@inproceedings{wang-etal-2023-overview,
title = "Overview of {M}i{R}eportor: Generating Reports for Multimodal Medical Images",
author = "Wang, Xuwen and
Ma, Hetong and
Guo, Zhen and
Li, Jiao",
editor = "Keet, C. Maria and
Lee, Hung-Yi and
Zarrie{\ss}, Sina",
booktitle = "Proceedings of the 16th International Natural Language Generation Conference: System Demonstrations",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.inlg-demos.1",
pages = "1--3",
abstract = "This demo paper presents a brief introduction of MiReportor, a computer-aided medical imaging report generator, which leverages a unified framework of medical image understanding and generation to predict readable descriptions for medical images, and assists radiologists in imaging reports writing.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2023-overview">
<titleInfo>
<title>Overview of MiReportor: Generating Reports for Multimodal Medical Images</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xuwen</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hetong</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhen</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Natural Language Generation Conference: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="given">Maria</namePart>
<namePart type="family">Keet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hung-Yi</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sina</namePart>
<namePart type="family">Zarrieß</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This demo paper presents a brief introduction of MiReportor, a computer-aided medical imaging report generator, which leverages a unified framework of medical image understanding and generation to predict readable descriptions for medical images, and assists radiologists in imaging reports writing.</abstract>
<identifier type="citekey">wang-etal-2023-overview</identifier>
<location>
<url>https://aclanthology.org/2023.inlg-demos.1</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>1</start>
<end>3</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Overview of MiReportor: Generating Reports for Multimodal Medical Images
%A Wang, Xuwen
%A Ma, Hetong
%A Guo, Zhen
%A Li, Jiao
%Y Keet, C. Maria
%Y Lee, Hung-Yi
%Y Zarrieß, Sina
%S Proceedings of the 16th International Natural Language Generation Conference: System Demonstrations
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F wang-etal-2023-overview
%X This demo paper presents a brief introduction of MiReportor, a computer-aided medical imaging report generator, which leverages a unified framework of medical image understanding and generation to predict readable descriptions for medical images, and assists radiologists in imaging reports writing.
%U https://aclanthology.org/2023.inlg-demos.1
%P 1-3
Markdown (Informal)
[Overview of MiReportor: Generating Reports for Multimodal Medical Images](https://aclanthology.org/2023.inlg-demos.1) (Wang et al., INLG-SIGDIAL 2023)
ACL