@inproceedings{kylliainen-silfverberg-2019-ensembles,
title = "Ensembles of Neural Morphological Inflection Models",
author = {Kylli{\"a}inen, Ilmari and
Silfverberg, Miikka},
editor = "Hartmann, Mareike and
Plank, Barbara",
booktitle = "Proceedings of the 22nd Nordic Conference on Computational Linguistics",
month = sep # "{--}" # oct,
year = "2019",
address = "Turku, Finland",
publisher = {Link{\"o}ping University Electronic Press},
url = "https://aclanthology.org/W19-6132",
pages = "304--309",
abstract = "We investigate different ensemble learning techniques for neural morphological inflection using bidirectional LSTM encoder-decoder models with attention. We experiment with weighted and unweighted majority voting and bagging. We find that all investigated ensemble methods lead to improved accuracy over a baseline of a single model. However, contrary to expectation based on earlier work by Najafi et al. (2018) and Silfverberg et al. (2017), weighting does not deliver clear benefits. Bagging was found to underperform plain voting ensembles in general.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kylliainen-silfverberg-2019-ensembles">
<titleInfo>
<title>Ensembles of Neural Morphological Inflection Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ilmari</namePart>
<namePart type="family">Kylliäinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miikka</namePart>
<namePart type="family">Silfverberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-sep–oct</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Nordic Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mareike</namePart>
<namePart type="family">Hartmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Linköping University Electronic Press</publisher>
<place>
<placeTerm type="text">Turku, Finland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate different ensemble learning techniques for neural morphological inflection using bidirectional LSTM encoder-decoder models with attention. We experiment with weighted and unweighted majority voting and bagging. We find that all investigated ensemble methods lead to improved accuracy over a baseline of a single model. However, contrary to expectation based on earlier work by Najafi et al. (2018) and Silfverberg et al. (2017), weighting does not deliver clear benefits. Bagging was found to underperform plain voting ensembles in general.</abstract>
<identifier type="citekey">kylliainen-silfverberg-2019-ensembles</identifier>
<location>
<url>https://aclanthology.org/W19-6132</url>
</location>
<part>
<date>2019-sep–oct</date>
<extent unit="page">
<start>304</start>
<end>309</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ensembles of Neural Morphological Inflection Models
%A Kylliäinen, Ilmari
%A Silfverberg, Miikka
%Y Hartmann, Mareike
%Y Plank, Barbara
%S Proceedings of the 22nd Nordic Conference on Computational Linguistics
%D 2019
%8 sep–oct
%I Linköping University Electronic Press
%C Turku, Finland
%F kylliainen-silfverberg-2019-ensembles
%X We investigate different ensemble learning techniques for neural morphological inflection using bidirectional LSTM encoder-decoder models with attention. We experiment with weighted and unweighted majority voting and bagging. We find that all investigated ensemble methods lead to improved accuracy over a baseline of a single model. However, contrary to expectation based on earlier work by Najafi et al. (2018) and Silfverberg et al. (2017), weighting does not deliver clear benefits. Bagging was found to underperform plain voting ensembles in general.
%U https://aclanthology.org/W19-6132
%P 304-309
Markdown (Informal)
[Ensembles of Neural Morphological Inflection Models](https://aclanthology.org/W19-6132) (Kylliäinen & Silfverberg, NoDaLiDa 2019)
ACL