4-5-nfa 8-8-nfa 10-10-nfa 15-10-nfa

Instance name

RP
D

hGA
GRASP
Heuristic

Fig. 3 Comparison of the three methods for Obj1 (i.e. W1=0.3, W2=0.5, W3=0.2)

0

0.5

1

1.5

2

2.5

3

4-5-nfa 8-8-nfa 10-10-nfa 15-10-nfa

Instance name

RP
D

hGA
GRASP
Heuristic

Fig. 4 Comparison of the three methods for Obj2 (i.e. W1=0.2, W2=0.5, W3=0.3)

5.Conclusion

This paper investigates the flexible job shop scheduling problem with preventive maintenance
constraints. The objective is to minimize the makespan, the total workload of machines and the
workload of most loaded machine. The main purpose is to produce reasonable schedules very
quickly. A simple and easily extendable heuristic based on a constructive procedure is presented.
The proposed approach uses an accurate, relatively comprehensive and flexible criterion for
scheduling job operations and PM operations and constructing a feasible high-quality solution. In
this criterion, several factors affecting the quality of solutions are used and to each of these
factors, a variable weight is assigned. By setting different values to these variable weights,
different solutions are generated and evaluated. The algorithm is tested on benchmark instances
from the literature in order to evaluate its performance. The computational results show that the
proposed approach can yield very good solutions with very little computational time. Since the
presented method is a heuristic, its results cannot be compared in a meaningful way with those of
the methods evaluated as they are metaheuristic based algorithms. However, the computational
results show that the proposed heuristic outperforms the other metaheuristic methods evaluated,

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

30

in terms of both the average RPD and the computational time. Further research needs to be
conducted in applying other criteria in the TC in order to improve the solution quality and to
adapt the approach to other objectives and process constraints.

Appendix. Shift neighborhood based local search procedure(l and l′ are indices of position in the
machine path. L, L′ denote the number of operations assigned to machines y and y′ in the current
solution, respectively.)

Repeat:
for y:=1 to m do

for l:=1 to L do
for y′:=1 to m do

for l’:=1 to L’ do
if (y′≠y or (y′=y and l’≠l)) then
{

• Remove the operation placed in position l
on machine y and insert it into position l’
on machine y′, leaving all other relative
operation orders unchanged.
• If the objective value of the obtained
sequence (Obj) is less than the best
objective value obtained so far (Obj*), then
set Obj*:=Obj; Otherwise, insert the
operation into its previous position.

}
until (no improvement occurs over the best solution)

References

[1] Jain, A.S., Meeran, S., Deterministic job-shop scheduling: Past, present and future, European Journal
of Operational Research 113 (2) (1998) 390–434.

[2] Baker, K., Introduction to sequencing and scheduling, NewYork: Wiley (1974).
[3] Pinedo, M., Scheduling: theory, algorithms and systems, Englewood cliffs, NJ: Prentice-Hall (2002).
[4] Garey, M.R., Johnson, D.S., Sethi, R., The complexity of flow shop and job-shop scheduling,

Mathematics of Operations Research 1 (2) (1976) 117–129.
[5] Dell'Amico, M., Trubian, M., Applying tabu-search to the job-shop scheduling problem, Annals of

Operations Research 4 (1993) 231–252.
[6] Matsuo, H., Suh, C., Sullivan, R., A controlled search simulated annealing method for the general job-

shop scheduling problem, Tech. Rep. 03-04-88, Dept. of Management, The University of Texas,
Austin (1988).

[7] Van Laarhoven, P., Aarts, E., Lenstra, J., Job shop scheduling by simulated annealing, Operations
Research 40 (1992) 113–125.

[8] Xiong, J., Xing, L.-N., Chen, Y.-W., Robust scheduling for multi-objective flexible job-shop
problems with random machine breakdowns, International Journal of Production Economics 141
(2013) 112–126.

[9] Gao, J., Gen, M., Sun, L., Scheduling jobs and maintenances in flexible job shop with a hybrid
genetic algorithm, Journal of Intelligent Manufacturing 17 (2006) 493–507.

[10] Schmidt, G., Scheduling with limited machine availability, European Journal of Operational Research
121 (1) (2000) 1–15.

[11] Ma, Y., Chu, C., Zuo, C., A survey of scheduling with deterministic machine availability constraints,
Computers & Industrial Engineering 58 (2010) 199–211.

[12] Dalfard, V. M., Mohammadi, G., Two meta-heuristic algorithms for solving multi-objective flexible
job-shop scheduling with parallel machine and maintenance constraints, Computers & Mathematics
with Applications 64 (6) (2012) 2111–2117.

Applied Mathematics and Sciences: An International Journal (MathSJ), Vol. 1, No. 1, May 2014

31

[13] Chan, F.T.S., Wong, T.C., Chan, L.Y., Flexible job-shop scheduling problem under resource
constraints International Journal of Production Research 44 (11) (2006) 2071–2089.

[14] Zribi, N., Kamel, A.E., Borne, P., Minimizing the makespan for the MPM job-shop with availability
constraints, International Journal of Production Economics 112 (1) (2008) 151–160.

[15] Rajkumar, M., Asokan, P., Vamsikrishna, V., A GRASP algorithm for flexible job-shop scheduling
with maintenance constraints, International Journal of Production Research 48 (22) (2010) 6821–
6836.

[16] Moradi, E., Ghomi, S.M.T.F., Zandieh, M., Bi-objective optimization research on integrated fixed
time interval preventive maintenance and production for scheduling flexible job-shop problem, Expert
Systems with Applications 38 (6) (2011) 7169–7178.

[17] Vilcot, G., Billaut, J.-C., A tabu search and a genetic algorithm for solving a bicriteria general job
shop scheduling problem, European Journal of Operational Research 190 (2) (2008) 398–411.

[18] Chan, F.T.S., Chung, S.H., Chan, L.Y., Finke, G., Tiwari, M.K., Solving distributed FMS scheduling
problems subject to maintenance: Genetic algorithms approach, Robotics and Computer-Integrated
Manufacturing 22 (5-6) (2006) 493–504.

[19] Wang, S., Yu, J., An effective heuristic for flexible job-shop scheduling problem with maintenance
activities, Computers & Industrial Engineering 59 (2010) 436–447.

[20] Kacem, I., Hammadi, S., Borne, P., Approach by localization and multiobjective evolutionary
optimization for flexible job-shop scheduling problems, IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 32(1) (2002) 1–13.

[21] Kacem, I., Hammadi, S., Borne, P., Pareto-optimality approach for flexible job-shop scheduling
problems: hybridization of evolutionary algorithms and fuzzy logic, Mathematics and Computers in
Simulation 60 (2002) 245–276.

[22] Xia, W., Wu, Z., An effective hybrid optimization approach for multi-objective flexible job-shop
scheduling problems, Computers & Industrial Engineering 48 (2005) 409–425.

