@inproceedings{hettiarachchi-ranasinghe-2020-brums,
title = "{BRUMS} at {S}em{E}val-2020 Task 3: Contextualised Embeddings for Predicting the (Graded) Effect of Context in Word Similarity",
author = "Hettiarachchi, Hansi and
Ranasinghe, Tharindu",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.16",
doi = "10.18653/v1/2020.semeval-1.16",
pages = "142--149",
abstract = "This paper presents the team BRUMS submission to SemEval-2020 Task 3: Graded Word Similarity in Context. The system utilises state-of-the-art contextualised word embeddings, which have some task-specific adaptations, including stacked embeddings and average embeddings. Overall, the approach achieves good evaluation scores across all the languages, while maintaining simplicity. Following the final rankings, our approach is ranked within the top 5 solutions of each language while preserving the 1st position of Finnish subtask 2.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hettiarachchi-ranasinghe-2020-brums">
<titleInfo>
<title>BRUMS at SemEval-2020 Task 3: Contextualised Embeddings for Predicting the (Graded) Effect of Context in Word Similarity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hansi</namePart>
<namePart type="family">Hettiarachchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the team BRUMS submission to SemEval-2020 Task 3: Graded Word Similarity in Context. The system utilises state-of-the-art contextualised word embeddings, which have some task-specific adaptations, including stacked embeddings and average embeddings. Overall, the approach achieves good evaluation scores across all the languages, while maintaining simplicity. Following the final rankings, our approach is ranked within the top 5 solutions of each language while preserving the 1st position of Finnish subtask 2.</abstract>
<identifier type="citekey">hettiarachchi-ranasinghe-2020-brums</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.16</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.16</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>142</start>
<end>149</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BRUMS at SemEval-2020 Task 3: Contextualised Embeddings for Predicting the (Graded) Effect of Context in Word Similarity
%A Hettiarachchi, Hansi
%A Ranasinghe, Tharindu
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F hettiarachchi-ranasinghe-2020-brums
%X This paper presents the team BRUMS submission to SemEval-2020 Task 3: Graded Word Similarity in Context. The system utilises state-of-the-art contextualised word embeddings, which have some task-specific adaptations, including stacked embeddings and average embeddings. Overall, the approach achieves good evaluation scores across all the languages, while maintaining simplicity. Following the final rankings, our approach is ranked within the top 5 solutions of each language while preserving the 1st position of Finnish subtask 2.
%R 10.18653/v1/2020.semeval-1.16
%U https://aclanthology.org/2020.semeval-1.16
%U https://doi.org/10.18653/v1/2020.semeval-1.16
%P 142-149
Markdown (Informal)
[BRUMS at SemEval-2020 Task 3: Contextualised Embeddings for Predicting the (Graded) Effect of Context in Word Similarity](https://aclanthology.org/2020.semeval-1.16) (Hettiarachchi & Ranasinghe, SemEval 2020)
ACL