@inproceedings{koto-etal-2024-zero,
title = "Zero-shot Sentiment Analysis in Low-Resource Languages Using a Multilingual Sentiment Lexicon",
author = "Koto, Fajri and
Beck, Tilman and
Talat, Zeerak and
Gurevych, Iryna and
Baldwin, Timothy",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.eacl-long.18",
pages = "298--320",
abstract = "Improving multilingual language models capabilities in low-resource languages is generally difficult due to the scarcity of large-scale data in those languages. In this paper, we relax the reliance on texts in low-resource languages by using multilingual lexicons in pretraining to enhance multilingual capabilities. Specifically, we focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets. We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets, and large language models like GPT{--}3.5, BLOOMZ, and XGLM. These findings are observable for unseen low-resource languages to code-mixed scenarios involving high-resource languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="koto-etal-2024-zero">
<titleInfo>
<title>Zero-shot Sentiment Analysis in Low-Resource Languages Using a Multilingual Sentiment Lexicon</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fajri</namePart>
<namePart type="family">Koto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tilman</namePart>
<namePart type="family">Beck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Talat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Improving multilingual language models capabilities in low-resource languages is generally difficult due to the scarcity of large-scale data in those languages. In this paper, we relax the reliance on texts in low-resource languages by using multilingual lexicons in pretraining to enhance multilingual capabilities. Specifically, we focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets. We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets, and large language models like GPT–3.5, BLOOMZ, and XGLM. These findings are observable for unseen low-resource languages to code-mixed scenarios involving high-resource languages.</abstract>
<identifier type="citekey">koto-etal-2024-zero</identifier>
<location>
<url>https://aclanthology.org/2024.eacl-long.18</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>298</start>
<end>320</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Zero-shot Sentiment Analysis in Low-Resource Languages Using a Multilingual Sentiment Lexicon
%A Koto, Fajri
%A Beck, Tilman
%A Talat, Zeerak
%A Gurevych, Iryna
%A Baldwin, Timothy
%Y Graham, Yvette
%Y Purver, Matthew
%S Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F koto-etal-2024-zero
%X Improving multilingual language models capabilities in low-resource languages is generally difficult due to the scarcity of large-scale data in those languages. In this paper, we relax the reliance on texts in low-resource languages by using multilingual lexicons in pretraining to enhance multilingual capabilities. Specifically, we focus on zero-shot sentiment analysis tasks across 34 languages, including 6 high/medium-resource languages, 25 low-resource languages, and 3 code-switching datasets. We demonstrate that pretraining using multilingual lexicons, without using any sentence-level sentiment data, achieves superior zero-shot performance compared to models fine-tuned on English sentiment datasets, and large language models like GPT–3.5, BLOOMZ, and XGLM. These findings are observable for unseen low-resource languages to code-mixed scenarios involving high-resource languages.
%U https://aclanthology.org/2024.eacl-long.18
%P 298-320
Markdown (Informal)
[Zero-shot Sentiment Analysis in Low-Resource Languages Using a Multilingual Sentiment Lexicon](https://aclanthology.org/2024.eacl-long.18) (Koto et al., EACL 2024)
ACL