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Abstract

The Robust Optimization of Non-Linear Requirements Models

Gregory Gay

Solutions to non-linear requirements engineering problems may be “brittle”; i.e. small changes
may dramatically alter solution effectiveness. Hence, it is not enough to just generate solutions
to requirements problems- we must also assess solution robustness. This thesis aims to address
two concerns: (a) Is demonstrating robustness a time consuming task? and (b) Is it necessary that
solution quality be traded off against solution robustness?
Using a Bayesian ranking heuristic, the KEYS2 algorithm fixes a small number of important vari-
ables, rapidly pushing the search into a stable, optimal plateau. By design, KEYS2 generates
decision ordering diagrams (in time experimentally shown to be O(N2)). Once generated, these
diagrams can confirm solution robustness in linear time. When assessed in terms of reducing in-
ference times, increasing solution quality, and decreasing the variance of the generated solution,
KEYS2 out-performs other search algorithms (simulated annealing, A*, MaxWalkSat).
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Chapter 1

Introduction

Consider a “requirements model” where stakeholders write:

• Their various goals for a project;

• All of the possible methods for reaching those goals;

• Their view of the possible risks that could compromise those goals;

• What mitigations they believe might reduce those risks.

A “solution” to such models is an ideal balance between the least cost set of mitigations that reduce

the most risks, thereby enabling the attainment of the most requirements. In theory, an algorithm

could be used to find the solution that best satisfies the various goals of the different stakeholders

whle ensuring that the project remain within the bounds of its budget. Such tools might even find

potential solutions that were missed by these stakeholders. Finding solutions to these requirements

models is a non-linear optimization problem - a solution must minimize the sum of the mitigation

costs while maximizing the number of achieved requirements.

According to Mark Harman [51], understanding the neighborhood of solutions is an open and

pressing issue in search-based software engineering (SBSE). He argues that many software engi-
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neering problems are over-constrained and, thus, no precise solution over all variables is achiev-

able; therefore, partial solutions based on meta-heuristic search methods are preferred.

“In some software engineering applications, solution robustness may be as important

as solution functionality. For example, it may be better to locate an area of the search

space that is rich in fit solutions, rather than identifying an even better solution that is

surrounded by a set of far less fit solutions.”

“Hitherto, research on SBSE has tended to focus on the production of the fittest pos-

sible results. However, many application areas require solutions in a search space that

may be subject to change. This makes robustness a natural second order property to

which the research community could and should turn its attention [51].”

The robustness of solutions is a major problem for such partial heuristic search methods. There

are many heuristic methods that can generate solutions to non-linear problems (see the Related

Work chapter). Such methods can be brittle [50]. That is, small changes may dramatically alter

the effectiveness of the generated solution. Therefore, when offering partial solutions, it is very

important to also offer insight into the space of options around the proposed solution. Such neigh-

borhood information is very useful for managers with only partial control over their projects, as

it can give them confidence that, even if only some of their recommendations are enacted, then at

least the range of outcomes is well understood.

A naive approach to understanding the neighborhood might be to run a system N times, then

report:

• the solutions appearing in more than, for example, N
2 cases;

• Results with a ±95% confidence interval.

Note that both of these approaches require multiple trials of the chosen analysis method. Multiple

executions are undesirable since, as experience shows [34], stakeholders often ask questions across
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a large range of “scenarios” with hard-wired constraints that cannot be changed in that scenario.

These scenarios might be as simple as what could be achieved assuming a maximum budget of one

billion dollars? Two billion? Five billion?

Scenario analysis can become a time consuming task. Reflecting over, say, d = 10 possible

decisions over a statistically significant number of repeats (N = 20) requires up to 20∗210 > 20,000

repeats of the analysis. In order to provide useful exploration of this search space - to avoid blind

spots, in other words - optimization techniques must run fast enough that humans can get feedback

before they must move on to other issues. Neilson [85] reports that ”the basic advice regarding

response times has been about the same for thirty years; i.e.

• One second is about the limit for the user’s flow of thought to stay uninterrupted, even though

the user will notice the delay

• Ten seconds is the limit for keeping a user’s attention focused on the dialogue.”

This thesis reports a set of experiments on the search for robust solutions to a NASA require-

ments model called the Defect Detection and Prevention model. These experiments address two

important concerns. Firstly, is demonstrating solution robustness a time consuming task? Sec-

ondly, is it necessary, as Harman suggests, that solution quality must be traded off against solution

robustness? That is, in the search for the conclusions that were stable within their local neigh-

borhood, would we have to reject better solutions because they are not stable across the same

neighborhood?

At least for the NASA models used in these experiments, both of the concerns are unfounded.

