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We consider a simple model to study t,he effects of the beam- 
beam force on the coherent dynamics of colliding beams. The 
key ingredient is a linearized hram-beam kick. We study only 
the quadrupole modes. with t,he dynamical variables being the 
2nd-order moments of the canonical variables II? p. Our modcxl 
is self-consistent in the sense that no higher-order moments are 
generated by the linearized beam-beam kicks, and that thrh only 
source of violation of symplecticity is the radiation. We discuss 
the cases of round and flat beams. Depending on the valuras of thp 
tune and beam intensity, we observe steady states in which nth- 
erwise identical bunches have sixes that are equal, or uncq:ial, or 
periodic, or behave chaorically from turn to turn. Possiblt! impli- 
cations of luminosity saturation with increasing beam i:?tc%nsit: 
are discussed. 

Introduction 

The study of the coherent modes of oscillation of colliding 
beams has a long history, with many contributions to this im- 
portant and difficult problem. Space limitations prevent, lls from 
giving here a full set of references. Recently Hirata[l] has stsud- 
icd the problem in n simplified model that includes coupled-hnam 
features, hut, is inconsistent with Vlasov’s equation. How<*vcr, it 
explains qualit,atively the “flip-flop” effect and the saturation of 
the Iuminosity and beam-beam parxmctrr at high intensity. I%% 
sllmmarize here the results of a simpler model [Z], defined along 
similar line.s, tphat ha? the virtue of being fully self-consistent (i.e., 
symplectic in the absence of radiation, with Gaussian berms w- 

msining Gaussian) since it involves the essential iugrcdicnt r,f 
a Iirzenrized beam-beam force. The consistency with Vlasov’s 
equa.tion is achieved at the price of ignoring Maxwell’s equations 
altogether, since tht: force is assumed to be linear at all diritancc=s 
while the bunch size is finite. This is clearly not a good approxi- 
mation for any reasonable distribut-ion. However, since WC study 
the quadrupole modes only, the linear part of the force has the 
most important effect, and in &is sense it is reasonable to make 
such an approximation. 

Model and Results 

We consider a collider ring with tune v, a single interac- 
tion point, and one bunch per beam. We call them as the c+ 
and e- bunches, although our discussion allows for like-charged 
beams {e*e*:) just as well, We consider only the vertical dy- 
namics described by y, y’, and define the normalized coordi- 
naks q, p for a part,icle in each heam as (I* Z IJ+Jfl and 

P-l = i&Y; + wdfi. w e represent the beam-beam inter- 
acticln by the linearized kick 

n; = qi7 p’i = prt - k,qk (1) 

This is the only source of coupling and of nonlinearity since the 
kick strength .& depends inversely on the size of the other bunch, 
.-~- 
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which is a dynamical variable. We consider the two extreme cases 
of “flat beam’? and “round beam” shapes; in terms of the nominal 
beam-beam parameter Es, we have 

k* = 471&l<J&, WV to - 
477-i En 

(round beam) 

where czc) and eye are nominal emittances (we assume /3x = fiV E 
fi and ~0 = EN E F~J for the round-beam case). 

Following Hirata fill we represent the effect of radiation by the 
stochastic localized kick 

.q; = 4*, p; = .xpi + F*&,(l - X2) (3) 

where the ik are independent random numbers with (P*) = 0 
and (ii) = 1 and X is related to the “damping decrement” 6 by 
X = exp( -26). 

The third ingredient is a linear transport through a phase 
advance ~TTV, given by the usual 2 x 2 matrix. 

The bunches undergo collision, transport, radiation, collision, 
etc. The one. turn map for R given particle haa a atochRstic inho- 
mogeneous part arising from the last, term in (3). A det,erministic 
map is obtained from it by taking the bunch-averages of the bilin- 
ear combinations of 4 and p and averaging these over all radiation 
events. With a surface of section just b&ore the beam-beam kick 
we find 

where G(k-,,I) depends on (q’},, , Y= X and to (there is a simul- 
taneous companion map with + ++ -). 

Period-One Fixed Points 

Setting (+. .)n+l = (e. .), for all six moments yields a set of 
two equations for (q:) and (~12). By defining k+ z (A + l)z, 
k- E (X f l)y, p z 4a&1/(X + 1) and x z cot(%v), we obtain 

