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Abstract

We have studied behaviour of electron beam in com-
bined a self-generated field and a reversed axial-guide field
in the tapered helical wiggler. The divergence of electron
beam is caused by three-dimensional effects on the elec-
tron beam loss, we employ a tapered and reversed axial-
guide field magnetic field. Evolution of energy spread and
emittance of electron beam are investigated using three di-
mensional simulation. Beam cross-section, transverse mo-
mentum variation and cross-section view of electron beam
are also calculated along z axis. The electron beam loss
is reduced by optimizing the magnetic field strength and
tapering parameter of reversed axial guide field.

INTRODUCTION

In free-electron laser(FEL), the gain increases when the
beam current and the wiggler field amplitude are increased.
When the free-electron laser experiments operate at the
high-current regime and the intense wiggler field regime
to get the sufficiently large gain, the axial-guide field make
us to steer the electron beam in the axial direction [1–4]
and the electron motion can be altered by the axial-guide
field and self-field effects [5–11] .

In this work, we study the behaviour of electron beam in
combined a self-generated field and a reversed axial-guide
field in the tapered helical wiggler. Cross-section, profile
and density of electron beam are investigated using three
dimensional simulation.

THE SELF-GENERATED FIELD AND
EXTERNAL FIELD

The space charge and current of electron beam generate
the self-electric and self-magnetic fields. The Maxwell’s
equations in steady state are

∇ ·E = 4πρ0 , ∇×B =
4π

c
J (1)

We assume that equilibrium properties (electron density
and velocity) are uniform in the z-direction with ∂nb/∂z =
0 and ∂vb/∂z = 0. There is no equilibrium electric field
parallel to z-direction with E · êz = 0. Where nb is elec-
tron density and vb is mean velocity of electron. The radial
density and velocity profiles are assumed to be azimuthally

∗ snam@kangwon.ac.kr; Tel:+82-33-250-8463; fax:+82-33-257-9689

symmetric about the z-axis. Therefore the density and ve-
locity profiles can be written as only function of r, that is,

nb(r, θ, z) = nb(r), vb(r, θ, z) = vb,θ(r)êθ + vb,z(r)êz

The self-generated electric field Er(r) induced by the space
charge, azimuthal self-magnetic field induced by the axial
current Jz(r), and axial self-magnetic field induced by the
azimuthal current Jθ(r). One can find the self-generated
field from the steady state Maxwell equations.

Within above assumptions, the equilibrium self-
generated field components are

E(r, θ, z) = Er(r)êr

Bs(r, θ, z) = Bθ(r)êθ + Bz(r)êz

(2)

Therefore the self-generated fields are determined from the
steady-state Maxwell’s equations

∇ ·E(r) =
1
r

∂

∂r

(
rEr(r)

)
= 4πρ0(r)

∇×B(r) = −∂Bz(r)
∂r

êθ +
1
r

∂Bθ(r)
∂r

êz

=
4π

c

(
Jθ(r)êθ + Jz(r)êz

)

(3)

where ρ0(r) = −efb(r) is charge density, Jz(r) =
−fb(r)evz is axial current density, Jθ(r) = −fb(r)evθ is
azimuthal current density and fb(r) is electron beam pro-
file function. The axial velocity and azimuthal velocity of
electron beam are vz = βbc and vθ = rωr, where βb = vbc
is the normalized axial velocity, ωr is the angular velocity.

The self-generated field amplitude depends on the elec-
tron beam profile. We consider Gaussian shape electron
beam. The profile function fb(r) for the Gaussian density
is

fb(r) =
cnnb√
2πr2

b

exp
(
− r2

2r2
b

)
(4)

where cn = πr2
b is the normalized factor and the self elec-

tric and magnetic field are

Es
r(r) = −2αr2

b

r

»
1− exp

„
− r2

2r2
b

«–
êr

Bs
θ(r) = −2αβbr

2
b

r

»
1− exp

„
− r2

2r2
b

«–
êθ

Bs
z(r) = −2αωrr

2
b

c

»
exp

„
− r2

2r2
b

«
− exp

„
− r2

w

2r2
b

«–
êz

(5)
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Figure 1: Cross section views of electrons at (a) the entrance of wiggler and (b) the end of wiggler for κs = 2, ag=0 and
(c) κs = 2, ag=-2, εt=0. Dotted(solid) line indicate r = rb(2rb).
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Figure 2: The electron beam cross section along z-axis of
the wiggler for various self-field parameters.

where α = πenb, ωp = (4πnbe
2/me)1/2 is plasma fre-

quency of electron beam, ωr = kwcβ is the angular veloc-
ity, rb is the electron beam radius and rw is the cylindrical
waveguide radius.

The scalar potential and vector potential of the self-
generated field which satisfies Es = −∇Φs and Bs =
∇×As are

Φs = αr2
b

[
Γ− Ei

(
− r2

2r2b

)
− log

(
r2

2r2b

)]

As
θ = Φsβbêz

As
z =

αωrr
2
b

cr

[
2rb exp

(
− r2

2r2
b

)

+(r2 + 2r2
b − r2

w) exp
(
− r2

w

2r2
b

)]
êθ

(6)

where Ei(x) =
∫ x

−∞
e−u

u du is exponential integrate func-
tion, and Γ = limm→∞

(∑m
k=1

1
k − log m

) ≈ 0.577 is
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Figure 3: Number of electron along z-axis of the wiggler
in rb for various reversed axial guide field strength.

