@inproceedings{hauer-etal-2020-low,
title = "Low-Resource {G}2{P} and {P}2{G} Conversion with Synthetic Training Data",
author = "Hauer, Bradley and
Habibi, Amir Ahmad and
Luan, Yixing and
Mallik, Arnob and
Kondrak, Grzegorz",
editor = "Nicolai, Garrett and
Gorman, Kyle and
Cotterell, Ryan",
booktitle = "Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.sigmorphon-1.12",
doi = "10.18653/v1/2020.sigmorphon-1.12",
pages = "117--122",
abstract = "This paper presents the University of Alberta systems and results in the SIGMORPHON 2020 Task 1: Multilingual Grapheme-to-Phoneme Conversion. Following previous SIGMORPHON shared tasks, we define a low-resource setting with 100 training instances. We experiment with three transduction approaches in both standard and low-resource settings, as well as on the related task of phoneme-to-grapheme conversion. We propose a method for synthesizing training data using a combination of diverse models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hauer-etal-2020-low">
<titleInfo>
<title>Low-Resource G2P and P2G Conversion with Synthetic Training Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bradley</namePart>
<namePart type="family">Hauer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amir</namePart>
<namePart type="given">Ahmad</namePart>
<namePart type="family">Habibi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yixing</namePart>
<namePart type="family">Luan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arnob</namePart>
<namePart type="family">Mallik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grzegorz</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology</title>
</titleInfo>
<name type="personal">
<namePart type="given">Garrett</namePart>
<namePart type="family">Nicolai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="family">Gorman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the University of Alberta systems and results in the SIGMORPHON 2020 Task 1: Multilingual Grapheme-to-Phoneme Conversion. Following previous SIGMORPHON shared tasks, we define a low-resource setting with 100 training instances. We experiment with three transduction approaches in both standard and low-resource settings, as well as on the related task of phoneme-to-grapheme conversion. We propose a method for synthesizing training data using a combination of diverse models.</abstract>
<identifier type="citekey">hauer-etal-2020-low</identifier>
<identifier type="doi">10.18653/v1/2020.sigmorphon-1.12</identifier>
<location>
<url>https://aclanthology.org/2020.sigmorphon-1.12</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>117</start>
<end>122</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Low-Resource G2P and P2G Conversion with Synthetic Training Data
%A Hauer, Bradley
%A Habibi, Amir Ahmad
%A Luan, Yixing
%A Mallik, Arnob
%A Kondrak, Grzegorz
%Y Nicolai, Garrett
%Y Gorman, Kyle
%Y Cotterell, Ryan
%S Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F hauer-etal-2020-low
%X This paper presents the University of Alberta systems and results in the SIGMORPHON 2020 Task 1: Multilingual Grapheme-to-Phoneme Conversion. Following previous SIGMORPHON shared tasks, we define a low-resource setting with 100 training instances. We experiment with three transduction approaches in both standard and low-resource settings, as well as on the related task of phoneme-to-grapheme conversion. We propose a method for synthesizing training data using a combination of diverse models.
%R 10.18653/v1/2020.sigmorphon-1.12
%U https://aclanthology.org/2020.sigmorphon-1.12
%U https://doi.org/10.18653/v1/2020.sigmorphon-1.12
%P 117-122
Markdown (Informal)
[Low-Resource G2P and P2G Conversion with Synthetic Training Data](https://aclanthology.org/2020.sigmorphon-1.12) (Hauer et al., SIGMORPHON 2020)
ACL
- Bradley Hauer, Amir Ahmad Habibi, Yixing Luan, Arnob Mallik, and Grzegorz Kondrak. 2020. Low-Resource G2P and P2G Conversion with Synthetic Training Data. In Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 117–122, Online. Association for Computational Linguistics.