The KEYS2 algorithm, presented in Chapter 3, terminates in hundredths of a second (whereas prior

candidate algorithms took minutes to terminate [36]). Also, the solutions found by KEYS2 were

not only of highest quality of the methods benchmarked, they also exhibited the lowest variance.

Further, KEYS2 generates decision ordering diagrams that can be used assess solution robustness

in linear time (decision ordering diagrams are a visual representation of the effects of changing a
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solution).

In this thesis, I demonstrate that:

• Using these diagrams, the region around a solution can be explored in linear time.

• A greedy Bayesian-based method called KEYS2 can generate the decision ordering diagrams

in O(N2) time.

• KEYS2 yields solutions of higher quality that several other methods (Simulated Annealing,

MaxWalkSat, ASTAR).

• Also, the variance of the solutions found by KEYS2 is less (and hence, better) than those

found by the other methods.

1.1 Statement of Thesis

The KEYS2 algorithm is a robust method for the optimization of requirements models. When

assessed in terms of (a) reducing inference times, (b) increasing solution quality, and (c) decreas-

ing the variance of the generated solution, KEYS2 outperforms both standard and state-of-the-art

search algorithms (including simulated annealing, A*, and MaxWalkSat).

1.2 Contributions of this Thesis

This thesis contributes a variety of findings to the literature, including:

• A new compiled form of the Defect Detection and Prevention model, a design model used

by NASA’s Jet Propulsion Lab.

• Implementations of standard algorithms - Simulated Annealing, A* search, and MaxWalkSat

- designed to optimize settings to such models.
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• A novel Bayesian learning mechanism, KEYS, that can generate robust requirements deci-

sions in O(N2) time.

• An improved version of KEYS that generates model solutions in a shorter length of time and

with less variance than other standard methods.

• A visual format - decision ordering diagrams - that models the cost and benefit effect of

making certain key decisions.

1.3 Publications from this Thesis

• Gay, Gregory and Menzies, Tim and Jalali, Omid and Mundy, Gregory and Gilkerson, Beau

and Feather, Martin and Kiper, James. Finding robust solutions in requirements models.

Automated Software Engineering, 17(1): 87-116, 2010.

This paper is the first publication of the KEYS2 algorithm. It presents benchmarking experi-

ments comparing KEYS2 against state-of-the-art search algorithms.

1.4 Structure of this Document

The remainder of this thesis is organized as follows:

• Chapter 2 presents some background material, including information on the DDP model

format, an objective function for scoring model configurations, decision ordering diagrams,

and a generator for building artificial models.

• Chapter 3 is a literature review of the search-based software engineering field.

• Chapter 4 describes the KEYS and KEYS2 algorithms, as well as a series of standard algo-

rithms that are benchmarked against it.
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• Chapter 5 presents a series of case studies when KEYS is compared to established algo-

rithms. An experiment demonstrates that KEYS2 scales well to larger models. A series of

experiments are also presented where attempts are made to improve the speed of KEYS.

• Chapter 6 concludes this thesis by summarizing the contributions of this algorithm as well

as proposing possible future work.
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Chapter 2

Background

The previous chapter has introduced the problem that this research will attempt to solve. This

chapter will provide background material on the model format used in these experiments, as well

as the decision ordering diagrams used for the interpretation of the search results.

2.1 The Defect Detection and Prevention Model

The Defect Detection and Prevention (DDP) requirements modeling tool [23, 34]. is used to inter-

actively document the early life-cycle meetings conducted by ”Team X” at NASA’s Jet Propulsion

Laboratory (JPL). These meetings are the source of the real-world requirements models used in

this thesis.

At Team X meetings, a large and diverse group of up to 30 experts from various fields (propul-

sion, engineering, communication, navigation, science, etc) meet for short periods of time (usually

for no more than four or five days) to produce a “mission concept” document. This document

may commit the current project to, for example, solar power rather than nuclear power or to some

particular style of guidance software. All subsequent work on the project is guided by the initial

design decisions contained in these mission concept documents.
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1. Requirement goals:

• Spacecraft ground-based testing & flight problem monitoring

• Spacecraft experiments with on-board Intelligent Systems Health Management (ISHM)

2. Risks:

• Obstacles to spacecraft ground-based testing & flight problem monitoring

– Customer has no, or insufficient, money available for my use
– Difficulty of building the models / design tools

• ISHM Experiment is a failure (without necessarily causing flight failure)

• Usability, User/Recipient-system interfaces undefined

• V&V (certification path) untried and scope unknown

• Obstacles to Spacecraft experiments with on-board ISHM

– Bug tracking / fixes / configuration management issues, Managing revisions and upgrades (multi-
center tech. development issue)

– Concern about my technology interfering with in-flight mission

3. Mitigations:

• Mission-specific actions

– Spacecraft ground-based testing & flight problem monitoring
– Become a team member on the operations team
– Use Bugzilla and CVS

• Spacecraft experiments with on-board ISHM

– Become a team member on the operations team
– Utilize xyz’s experience and guidance with certification of his technology

Figure 2.1: Sample DDP requirements, risks, mitigations.

