Nothing Special   »   [go: up one dir, main page]

A Tulu Resource for Machine Translation

Manu Narayanan, Noëmi Aepli


Abstract
We present the first parallel dataset for English–Tulu translation. Tulu, classified within the South Dravidian linguistic family branch, is predominantly spoken by approximately 2.5 million individuals in southwestern India. Our dataset is constructed by integrating human translations into the multilingual machine translation resource FLORES-200. Furthermore, we use this dataset for evaluation purposes in developing our English–Tulu machine translation model. For the model’s training, we leverage resources available for related South Dravidian languages. We adopt a transfer learning approach that exploits similarities between high-resource and low-resource languages. This method enables the training of a machine translation system even in the absence of parallel data between the source and target language, thereby overcoming a significant obstacle in machine translation development for low-resource languages. Our English–Tulu system, trained without using parallel English–Tulu data, outperforms Google Translate by 19 BLEU points (in September 2023). The dataset and code are available here: https://github.com/manunarayanan/Tulu-NMT.
Anthology ID:
2024.lrec-main.155
Volume:
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Month:
May
Year:
2024
Address:
Torino, Italia
Editors:
Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
Venues:
LREC | COLING
SIG:
Publisher:
ELRA and ICCL
Note:
Pages:
1756–1767
Language:
URL:
https://aclanthology.org/2024.lrec-main.155
DOI:
Bibkey:
Cite (ACL):
Manu Narayanan and Noëmi Aepli. 2024. A Tulu Resource for Machine Translation. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 1756–1767, Torino, Italia. ELRA and ICCL.
Cite (Informal):
A Tulu Resource for Machine Translation (Narayanan & Aepli, LREC-COLING 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.lrec-main.155.pdf