(z/p)” = 1+ 2xy - yz, (y/p)” = 1 f 2xt - X2 R4 

where Y = 2 for flat beams, and Y =2 1 for round beams. Eq. 
(5) admits I = v (“normal”) and 5 # y (‘%ip-flop”) solutions, 
which can be found analytically in a straightforward way. They 
correspond to equal-size and unequal-size beams. Note that they 
depend on u and p, but do not depend separately on X. In order 
to be physical, the solutions must be real and have the same sign. 
The normal solutions are always real: the + solutions are physical 
for e+e-, the - solutions for e*e*. The flip-flop solutions are 
physical only in certain regions of the v - p plane, which are 
shown shaded in Figs. 1 and 2. Note that round beams do not 
admit e*e*‘ilip:flop solutions. In addition, the solutions must 



be stable. This is determined from the 6 x 6 stability matrix, 
obtaitied by expanding the map infinitesimally close to the fixed 
point,. Results for the size and stability of the e+e- case are 
shown i:l Figs. 3 and 4 for flat ant1 rolmd ‘roams, rpspectivcly. 
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Fig. 1. Regions where the flat-beam, period- 1. unequal- 
size solutions are real (though not necessarily stable), 
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Fig. 2. Region where the round-beam, period-l, unequal- 
size solutions are real (though not necessarily stable). 
The e*e* solutions are always complex. 
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Fig. 3. RMS beam sizes and stability for the period-l 

fixed point solutions (solid=stable, dots=unstable). 
Flat-beam case, v=O.15, X=0.8694. 
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Fig. 4. RMS beam sizes and stability for the period-l 
fixed point solutions (solid=stable, dots=unstable). 
Round-beam case, y-0.15, h=O.8694. 

Iteration of the Map 

By starting with a given set of values for the moments we it- 
erate the map (4) until it converges or diverges. All results pre- 
sented here are for e+e-, for v = 0.15 and 6 = 0.07 (X = 0.8694). 
This is an unrealistically large value of 6; however, because our 
model is symplectic in the absence of radiation, all our results 
have a smooth X -+ 1 limit, and are quantitatively sirnilarfor any 
X sufficiently close to 1 (a large 6 has the practical advantage of 
fast convergence of the map iteration). Results are shown in 
Figs. 5 and 6; dots represent chaotic behavior, in which the two 
beams are preferentially of different size; + represents period-l 
fixed points, in which the beams are of equal or unequal size, 
depending on the value of p (they correspond to the beam sizes 
shown in Figs. 3 and 4); X, o and D represent period-2, -3, and 
-4 fixed points with beams of equal size. Other types of solutions 
may well exist, but are hard to find. If more than one solution 
is possible, the one to which the map converges depends on the 
initial conditions. For p N 0.5 for the flat-beam case, and p N 0.3 
for the round-beam case, the chaotic solutions are the most sta- 
ble. For other values of p, generally speaking, the period-l fixed 
point is the most stable unless it coexists with higher-order fixed 
points. In this case’the period-2 fixed point is the most stable 
for the flat-beam case, while the period-3 fixed point is the most 
stable for the round-beam case. By “most stable” we mean that 
this solution is the most likely to be reached when varying the 
initial conditions. 

The effects of the map can be evaluated by looking at “observ- 
ables” such as the luminosity or the effective beam-beam parame- 
ter, which depend on the actual emittance. Thus a quantity that 
measures the physical effects of our model is the “enhancement 
factor” E defined by E e L/La = (/to, 

(flat beam) 

(61 
E = T = (e$;;(qg (round beam) 

j r 

Figs. 7 and 8 show E vs. p for flat and round beams respectively 
(we compute its average over the period of the most stable fixed 
point). Note the saturation effect due to chaotic behavior and 
higher-order fixed points. 
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Fig. 5. Flat beam sizes from map iteration: dots=chaotic; 
+=period-1 (equal or unequal sizes); x=period-2 (equal 
sizes). v=O.15, A=0.8694. 
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Fig. 6. Round beam sizes from map iteration; dots=chaotic; 
+=period-1 (equal or unequal sizes); X=period-2, 
o=period-3, q =period-4 (equal sizes). v=O.15, h=0.8694. 
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Fig. 7. Flat-beam enhancement factor from period-l (+), 
period-2 (X), or chaotic (e) fixed points. v=O.15. A=O.8694. 
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Fig. 6. Round-beam enhancement factor from period-l (+). 
period-3 (O), or chaotic (a) fixed points. v=O.l5, X=0.6694. 

Conclusious 

(1) For low beam intensity (small p), only normal solutions 
,exist and are stable. 

(2) As the intensity is increased, other solutions appear which 
cause the saturation of t,he luminosity and beam-beam parameter 
at the realistic values .$J E p/2x N 0.065 for flat beams and 
N 0.043 for round beams. The saturation mechanism is due to 
the appearence of a chaotic region followed by a higher-order 
fixed point rather than to a bifurcation. This seems to be a key 
difference with Hirata’s result [l]. 

(3) Flip-flop solutions exist and are real for all values of p. 
However, they are not always stable and are unnatural for small 
p. By this we mean that they require a delicate relationship 
between v and p, as can be seen from Figs. 1 and 2. Therefore 
the flip-flop effect may have a natural explanation in our model 
for unrealistically large beam intensity. 
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