The DDP model allows for the representation of the goals, risks, and risk-removing mitigations

that belong to a specific project. During a Team X meeting, users of DDP explore combinations of

mitigations that will cost the least amount while still supporting the largest number of requirements.

For example, here is a trivial DDP model where mitigation1 costs $10,000 to apply and each

requirement is of equal value (100). Note that the mitigation can remove 90% of the risk. Also,
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unless mitigated, the risk will disable 10% to 99% of requirements one and two (respectively):

$10,000︷ ︸︸ ︷
mitigation1 →︸︷︷︸

0.9

risk1→

〈 0.1︷︸︸︷→ (requirement1 = 100)

→︸︷︷︸
0.99

(requirement2 = 100)
(2.1)

The other numbers show the impact of mitigations on risks, and the impact of risks on require-

ments. DDP propagates a series of influences over two matrices: one for mitigations*risks and

another for risks*requirements.

The DDP tool supports a graphical interface for the rapid entry of the assertions. Such rapid

entry is essential, these experts are busy and it is hard to gather them together for any long period

of time and, as such, no tool should slow the debate. Therefore, DDP uses a lightweight represen-

tations for its model. Such representations are essential for early life-cycle decision making since

only high-level assertions can be collected in such short knowledge acquisition sessions (if the as-

sertions get more elaborate, then experts may waste time trying to understand technical arguments

from outside of their own field of expertise). DDP uses the following ontology:

• Requirements (free text) describe the objectives and constraints of the mission and its devel-

opment process;

• Weights (numbers) of each requirement, reflecting their relative importance;

• Risks (free text) are events that damage the completion of requirements;

• Mitigations: (free text) are actions that reduce risks;

• Costs: (numbers) reflect the cost associated with activating a mitigation;

• Mappings: directed, weighted edges between requirements, mitigations, and risks that cap-

ture the quantitative relationships among them.

• Part-of relations: structure the collections of requirements, risks and mitigations;
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Note that DDP models are a form of the “requirements models” that were defined in Chapter 1. For

examples of risks, requirements, and mitigations, see Figure 2.1. For an example of the network

of connections between risks and requirements and mitigations, see Figure 2.2.

It can be asked whether the analysis of DDP requirements models is a real problem. With these

ultra-lightweight languages, aren’t all open issues rendered obvious? Such a question is typically

informed by the small model fragments that appear in the ultra-lightweight modeling literature.

Those sample model fragments are typically selected according to their ability to fit on a page or to

succinctly illustrate some point of the authors. Real world ultra-lightweight models can be much

more complex, paradoxically perhaps due to their simplicity: if a model is easy to write then it

is just as easy to write a lot of it. For example, the model seen in Figure 2.2 was generated in

under a week by four people discussing one project. It is complex and densely-connected (a close

inspection of the left and right hand sides of Figure 2.2 reveals the requirements and fault trees that

inter-connect concepts in this model) and it is, by no means, the biggest or most complex DDP

model that has ever been built.

This research has been structured around DDP for three reasons. Firstly, one potential draw-

back with ultra-lightweight models is that they are excessively lightweight and contain no useful

information. DDP’s models are demonstrably useful, and clear project improvements have been

seen from DDP sessions at JPL. Cost savings of $100,000 have been seen in multiple sessions, and

in at least two sessions, they have exceeded $1 million [34]. Cost savings are not the only benefits

of these DDP sessions, numerous design improvements (such as savings of power or mass) have

emerged as well. Likewise, the spectrum of risks has shifted from uncertain architectural ones to

more predictable and manageable ones. At some of these meetings, non-obvious (yet significant)

risks have been identified and subsequently mitigated.

The second reason for using DDP is that numerous real-world requirements models have writ-

ten in this format, and many projects are likely to use these models in the future. The DDP tool can

be used to document not just final decisions, but also to review the rationale that led to those de-
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Figure 2.2: An example of a model formed by the DDP tool. Red lines connect risks (middle) to
requirements (left). Green lines connect mitigations (right) to the risks.
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cisions. Hence, it remains in use at JPL not only for its original purpose (group decision support),

but also as a design rationale tool to document decisions. Recent DDP sessions included:

• An identification of the challenges of intelligent systems health management (ISHM) tech-

nology maturation (to determine the most cost-effective approach to achieving maturation) [37];

• A study on the selection and planning of deployment of prototype software [35].

