@inproceedings{qasemizadeh-2016-study,
title = "A Study on the Interplay Between the Corpus Size and Parameters of a Distributional Model for Term Classification",
author = "QasemiZadeh, Behrang",
editor = "Drouin, Patrick and
Grabar, Natalia and
Hamon, Thierry and
Kageura, Kyo and
Takeuchi, Koichi",
booktitle = "Proceedings of the 5th International Workshop on Computational Terminology (Computerm2016)",
month = dec,
year = "2016",
address = "Osaka, Japan",
publisher = "The COLING 2016 Organizing Committee",
url = "https://aclanthology.org/W16-4708",
pages = "62--72",
abstract = "We propose and evaluate a method for identifying co-hyponym lexical units in a terminological resource. The principles of term recognition and distributional semantics are combined to extract terms from a similar category of concept. Given a set of candidate terms, random projections are employed to represent them as low-dimensional vectors. These vectors are derived automatically from the frequency of the co-occurrences of the candidate terms and words that appear within windows of text in their proximity (context-windows). In a $k$-nearest neighbours framework, these vectors are classified using a small set of manually annotated terms which exemplify concept categories. We then investigate the interplay between the size of the corpus that is used for collecting the co-occurrences and a number of factors that play roles in the performance of the proposed method: the configuration of context-windows for collecting co-occurrences, the selection of neighbourhood size ($k$), and the choice of similarity metric.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qasemizadeh-2016-study">
<titleInfo>
<title>A Study on the Interplay Between the Corpus Size and Parameters of a Distributional Model for Term Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Behrang</namePart>
<namePart type="family">QasemiZadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th International Workshop on Computational Terminology (Computerm2016)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Drouin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Grabar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Hamon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyo</namePart>
<namePart type="family">Kageura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichi</namePart>
<namePart type="family">Takeuchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The COLING 2016 Organizing Committee</publisher>
<place>
<placeTerm type="text">Osaka, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose and evaluate a method for identifying co-hyponym lexical units in a terminological resource. The principles of term recognition and distributional semantics are combined to extract terms from a similar category of concept. Given a set of candidate terms, random projections are employed to represent them as low-dimensional vectors. These vectors are derived automatically from the frequency of the co-occurrences of the candidate terms and words that appear within windows of text in their proximity (context-windows). In a k-nearest neighbours framework, these vectors are classified using a small set of manually annotated terms which exemplify concept categories. We then investigate the interplay between the size of the corpus that is used for collecting the co-occurrences and a number of factors that play roles in the performance of the proposed method: the configuration of context-windows for collecting co-occurrences, the selection of neighbourhood size (k), and the choice of similarity metric.</abstract>
<identifier type="citekey">qasemizadeh-2016-study</identifier>
<location>
<url>https://aclanthology.org/W16-4708</url>
</location>
<part>
<date>2016-12</date>
<extent unit="page">
<start>62</start>
<end>72</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Study on the Interplay Between the Corpus Size and Parameters of a Distributional Model for Term Classification
%A QasemiZadeh, Behrang
%Y Drouin, Patrick
%Y Grabar, Natalia
%Y Hamon, Thierry
%Y Kageura, Kyo
%Y Takeuchi, Koichi
%S Proceedings of the 5th International Workshop on Computational Terminology (Computerm2016)
%D 2016
%8 December
%I The COLING 2016 Organizing Committee
%C Osaka, Japan
%F qasemizadeh-2016-study
%X We propose and evaluate a method for identifying co-hyponym lexical units in a terminological resource. The principles of term recognition and distributional semantics are combined to extract terms from a similar category of concept. Given a set of candidate terms, random projections are employed to represent them as low-dimensional vectors. These vectors are derived automatically from the frequency of the co-occurrences of the candidate terms and words that appear within windows of text in their proximity (context-windows). In a k-nearest neighbours framework, these vectors are classified using a small set of manually annotated terms which exemplify concept categories. We then investigate the interplay between the size of the corpus that is used for collecting the co-occurrences and a number of factors that play roles in the performance of the proposed method: the configuration of context-windows for collecting co-occurrences, the selection of neighbourhood size (k), and the choice of similarity metric.
%U https://aclanthology.org/W16-4708
%P 62-72
Markdown (Informal)
[A Study on the Interplay Between the Corpus Size and Parameters of a Distributional Model for Term Classification](https://aclanthology.org/W16-4708) (QasemiZadeh, CompuTerm 2016)
ACL