@inproceedings{cao-etal-2020-balanced,
title = "Balanced Joint Adversarial Training for Robust Intent Detection and Slot Filling",
author = "Cao, Xu and
Xiong, Deyi and
Shi, Chongyang and
Wang, Chao and
Meng, Yao and
Hu, Changjian",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.432",
doi = "10.18653/v1/2020.coling-main.432",
pages = "4926--4936",
abstract = "Joint intent detection and slot filling has recently achieved tremendous success in advancing the performance of utterance understanding. However, many joint models still suffer from the robustness problem, especially on noisy inputs or rare/unseen events. To address this issue, we propose a Joint Adversarial Training (JAT) model to improve the robustness of joint intent detection and slot filling, which consists of two parts: (1) automatically generating joint adversarial examples to attack the joint model, and (2) training the model to defend against the joint adversarial examples so as to robustify the model on small perturbations. As the generated joint adversarial examples have different impacts on the intent detection and slot filling loss, we further propose a Balanced Joint Adversarial Training (BJAT) model that applies a balance factor as a regularization term to the final loss function, which yields a stable training procedure. Extensive experiments and analyses on the lightweight models show that our proposed methods achieve significantly higher scores and substantially improve the robustness of both intent detection and slot filling. In addition, the combination of our BJAT with BERT-large achieves state-of-the-art results on two datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cao-etal-2020-balanced">
<titleInfo>
<title>Balanced Joint Adversarial Training for Robust Intent Detection and Slot Filling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyi</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chongyang</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yao</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changjian</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Joint intent detection and slot filling has recently achieved tremendous success in advancing the performance of utterance understanding. However, many joint models still suffer from the robustness problem, especially on noisy inputs or rare/unseen events. To address this issue, we propose a Joint Adversarial Training (JAT) model to improve the robustness of joint intent detection and slot filling, which consists of two parts: (1) automatically generating joint adversarial examples to attack the joint model, and (2) training the model to defend against the joint adversarial examples so as to robustify the model on small perturbations. As the generated joint adversarial examples have different impacts on the intent detection and slot filling loss, we further propose a Balanced Joint Adversarial Training (BJAT) model that applies a balance factor as a regularization term to the final loss function, which yields a stable training procedure. Extensive experiments and analyses on the lightweight models show that our proposed methods achieve significantly higher scores and substantially improve the robustness of both intent detection and slot filling. In addition, the combination of our BJAT with BERT-large achieves state-of-the-art results on two datasets.</abstract>
<identifier type="citekey">cao-etal-2020-balanced</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.432</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.432</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>4926</start>
<end>4936</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Balanced Joint Adversarial Training for Robust Intent Detection and Slot Filling
%A Cao, Xu
%A Xiong, Deyi
%A Shi, Chongyang
%A Wang, Chao
%A Meng, Yao
%A Hu, Changjian
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F cao-etal-2020-balanced
%X Joint intent detection and slot filling has recently achieved tremendous success in advancing the performance of utterance understanding. However, many joint models still suffer from the robustness problem, especially on noisy inputs or rare/unseen events. To address this issue, we propose a Joint Adversarial Training (JAT) model to improve the robustness of joint intent detection and slot filling, which consists of two parts: (1) automatically generating joint adversarial examples to attack the joint model, and (2) training the model to defend against the joint adversarial examples so as to robustify the model on small perturbations. As the generated joint adversarial examples have different impacts on the intent detection and slot filling loss, we further propose a Balanced Joint Adversarial Training (BJAT) model that applies a balance factor as a regularization term to the final loss function, which yields a stable training procedure. Extensive experiments and analyses on the lightweight models show that our proposed methods achieve significantly higher scores and substantially improve the robustness of both intent detection and slot filling. In addition, the combination of our BJAT with BERT-large achieves state-of-the-art results on two datasets.
%R 10.18653/v1/2020.coling-main.432
%U https://aclanthology.org/2020.coling-main.432
%U https://doi.org/10.18653/v1/2020.coling-main.432
%P 4926-4936
Markdown (Informal)
[Balanced Joint Adversarial Training for Robust Intent Detection and Slot Filling](https://aclanthology.org/2020.coling-main.432) (Cao et al., COLING 2020)
ACL