The third, and most important, reason to use DDP in this research is that the tool is repre-

sentative of other requirements modeling tools in widespread use. At its core, DDP is a set of

influences expressed in a hierarchy, augmented with the occasional equation. Edges in this hierar-

chy have weights that strengthen or weaken the influences that flow along those edges. At this level

of abstraction, DDP is just another form of QOC [101] or a quantitative variant of Mylopoulos’

qualitative soft goal graphs [82].

2.2 Model Inputs and Outputs

2.2.1 Pre-Processing

To enable fast runtimes, a simple compiler exports the DDP models into a form easily accessible

by optimization algorithms. This compiler stores a flattened form of the DDP requirements tree

in a function usable by any program in the C language. In the compiled form, all computations

are performed once and added as a constant to each reference of the requirement. For example,

the compiler converts the trivial model of Equation 2.1 into setupModel and model functions

similar to those in Figure 2.3. The setupModel function is called only once (before an algorithm

performs any configuration of the mitigation settings) and sets several constant values. The model

function is called whenever cost and attainment values are needed for a particular configuration.

The topology of the mitigation network is represented as terms in equations within these functions.

As the models grow more complex, so do these equations. For example, the biggest real-world
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#include "model.h"

#define M_COUNT 2
#define O_COUNT 3
#define R_COUNT 2

struct ddpStruct
{

float oWeight[O_COUNT+1];
float oAttainment[O_COUNT+1];
float oAtRiskProp[O_COUNT+1];

float rAPL[R_COUNT+1];
float rLikelihood[R_COUNT+1];
float mCost[M_COUNT+1];
float roImpact[R_COUNT+1][O_COUNT+1];
float mrEffect[M_COUNT+1][R_COUNT+1];

};

ddpStruct *ddpData;

void setupModel(void)
{

ddpData = (ddpStruct *) malloc(sizeof(ddpStruct));
ddpData->mCost[1]=11;
ddpData->mCost[2]=22;
ddpData->rAPL[1]=1;
ddpData->rAPL[2]=1;
ddpData->oWeight[1]=1;
ddpData->oWeight[2]=2;
ddpData->oWeight[3]=3;
ddpData->roImpact[1][1] = 0.1;
ddpData->roImpact[1][2] = 0.3;
ddpData->roImpact[2][1] = 0.2;
ddpData->mrEffect[1][1] = 0.9;
ddpData->mrEffect[1][2] = 0.3;
ddpData->mrEffect[2][1] = 0.4;

}

void model(float *cost, float *att, float m[])
{

float costTotal, attTotal;
ddpData->rLikelihood[1] = ddpData->rAPL[1] * (1 - m[1] * ddpData->mrEffect[1][1])

* (1 - m[2] * ddpData->mrEffect[2][1]);
ddpData->rLikelihood[2] = ddpData->rAPL[2] * (1 - m[1] * ddpData->mrEffect[1][2]);
ddpData->oAtRiskProp[1] = (ddpData->rLikelihood[1] * ddpData->roImpact[1][1])

+ (ddpData->rLikelihood[2] * ddpData->roImpact[2][1]);
ddpData->oAtRiskProp[2] = (ddpData->rLikelihood[1] * ddpData->roImpact[1][2]);
ddpData->oAtRiskProp[3] = 0;
ddpData->oAttainment[1] = ddpData->oWeight[1] * (1 - minValue(1, ddpData->oAtRiskProp[1]));
ddpData->oAttainment[2] = ddpData->oWeight[2] * (1 - minValue(1, ddpData->oAtRiskProp[2]));
ddpData->oAttainment[3] = ddpData->oWeight[3] * (1 - minValue(1, ddpData->oAtRiskProp[3]));
attTotal = ddpData->oAttainment[1] + ddpData->oAttainment[2] + ddpData->oAttainment[3];
costTotal = m[1] * ddpData->mCost[1] + m[2] * ddpData->mCost[2];

*cost = costTotal;
*att = attTotal;

}

Figure 2.3: A trivial DDP model after knowledge compilation
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Model LOC Objectives Risks Mitigations
model1.c 55 3 2 2
model2.c 272 1 30 31
model3.c 72 3 2 3
model4.c 1241 50 31 58
model5.c 1427 32 70 99

Figure 2.4: Details of Five DDP Models.

model used in this research, which contains 99 mitigations, generates 1427 lines of code. Figure 2.4

compares this large model to four other real-world DDP models. Without any form of compilation,

any DDP assessment algorithm would have to read a separate file and import it into a usable format

every time that it needed new cost and attainment values. This one-time compilation removes that

pressure, leading to exponential improvements in execution time (earlier DDP algorithms would

take thirty minutes or more to run).