Euler-Mascheroni constant.
The vector potential of helical wiggler magnetic field in

Cylindrical coordinate system is defined as

Aw =
Bw

kw

[(
I0(kwr) + I2(kwr)

)
cos(kwz − θ)

]
êr

+
Bw

kw

[(
I0(kwr)− I2(kwr)

)
sin(kwz − θ)

]
êθ

(7)

and vector potential of axial-guide field Bg = Bg êz which
steer the electron to axial direction is Ag = 1

2Bgrêθ.

HAMILTONIAN FORMALISM AND THE
TAPERING PROFILE OF GUIDE

MAGNETIC FIELD

The Hamiltonian of relativistic test electron is

H =
√

(cP + eA)2 + m2
ec

4 − eΦs ≡ γmec
2 − eΦs (8)

zz [cm] [m]
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w = 3, κs = 2, ag = −2, εt = 0.6. Dotted(solid) line
indicate r = rb(2rb).
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Figure 5: Number of electron along the z-axis of wiggler
in rb for various tapering parameters.

where P is the canonial momentum, p = P + eA/c is
the mechanial momentum, γ =

√
1 + (p/mec)2 is the

relativistic mass factor, me is the electron rest mass, e
is the electron charge and total vector potential is A =
Aw + Ag + As

θ + As
z.

Conveniently, we introduce the dimensionless potentials,
canonical momentum, and Hamiltonian defined by

Ā =
eA

mec2kw
, Φ̄s =

eΦs

mec2kw
, P̄ =

P

mec
, H̄ =

H

mec2
(9)

In the dimensionless scalar and vector potential of self-
field, the constant α becomes α = κsk

2
w/4, where κs =

ω2
p/c2k2

w is the dimensionless strength of the self-field.

Therefore the dimensionless Hamiltonian is

H̄ =
q

1 + (P̄ + Ā)2 − Φ̄s =
q

1 + Σh2
i − Φ̄s

h1 = P̄r + aw(I0(r̄)− I2(r̄)) cos(z̄ − θ)

h2 =
P̄θ

r̄
+

ag r̄

2
+ Ās

θ + aw(I0(r̄) + I2(r̄)) sin(z̄ − θ)

h3 = P̄z + Ās
z

(10)

where ag = eBg/mec
2kw is a dimensionless axial-guide

field strength, aw = eBw/mec
2kw is a dimensionless wig-

gler field amplitude, and r̄ = kwr, z̄ = kwz.
The tapered guide magnetic field ag(z) = ag(0)ft(z),

where ft(z) is the tapering profile function.

ft(z) =

{
1 for 0 ≤ z < zt

1 + cnεt(z − zt) for z > zt

(11)

where zt is the starting position of the tapering, εt is ta-
pering parameter, and cn is constant which satisfy ft(z =
zf , εt = 1) = 2. The electron orbits can be calculated from
the equation of motions which derived from the Hamilto-
nian of Eq. 10.

We make the incident electron beam using the beam pa-
rameters such as electron beam energy Eb = 3 MeV, en-
ergy spread Es = 5 %, emittance εx,y = 10 πmm · mrad.
Fig. 1(a) shows the cross section view of the incident elec-
tron beam which is the initial state of the Gaussian ran-
dom distribution. Fig. 1(b) shows the cross section views
at the exit of the wiggler for self-field parameters κs = 2
without axial guide field, and (c) with uniform axial guide
field ag = −2 for aw = 3. Those parameters correspond
to the wiggler magnetic field strength Bw = 2.67 kG, the
guide magnetic field strength Bw = 1.78 kG and the elec-
tron beam current Ib = 368 A for wiggler period λw = 12
cm and electron beam radius rb = 0.4 cm.

Fig. 2 shows the electron beam cross section area
along z-axis of the wiggler for various self-field parame-
ter stength. The cross section area is reduced by increasing
self-field parameter. Number of electron in rb along z-axis
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Figure 4: Electron beam profiles at the exit of the wiggler for a
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Figure 6: Electron beam density versus kwr; (a) incident electron beam, (b) κs = 2 and ag = 0, (c) κs = 2, ag = −2 and
εt = 0, (d) κs = 2, ag = −2 and εt = 0.6.

of the wiggler for various reversed axial guide field strength
is shown in Fig. 3.

Fig. 4 shows the cross section view, transverse momen-
tum variation and x versus x′ phase space for κs = 2,
ag = −2 and ε = 0.6. The number of electron in rb

along z-axis of the wiggler for various tapering parame-
ters is shown in Fig. 5. The electron densities versus kwr
are shown in Fig. 6. The electron density with tapered and
reversed axial guide field is increased by about twice cor-

of electron beam.

CONCLUSION

We studied behaviour of electron beam in combined a
self-generated field and a reversed axial-guide field in the
helical wiggler. Evolution of energy spread and emittance
of electron beam were investigated by using three dimen-
sional simulation. Beam cross-section, transverse momen-
tum variation and cross-section view of electron beam were
also calculated along z axis. The electron beam loss was
reduced by optimizing the magnetic field strength and ta-
pering parameter of reversed axial guide field.
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respond to that of without axial guide field case in center
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