@inproceedings{gu-etal-2018-position,
title = "A Position-aware Bidirectional Attention Network for Aspect-level Sentiment Analysis",
author = "Gu, Shuqin and
Zhang, Lipeng and
Hou, Yuexian and
Song, Yin",
editor = "Bender, Emily M. and
Derczynski, Leon and
Isabelle, Pierre",
booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/C18-1066",
pages = "774--784",
abstract = "Aspect-level sentiment analysis aims to distinguish the sentiment polarity of each specific aspect term in a given sentence. Both industry and academia have realized the importance of the relationship between aspect term and sentence, and made attempts to model the relationship by designing a series of attention models. However, most existing methods usually neglect the fact that the position information is also crucial for identifying the sentiment polarity of the aspect term. When an aspect term occurs in a sentence, its neighboring words should be given more attention than other words with long distance. Therefore, we propose a position-aware bidirectional attention network (PBAN) based on bidirectional GRU. PBAN not only concentrates on the position information of aspect terms, but also mutually models the relation between aspect term and sentence by employing bidirectional attention mechanism. The experimental results on SemEval 2014 Datasets demonstrate the effectiveness of our proposed PBAN model.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gu-etal-2018-position">
<titleInfo>
<title>A Position-aware Bidirectional Attention Network for Aspect-level Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuqin</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lipeng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuexian</namePart>
<namePart type="family">Hou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yin</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 27th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Bender</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Isabelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Aspect-level sentiment analysis aims to distinguish the sentiment polarity of each specific aspect term in a given sentence. Both industry and academia have realized the importance of the relationship between aspect term and sentence, and made attempts to model the relationship by designing a series of attention models. However, most existing methods usually neglect the fact that the position information is also crucial for identifying the sentiment polarity of the aspect term. When an aspect term occurs in a sentence, its neighboring words should be given more attention than other words with long distance. Therefore, we propose a position-aware bidirectional attention network (PBAN) based on bidirectional GRU. PBAN not only concentrates on the position information of aspect terms, but also mutually models the relation between aspect term and sentence by employing bidirectional attention mechanism. The experimental results on SemEval 2014 Datasets demonstrate the effectiveness of our proposed PBAN model.</abstract>
<identifier type="citekey">gu-etal-2018-position</identifier>
<location>
<url>https://aclanthology.org/C18-1066</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>774</start>
<end>784</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Position-aware Bidirectional Attention Network for Aspect-level Sentiment Analysis
%A Gu, Shuqin
%A Zhang, Lipeng
%A Hou, Yuexian
%A Song, Yin
%Y Bender, Emily M.
%Y Derczynski, Leon
%Y Isabelle, Pierre
%S Proceedings of the 27th International Conference on Computational Linguistics
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F gu-etal-2018-position
%X Aspect-level sentiment analysis aims to distinguish the sentiment polarity of each specific aspect term in a given sentence. Both industry and academia have realized the importance of the relationship between aspect term and sentence, and made attempts to model the relationship by designing a series of attention models. However, most existing methods usually neglect the fact that the position information is also crucial for identifying the sentiment polarity of the aspect term. When an aspect term occurs in a sentence, its neighboring words should be given more attention than other words with long distance. Therefore, we propose a position-aware bidirectional attention network (PBAN) based on bidirectional GRU. PBAN not only concentrates on the position information of aspect terms, but also mutually models the relation between aspect term and sentence by employing bidirectional attention mechanism. The experimental results on SemEval 2014 Datasets demonstrate the effectiveness of our proposed PBAN model.
%U https://aclanthology.org/C18-1066
%P 774-784
Markdown (Informal)
[A Position-aware Bidirectional Attention Network for Aspect-level Sentiment Analysis](https://aclanthology.org/C18-1066) (Gu et al., COLING 2018)
ACL