Currently, it takes about two seconds to compile a model with 50 requirements, 31 risks, and

58 mitigations. This compilation only has to happen once, after which an algorithm can run any

number of what-if scenarios. While this is not a significant bottleneck, the current compiler (writ-

ten in unoptimized Visual Basic code) can certainly be sped up. Experts usually change a small

portion of the model before running up to 2|d| what-if scenarios to understand the impact of that

change. Therefore, an incremental compiler (that only updates changed portions) would run much

faster than a full compilation of the entire DDP model.

2.2.2 Artificial Model Generation

Although the core experiments of this thesis are based on a series of five real-world models, it is

always desirable to have more data to work with. Unfortuantely, large repositories of real-world

models are not always available, and they do not always meet the criteria (number of mitigations,

complexity of the interconnections, etc) of a given experiment. However, artificial models are an

acceptable substitute, assuming that they follow the same structures and guidelines as the real-
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world models.

Thus, an artificial model generator was constructed in Python that:

• Examined the real-world DDP models of Figure 2.4;

• Extracted statistics related to the different types of nodes (mitigations or risks or require-

ments) and the number of edges between different types of nodes;

• Used those statistics to build random models that are both larger and more complex than the

original models.

This structure of the real-world models is recreated in a set of arrays that record the internal

calculations as follows:

• The raw number of goals, risks, and mitigations.

• The cost of each mitigation.

• The weight of each goal.

• The impacts of risks on goals.

• The effects of mitigations on risks.

• Other internal values.

The decisions made during the construction of a new artificial model must be constrained by the

same rules that govern real-world DDP models. To ensure this, a user must choose one of the

existing models as an initial starting-point. The model generator takes that real-world model and

mutates it into a new one based on several user-specified parameters:

• Model-Type: Which existing model to base the artificial model off of.
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Figure 2.5: An example of creating an artificial model. The new model is twice as large as the
original, with no additional connection density, and values come from a distribution within +/-
25% of the original distribution.

• Size: A multiplier value used to increase the number of goals, risks, mitigations, and con-

nections between the three. If the original model had two risks, six mitigations, and three

goals, setting a size multiplier of four would give the artificial model eight risks, twenty-four

mitigations, and twelve goals.

• Density: Governs the connections between risks and goals, and between mitigations and

risks. The user supplies density values for both types. The size parameter grows density

linearly (a model four times the size of one of the originals will have four times the con-

nections. This density parameter is an additional multiplier on that, which lets you produce

models that are not only larger, but more complicated.

• Variance: When creating a new model, each mitigation, goal, and connection must have a

value. These values should be informed by, but not directly copied from, the original model.

The variance parameter controls the deviation from the distribution of values in the real-

world model. For example, setting a variance of 0.25 would allow for values within +/- 25%

of those in the original model.

After loading the specified real-world model into the arrays specified above, a coded func-

tion conducts a sampling of the model values. A second function, governed by the user-supplied
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settings to each parameter, builds arrays that represent the new model. These arrays are then con-

verted into the compiled ”C” format read by the optimization algorithms and saved to the local file

system.

A simple example of this process can be seen in Figure 2.5. The original model, seen on the

left, has three mitigations, two risks, and two goals. The user chooses to create a new model that is

twice as large, but with the same level of density. The user also wants all values to remain within

25% of the original value distribution. The new model, on the right, demonstrates all of these

qualities (goal weights, risk→ goal impact, and mitigation→ risk impact not pictured).

This model generator is used in the scale-up study of Section 5.2 and to benchmark an algorithm

variant in Section 5.3. In the absence of a large donation of real-world DDP models, artificial

models will likely find more and more use as this research progresses.

2.2.3 Objective Function

When the model function is called, a pairing of the total cost of the selected mitigations and the

number of reachable requirements ( the attainment) is returned. These two values are used by an

objective function to score the current configuration of mitigations. The performance values are

normalized into a single score that represents the Euclidean distance to a sweet spot of maximum

requirement attainment and minimum cost:

score =
√

cost2 +(attainment−1)2 (2.2)

Here, x is a normalized value 0≤ x−min(x)
max(x)−min(x) ≤ 1. Hence, my scores ranges 0≤ score≤

√
2

and lower scores are better.
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2.2.4 Decision Ordering Diagrams

The objective function described above summarizes one call to a DDP model. This section de-

scribes decision ordering diagrams, which are a tool for summarizing the results of thousands of

calls to DDP models.

Consider some recommendation for changes to a project that requires decisions d of size |d|. In

the general case, d is a subset of the space of all solutions D (d ⊆ D). When checking for solution

robustness, or reflecting over modifications to d, a stakeholder may need to consider up to d′⊆N|d|

possibilities (and N = 2 for binary decisions, like whether or not to enable a mitigation in a DDP

model). This can be a slow process, especially if evaluating each decision requires invoking a slow

and complex simulator.

