@inproceedings{mikhaylovskiy-2023-long,
title = "Long Story Generation Challenge",
author = "Mikhaylovskiy, Nikolay",
editor = "Mille, Simon",
booktitle = "Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.inlg-genchal.2",
pages = "10--16",
abstract = "We propose a shared task of human-like long story generation, LSG Challenge, that asks models to output a consistent human-like long story (a Harry Potter generic audience fanfic in English), given a prompt of about 1K tokens. We suggest a novel statistical metric of the text structuredness, GloVe Autocorrelations Power/ Exponential Law Mean Absolute Percentage Error Ratio (GAPELMAPER) and the use of previously-known UNION metric and a human evaluation protocol. We hope that LSG can open new avenues for researchers to investigate sampling approaches, prompting strategies, autoregressive and non-autoregressive text generation architectures and break the barrier to generate consistent long (40K+ word) texts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mikhaylovskiy-2023-long">
<titleInfo>
<title>Long Story Generation Challenge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolay</namePart>
<namePart type="family">Mikhaylovskiy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a shared task of human-like long story generation, LSG Challenge, that asks models to output a consistent human-like long story (a Harry Potter generic audience fanfic in English), given a prompt of about 1K tokens. We suggest a novel statistical metric of the text structuredness, GloVe Autocorrelations Power/ Exponential Law Mean Absolute Percentage Error Ratio (GAPELMAPER) and the use of previously-known UNION metric and a human evaluation protocol. We hope that LSG can open new avenues for researchers to investigate sampling approaches, prompting strategies, autoregressive and non-autoregressive text generation architectures and break the barrier to generate consistent long (40K+ word) texts.</abstract>
<identifier type="citekey">mikhaylovskiy-2023-long</identifier>
<location>
<url>https://aclanthology.org/2023.inlg-genchal.2</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>10</start>
<end>16</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Long Story Generation Challenge
%A Mikhaylovskiy, Nikolay
%Y Mille, Simon
%S Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F mikhaylovskiy-2023-long
%X We propose a shared task of human-like long story generation, LSG Challenge, that asks models to output a consistent human-like long story (a Harry Potter generic audience fanfic in English), given a prompt of about 1K tokens. We suggest a novel statistical metric of the text structuredness, GloVe Autocorrelations Power/ Exponential Law Mean Absolute Percentage Error Ratio (GAPELMAPER) and the use of previously-known UNION metric and a human evaluation protocol. We hope that LSG can open new avenues for researchers to investigate sampling approaches, prompting strategies, autoregressive and non-autoregressive text generation architectures and break the barrier to generate consistent long (40K+ word) texts.
%U https://aclanthology.org/2023.inlg-genchal.2
%P 10-16
Markdown (Informal)
[Long Story Generation Challenge](https://aclanthology.org/2023.inlg-genchal.2) (Mikhaylovskiy, INLG-SIGDIAL 2023)
ACL
- Nikolay Mikhaylovskiy. 2023. Long Story Generation Challenge. In Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges, pages 10–16, Prague, Czechia. Association for Computational Linguistics.