Nothing Special   »   [go: up one dir, main page]

Fyonn Dhang


2019

pdf bib
Assessing the Efficacy of Clinical Sentiment Analysis and Topic Extraction in Psychiatric Readmission Risk Prediction
Elena Alvarez-Mellado | Eben Holderness | Nicholas Miller | Fyonn Dhang | Philip Cawkwell | Kirsten Bolton | James Pustejovsky | Mei-Hua Hall
Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)

Predicting which patients are more likely to be readmitted to a hospital within 30 days after discharge is a valuable piece of information in clinical decision-making. Building a successful readmission risk classifier based on the content of Electronic Health Records (EHRs) has proved, however, to be a challenging task. Previously explored features include mainly structured information, such as sociodemographic data, comorbidity codes and physiological variables. In this paper we assess incorporating additional clinically interpretable NLP-based features such as topic extraction and clinical sentiment analysis to predict early readmission risk in psychiatry patients.