Decision ordering diagrams are a linear-time method for studying the robustness and neighbor-

hood of a set of decisions. The diagrams assume that some method could offer a linear ordering

of the decisions x ∈ d ranked from most-important to least-important. They also assume that some

method offers information on the effects of applying the top-ranked 1 ≤ x ≤ |d| decisions (e.g.

the median and variance seen in the model’s objective function after applying solution {d1..dx}).

For example, the decision ordering diagram of Figure 2.6 shows such a linear ordering (this figure

presents bene f it and cost results). In that figure:

• The x-axis denotes the number of decisions made.

• The y-axis shows performance statistics of an objective function seen after imposing the

conjunction of decisions 1≤ i≤ x.

To assess performance, some objective function is run, and the results report the median (50th

percentile) and spread (the range given by the 75th percentile - the 50th percentile) of the values

reported by this function. I use median and spread to avoid any parametric assumptions.

These diagrams can comment on the robustness and neighborhood of solution {d1..dx} as fol-

lows:
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Figure 2.6: A Decision Ordering Diagram. The median and spread plots show 50%-the percentile
and the (75-25)%-th percentile range (respectively) values generated from some objective function.

• By considering the variance of the performance statistics after applying {d1..dx}.

• By comparing the results of using the first x decisions to that of using the first x−1 or x+1

actions.

The neighborhood of a solution that uses decisions {d1..dx} are solutions that use the decisions

{d1..dx± j}. Since j is bounded 0≤ |d|−1, this means that reflecting over solution neighborhoods

takes time linear on the number of decisions d.

Decision ordering diagrams are a natural representation for “trade studies,” the activity of a

multidisciplinary team to identify the most balanced technical solution among a set of proposed

viable solutions [4]. For example, minimum costs and maximum benefits are achieved at point x2

of Figure 2.6. However, after applying only half the decisions (see x1) most of the benefits could

be achieved, albeit at a somewhat higher cost.

Decision ordering diagrams are useful under at least three conditions:

• The scores output by the objective functions are well-behaved; i.e. move smoothly to a

plateau.

• The decisions tame the variance; i.e. the spread falls to value much lower than then median

(otherwise, it is hard to show that decisions have any effect on the system performance).
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• The are generated in a timely manner. Fast runtimes are required in order to keep up with

fast moving discussion.

According to these definitions, Figure 2.6 is a useful decision ordering diagram if it can be gener-

ated in a timely manner.

It is an open issue if real worlds requirements models generate useful decision ordering dia-

grams. The experiments of this thesis test if, in practice, decision ordering diagrams generated

from real world requirements models are timely to generate while being well-behaved and tame.

2.3 Models of Requirements Engineering

The Defect Detection and Prevention model is a ultra-lightweight modeling tool. The value of

ultra-lightweight ontologies in early life cycle modeling is widely recognized. For example, My-

lopoulos’ soft-goal graphs [82, 83] represent knowledge about non-functional requirements. The

primitive values in soft goal modeling include statements of partial influence such as helps and

hurts relationships. An example of a soft-goals graph can be seen in Figure 2.7.

Another commonly used framework in the design rationale community is a “questions-options-

criteria” (QOC) graph [101]. In QOC graphs:

• Questions suggest options. Deciding on one option can raise other questions;

• Options shown in a box denote selected options;

• Options are assessed by criteria;

• Criteria represent gradual knowledge.

QOC graphs can succinctly summarize lengthy debates. For example, the four-hundred and eighty

sentences stated in a debate on interface options can be displayed in a single-page QOC graph (as

can be seen in Figure 2.8.
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Figure 2.7: An example soft-goals graph, from [82] which represents employee attributes.

While DDP shares many of the design aspects of soft-goal and QOC graphs, it differs in its

representations and inference methods. As explained above around Equation 2.1, while QOC and

soft-goals propagate influences over hierarchies, DDP propagate influences over matrices.

Zave & Jackson [118] define requirements engineering as finding the specification S for the

domain assumptions K that satisfies the given requirements R:

find S such that S ` R (2.3)

Jureta et al. [62] take issue with Equation 2.3, saying that it implicitly assumes that K,S,R are

precise and complete enough for the satisfaction relation to hold. More specifically, Jureta com-

plains that Equation 2.3 does not permit partial fulfillment of (some) non-functional require-

ments. Additionally, the Zave & Jackson definition does not allow any preference ordering; that

is, speci f ication1 cannot be said to be more important than speci f ication2. Jureta et al. offer a
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Figure 2.8: An example QOC graph, from [69].
This graph represents the design space for the XCL project. The boxed Options are the decisions
made in the design of the XCL environment.
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replacement ontology where classical inference is replaced with operators that support the gener-

ation and ranking of subsets of domain assumptions that lead to maximal (with respect to size)

subsets of the possible goals, as well as soft-goal quality criteria.

