@inproceedings{kang-eshkol-taravella-2020-empirical,
title = "An Empirical Examination of Online Restaurant Reviews",
author = "Kang, Hyun Jung and
Eshkol-Taravella, Iris",
editor = "Calzolari, Nicoletta and
B{\'e}chet, Fr{\'e}d{\'e}ric and
Blache, Philippe and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2020.lrec-1.608",
pages = "4942--4947",
abstract = "In the wake of (Pang et al., 2002; Turney, 2002; Liu, 2012) inter alia, opinion mining and sentiment analysis have focused on extracting either positive or negative opinions from texts and determining the targets of these opinions. In this study, we go beyond the coarse-grained positive vs. negative opposition and propose a corpus-based scheme that detects evaluative language at a finer-grained level. We classify each sentence into one of four evaluation types based on the proposed scheme: (1) the reviewer{'}s opinion on the restaurant (positive, negative, or mixed); (2) the reviewer{'}s input/feedback to potential customers and restaurant owners (suggestion, advice, or warning) (3) whether the reviewer wants to return to the restaurant (intention); (4) the factual statement about the experience (description). We apply classical machine learning and deep learning methods to show the effectiveness of our scheme. We also interpret the performances that we obtained for each category by taking into account the specificities of the corpus treated.",
language = "English",
ISBN = "979-10-95546-34-4",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kang-eshkol-taravella-2020-empirical">
<titleInfo>
<title>An Empirical Examination of Online Restaurant Reviews</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hyun</namePart>
<namePart type="given">Jung</namePart>
<namePart type="family">Kang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iris</namePart>
<namePart type="family">Eshkol-Taravella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Twelfth Language Resources and Evaluation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Béchet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Blache</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Choukri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christopher</namePart>
<namePart type="family">Cieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Declerck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Goggi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hitoshi</namePart>
<namePart type="family">Isahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bente</namePart>
<namePart type="family">Maegaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Mariani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hélène</namePart>
<namePart type="family">Mazo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asuncion</namePart>
<namePart type="family">Moreno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Odijk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stelios</namePart>
<namePart type="family">Piperidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Language Resources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-34-4</identifier>
</relatedItem>
<abstract>In the wake of (Pang et al., 2002; Turney, 2002; Liu, 2012) inter alia, opinion mining and sentiment analysis have focused on extracting either positive or negative opinions from texts and determining the targets of these opinions. In this study, we go beyond the coarse-grained positive vs. negative opposition and propose a corpus-based scheme that detects evaluative language at a finer-grained level. We classify each sentence into one of four evaluation types based on the proposed scheme: (1) the reviewer’s opinion on the restaurant (positive, negative, or mixed); (2) the reviewer’s input/feedback to potential customers and restaurant owners (suggestion, advice, or warning) (3) whether the reviewer wants to return to the restaurant (intention); (4) the factual statement about the experience (description). We apply classical machine learning and deep learning methods to show the effectiveness of our scheme. We also interpret the performances that we obtained for each category by taking into account the specificities of the corpus treated.</abstract>
<identifier type="citekey">kang-eshkol-taravella-2020-empirical</identifier>
<location>
<url>https://aclanthology.org/2020.lrec-1.608</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>4942</start>
<end>4947</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Empirical Examination of Online Restaurant Reviews
%A Kang, Hyun Jung
%A Eshkol-Taravella, Iris
%Y Calzolari, Nicoletta
%Y Béchet, Frédéric
%Y Blache, Philippe
%Y Choukri, Khalid
%Y Cieri, Christopher
%Y Declerck, Thierry
%Y Goggi, Sara
%Y Isahara, Hitoshi
%Y Maegaard, Bente
%Y Mariani, Joseph
%Y Mazo, Hélène
%Y Moreno, Asuncion
%Y Odijk, Jan
%Y Piperidis, Stelios
%S Proceedings of the Twelfth Language Resources and Evaluation Conference
%D 2020
%8 May
%I European Language Resources Association
%C Marseille, France
%@ 979-10-95546-34-4
%G English
%F kang-eshkol-taravella-2020-empirical
%X In the wake of (Pang et al., 2002; Turney, 2002; Liu, 2012) inter alia, opinion mining and sentiment analysis have focused on extracting either positive or negative opinions from texts and determining the targets of these opinions. In this study, we go beyond the coarse-grained positive vs. negative opposition and propose a corpus-based scheme that detects evaluative language at a finer-grained level. We classify each sentence into one of four evaluation types based on the proposed scheme: (1) the reviewer’s opinion on the restaurant (positive, negative, or mixed); (2) the reviewer’s input/feedback to potential customers and restaurant owners (suggestion, advice, or warning) (3) whether the reviewer wants to return to the restaurant (intention); (4) the factual statement about the experience (description). We apply classical machine learning and deep learning methods to show the effectiveness of our scheme. We also interpret the performances that we obtained for each category by taking into account the specificities of the corpus treated.
%U https://aclanthology.org/2020.lrec-1.608
%P 4942-4947
Markdown (Informal)
[An Empirical Examination of Online Restaurant Reviews](https://aclanthology.org/2020.lrec-1.608) (Kang & Eshkol-Taravella, LREC 2020)
ACL