@inproceedings{klein-nabi-2021-towards,
title = "Towards Zero-shot Commonsense Reasoning with Self-supervised Refinement of Language Models",
author = "Klein, Tassilo and
Nabi, Moin",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.688",
doi = "10.18653/v1/2021.emnlp-main.688",
pages = "8737--8743",
abstract = "Can we get existing language models and refine them for zero-shot commonsense reasoning? This paper presents an initial study exploring the feasibility of zero-shot commonsense reasoning for the Winograd Schema Challenge by formulating the task as self-supervised refinement of a pre-trained language model. In contrast to previous studies that rely on fine-tuning annotated datasets, we seek to boost conceptualization via loss landscape refinement. To this end, we propose a novel self-supervised learning approach that refines the language model utilizing a set of linguistic perturbations of similar concept relationships. Empirical analysis of our conceptually simple framework demonstrates the viability of zero-shot commonsense reasoning on multiple benchmarks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="klein-nabi-2021-towards">
<titleInfo>
<title>Towards Zero-shot Commonsense Reasoning with Self-supervised Refinement of Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tassilo</namePart>
<namePart type="family">Klein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Moin</namePart>
<namePart type="family">Nabi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Can we get existing language models and refine them for zero-shot commonsense reasoning? This paper presents an initial study exploring the feasibility of zero-shot commonsense reasoning for the Winograd Schema Challenge by formulating the task as self-supervised refinement of a pre-trained language model. In contrast to previous studies that rely on fine-tuning annotated datasets, we seek to boost conceptualization via loss landscape refinement. To this end, we propose a novel self-supervised learning approach that refines the language model utilizing a set of linguistic perturbations of similar concept relationships. Empirical analysis of our conceptually simple framework demonstrates the viability of zero-shot commonsense reasoning on multiple benchmarks.</abstract>
<identifier type="citekey">klein-nabi-2021-towards</identifier>
<identifier type="doi">10.18653/v1/2021.emnlp-main.688</identifier>
<location>
<url>https://aclanthology.org/2021.emnlp-main.688</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>8737</start>
<end>8743</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Zero-shot Commonsense Reasoning with Self-supervised Refinement of Language Models
%A Klein, Tassilo
%A Nabi, Moin
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F klein-nabi-2021-towards
%X Can we get existing language models and refine them for zero-shot commonsense reasoning? This paper presents an initial study exploring the feasibility of zero-shot commonsense reasoning for the Winograd Schema Challenge by formulating the task as self-supervised refinement of a pre-trained language model. In contrast to previous studies that rely on fine-tuning annotated datasets, we seek to boost conceptualization via loss landscape refinement. To this end, we propose a novel self-supervised learning approach that refines the language model utilizing a set of linguistic perturbations of similar concept relationships. Empirical analysis of our conceptually simple framework demonstrates the viability of zero-shot commonsense reasoning on multiple benchmarks.
%R 10.18653/v1/2021.emnlp-main.688
%U https://aclanthology.org/2021.emnlp-main.688
%U https://doi.org/10.18653/v1/2021.emnlp-main.688
%P 8737-8743
Markdown (Informal)
[Towards Zero-shot Commonsense Reasoning with Self-supervised Refinement of Language Models](https://aclanthology.org/2021.emnlp-main.688) (Klein & Nabi, EMNLP 2021)
ACL