DDP reinterprets “`” in Equation 2.3 as an inference across numeric quantities, rather than

the inference over discrete logical variables suggested by Zave & Jackson. Hence, it can achieve

the same goals as Jureta (the ranking of partial solutions with weighted goals) without requiring

Jureta’s ontology.

2.4 Early vs Later Life-cycle Requirements Engineering

The DDP models presented in this thesis come from the NASA Jet Propulsion Lab’s Team X

meetings, which conduct early life-cycle requirement discussions.

Once a system is running, released, and being maintained or extended, another problem to

solve is release planning; i.e. what features to add to the next N releases. To solve this problem,

some sort of inference engine must reason about which functionality extensions to current software

can best satisfy outstanding stakeholder requirements. The challenge of release planning is that the

benefits of added functionality must be weighed against the cost of implementing those extensions.

Several approaches have been applied to this problem. The Next Release Problem was elab-

orated on by Bagnall et al. in 2001 [11]. This problem is how to find the appropriate balance

between customer satisfaction and available resources. They found that designing an optimal next

release is an NP-hard problem. Their study focused on benchmarking heuristics that could find a

high-quality but potentially sub-optimal solution. Best solutions for the large problems were found

using variants of Simulated Annealing, which produced solutions within 1.5% of the optimal value.

Ngo-The and Ruhe [84] studied how to allocate resources towards the implementation of fea-

tures such that the value gained from adding such features was maximized. They proposed a

two-phase optimization approach called OPT IMIZERASORP that, in the first phase, applies integer
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linear programming to the problem. In the second phase, a genetic algorithm executes over the re-

duced search space in order to generate resource allocation plans. Their approach proved favorable

over a standard greedy search when evaluated over six-hundred randomly generated problems.

Zhang et al. [119] also tackled the Next Release Problem from the multi-objective point of

view. They were concerned with the quality of the solutions, the number of possible solutions, the

range of solutions covered, and the number of solutions obtained that were optimal. In order to

solve the problem, they employed two metaheuristics, called NSGA-II and MOCell. They found

that MOCell’s solutions covered a larger range, while NSGA-II obtained better solution quality on

large problems. Both obtained optimal solutions with a high percentage of low-cost requirements

as well as requirements that most satisfied the customers.

Without further experimentation, I cannot assert that KEYS2 (or any of the DDP optimization

algorithms elaborated on in this thesis) will work as well on later life-cycle models - such as those

used in release planning - as it does on the earlier life-cycle Team X models. However, at this time,

I can see no reason why KEYS2 would not work as a non-linear optimizer of these later life-cycle

models. Despite the differing intentions, the structure of late life-cycle models is relatively similar

to that of early life-cycle models. This could be a productive area for future work.

2.5 Summary

This chapter has presented the Defect Detection and Prevention model. This model, used by

NASA’s Jet Propulsion Laboratory, maps the requirements of a project to a series of risks. These

risks are, in turn, mapped to a collection of mitigations. These mitigations can prevent risks for

a certain price. These models can be precompiled into a ”C” file that contains a series of values

and equations. Precompiling models leads to faster execution times for search algorithms, as it is

now faster to obtain a cost and attainment score from the model for any given input. While the

experiments in this thesis largely concentrate on five real-world DDP models, I would like to have
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larger models in order to study the effects of scale-up on the KEYS algorithm. This chapter details

a generator used to create synthetic DDP models. DDP is a form of early life-cycle modeling tool.

I have discussed related tools in this chapter, as well as their uses.

I am concerned with obtaining the ideal balance between the cost of a project and the number

of attained goals. For any given input, the model will generate separate cost and attainment values.

This chapter presents the objective function used to transform those values into a score.

In order to study the output of any assessment algorithm, we must have a result visualization

that is easy to read and understand. This chapter discusses decision ordering diagrams, which

allow a user to understand the impact of each decision during the search process.

The following chapter will detail a set of candidate algorithms to assess the DDP requirements

satisfaction problem.
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Chapter 3

Related Work

The previous chapter has discussed the challenge of balancing budget and attainment in DDP

models. This chapter will discuss the search-based software engineering field and some of the

techniques used to address such non-linear optimization problems.

3.1 Search-Based Software Engineering

As one might infer from the name, search-based software engineering is concerned with the re-

formulation of standard software engineering problems as search problems, and the application of

heuristic techniques to solve said problems. Many of the problems inherent to the software engi-

neering field deal in the balancing of competing factors. Do you want to finish with money left in

the budget, or is it more important to deliver a robust feature set? You could replace the program-

mers on an under-performing project, but would it be worth the additional man-hours necessary to

get the new staff up and running?

