@inproceedings{shirnin-etal-2024-aipom,
title = "{AI}pom at {S}em{E}val-2024 Task 8: Detecting {AI}-produced Outputs in M4",
author = "Shirnin, Alexander and
Andreev, Nikita and
Mikhailov, Vladislav and
Artemova, Ekaterina",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Tayyar Madabushi, Harish and
Da San Martino, Giovanni and
Rosenthal, Sara and
Ros{\'a}, Aiala},
booktitle = "Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.semeval-1.238/",
doi = "10.18653/v1/2024.semeval-1.238",
pages = "1667--1672",
abstract = "This paper describes AIpom, a system designed to detect a boundary between human-written and machine-generated text (SemEval-2024 Task 8, Subtask C: Human-Machine Mixed Text Detection). We propose a two-stage pipeline combining predictions from an instruction-tuned decoder-only model and encoder-only sequence taggers. AIpom is ranked second on the leaderboard while achieving a Mean Absolute Error of 15.94. Ablation studies confirm the benefits of pipelining encoder and decoder models, particularly in terms of improved performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shirnin-etal-2024-aipom">
<titleInfo>
<title>AIpom at SemEval-2024 Task 8: Detecting AI-produced Outputs in M4</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Shirnin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikita</namePart>
<namePart type="family">Andreev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vladislav</namePart>
<namePart type="family">Mikhailov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Artemova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Rosenthal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiala</namePart>
<namePart type="family">Rosá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes AIpom, a system designed to detect a boundary between human-written and machine-generated text (SemEval-2024 Task 8, Subtask C: Human-Machine Mixed Text Detection). We propose a two-stage pipeline combining predictions from an instruction-tuned decoder-only model and encoder-only sequence taggers. AIpom is ranked second on the leaderboard while achieving a Mean Absolute Error of 15.94. Ablation studies confirm the benefits of pipelining encoder and decoder models, particularly in terms of improved performance.</abstract>
<identifier type="citekey">shirnin-etal-2024-aipom</identifier>
<identifier type="doi">10.18653/v1/2024.semeval-1.238</identifier>
<location>
<url>https://aclanthology.org/2024.semeval-1.238/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>1667</start>
<end>1672</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AIpom at SemEval-2024 Task 8: Detecting AI-produced Outputs in M4
%A Shirnin, Alexander
%A Andreev, Nikita
%A Mikhailov, Vladislav
%A Artemova, Ekaterina
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Tayyar Madabushi, Harish
%Y Da San Martino, Giovanni
%Y Rosenthal, Sara
%Y Rosá, Aiala
%S Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F shirnin-etal-2024-aipom
%X This paper describes AIpom, a system designed to detect a boundary between human-written and machine-generated text (SemEval-2024 Task 8, Subtask C: Human-Machine Mixed Text Detection). We propose a two-stage pipeline combining predictions from an instruction-tuned decoder-only model and encoder-only sequence taggers. AIpom is ranked second on the leaderboard while achieving a Mean Absolute Error of 15.94. Ablation studies confirm the benefits of pipelining encoder and decoder models, particularly in terms of improved performance.
%R 10.18653/v1/2024.semeval-1.238
%U https://aclanthology.org/2024.semeval-1.238/
%U https://doi.org/10.18653/v1/2024.semeval-1.238
%P 1667-1672
Markdown (Informal)
[AIpom at SemEval-2024 Task 8: Detecting AI-produced Outputs in M4](https://aclanthology.org/2024.semeval-1.238/) (Shirnin et al., SemEval 2024)
ACL