@inproceedings{gong-etal-2024-mapping,
title = "A Mapping on Current Classifying Categories of Emotions Used in Multimodal Models for Emotion Recognition",
author = "Gong, Ziwei and
Yao, Muyin and
Hu, Xinyi and
Zhu, Xiaoning and
Hirschberg, Julia",
editor = "Henning, Sophie and
Stede, Manfred",
booktitle = "Proceedings of The 18th Linguistic Annotation Workshop (LAW-XVIII)",
month = mar,
year = "2024",
address = "St. Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.law-1.3",
pages = "19--28",
abstract = "In Emotion Detection within Natural Language Processing and related multimodal research, the growth of datasets and models has led to a challenge: disparities in emotion classification methods. The lack of commonly agreed upon conventions on the classification of emotions creates boundaries for model comparisons and dataset adaptation. In this paper, we compare the current classification methods in recent models and datasets and propose a valid method to combine different emotion categories. Our proposal arises from experiments across models, psychological theories, and human evaluations, and we examined the effect of proposed mapping on models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gong-etal-2024-mapping">
<titleInfo>
<title>A Mapping on Current Classifying Categories of Emotions Used in Multimodal Models for Emotion Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ziwei</namePart>
<namePart type="family">Gong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muyin</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinyi</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaoning</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hirschberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of The 18th Linguistic Annotation Workshop (LAW-XVIII)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sophie</namePart>
<namePart type="family">Henning</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Stede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In Emotion Detection within Natural Language Processing and related multimodal research, the growth of datasets and models has led to a challenge: disparities in emotion classification methods. The lack of commonly agreed upon conventions on the classification of emotions creates boundaries for model comparisons and dataset adaptation. In this paper, we compare the current classification methods in recent models and datasets and propose a valid method to combine different emotion categories. Our proposal arises from experiments across models, psychological theories, and human evaluations, and we examined the effect of proposed mapping on models.</abstract>
<identifier type="citekey">gong-etal-2024-mapping</identifier>
<location>
<url>https://aclanthology.org/2024.law-1.3</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>19</start>
<end>28</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Mapping on Current Classifying Categories of Emotions Used in Multimodal Models for Emotion Recognition
%A Gong, Ziwei
%A Yao, Muyin
%A Hu, Xinyi
%A Zhu, Xiaoning
%A Hirschberg, Julia
%Y Henning, Sophie
%Y Stede, Manfred
%S Proceedings of The 18th Linguistic Annotation Workshop (LAW-XVIII)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julians, Malta
%F gong-etal-2024-mapping
%X In Emotion Detection within Natural Language Processing and related multimodal research, the growth of datasets and models has led to a challenge: disparities in emotion classification methods. The lack of commonly agreed upon conventions on the classification of emotions creates boundaries for model comparisons and dataset adaptation. In this paper, we compare the current classification methods in recent models and datasets and propose a valid method to combine different emotion categories. Our proposal arises from experiments across models, psychological theories, and human evaluations, and we examined the effect of proposed mapping on models.
%U https://aclanthology.org/2024.law-1.3
%P 19-28
Markdown (Informal)
[A Mapping on Current Classifying Categories of Emotions Used in Multimodal Models for Emotion Recognition](https://aclanthology.org/2024.law-1.3) (Gong et al., LAW-WS 2024)
ACL