In many of these cases, there is no single perfect solution. In fact, there could be a dozen

solutions with the same outcome. Instead of finding a single optimal value, software engineering

problems are typically concerned with near-optimal solutions, solutions that fall within a certain
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tolerance threshold. While it may be impossible or impractical to attempt to find the single best

solution, it is certainly possible to compare two candidate solutions. Because of this implied trade-

off space, meta-heuristic search-based methods are ideal for producing a set of potential solutions.

According to Clark and Harman [50, 52], there are four key properties that must be met for a

search-based software engineering approach to be successful:

• A Large Search Space: If there are only a small number of factors to compare, there is no

need for a meta-heuristic approach. This is rarely the case, as software engineering typically

deals in incredibly large search spaces (i.e. the space of all expressible programs written in

the JAVA language).

• Low Computational Complexity: If the first property is met, SBSE algorithms must sample

a non-trivial population. A typical run of one of these searches requires thousands of execu-

tions of a fitness evaluation (on a large model, KEYS might have to consult the DDP model

ten-thousand times or more). Therefore, the computational complexity of the evaluation

method has a major impact on the overall search.

• Approximate Continuity: While it is not necessary for a function to be continuous, too much

discontinuity can mislead a search. Any search-based optimization must rely on an objec-

tive function for guidance, and some level of continuity will ensure that such guidance is

accurate.

• No Known Optimal Solutions: If an optimal solution to a problem is already known, then

there exists no need to apply search techniques.

The first and last properties are absolutely necessary for any search-based software engineering

solution to succeed. The second and third should be met, but if they are not, it may still be possible

to formulate the problem in SBSE language [7, 71]. All four of these characteristics are prevalent

in software engineering. As mentioned earlier, problems typically involve a large search space,

and optimal solutions are generally impossible to know.
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Using these four properties, we can show that the optimization of DDP models is a SBSE

problem, and that KEYS2 is a valid solution. Typical DDP models present a massive search space,

encompassing hundreds to thousands of possible combinations of mitigation settings. Adding

to that, one collection of mitigation settings must comment on dozens of individual mitigations.

In one DDP model, there might be 299 (mitigation valuesnumber o f mitigations) possible combinations.

With such a large number of combinations in the search space, any candidate solution must execute

in a short time. In Section 5.2, it is shown that KEYS2 operates at O(N2) and Section 5.1.2

demonstrates that the algorithm typically executes in less than half of a second on the largest

DDP models available. DDP models do not represent a continuous search space - any model

with true/false statements is, by definition, not continuous. However, this is not a problem, as the

fitness function employed by KEYS2 (and all algorithms used to assess DDP models) represents

an approximately continuous trade-off between project costs and feature attainment. Finally, DDP

models have no-known optimal solution. In fact, any solution is dependent on the specific features

of the project being modeled. As such, a search method must be employed to calculate a selection

of near-optimal solutions. By meeting all four of these conditions, DDP models (and the candidate

search algorithms) represent a valid search-base software engineering problem.

Although the concept of applying search to software engineering problems has existed for

decades, the term SBSE was coined and the field was formalized in 2001 [50]. Since then, the

SBSE research community has expanded rapidly. SBSE research has been applied successfully to

requirements engineering [11, 84, 119], project cost estimation [15, 22, 28], testing [6, 9, 32, 39,

92], software maintenance [49, 80], transformation [7, 26, 71] and software evolution [14]. The

following subsections detail popular approaches to solving such SBSE problems.

3.1.1 Hill Climbing and Simulated Annealing

Hill Climbing is a commonly-used form of local search [72]. The basic idea is to start with an ini-

tial solution, taken randomly from the search space, and attempt to improve it. The neighborhood
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of this initial point is investigated and, if a better solution is identified, the algorithm ”climbs” to

this neighbor and sets it as the new ”current” solution. Over a series of subsequent rounds, the

hill climbing algorithm will repeat this process until no further improvements can be found. This

process, of steady improvement, is called ”hill climbing” because the algorithms scales ”moun-

tains” in the landscape of an objective function. The peaks of these hills represent solutions with

localized maximum values, just as the lowest recorded levels represent local minima.

Hill Climbing algorithms typically employ one of two strategies at a given stage. In the first,

called steepest ascent, all neighbors are evaluated. The neighbor showing the greatest improve-

ment, according to the objective function, is chosen to replace the current solution. The second

strategy, random ascent, examines neighbors at random. The first neighbor to show an improve-

ment is selected as the replacement.

These algorithms are widely used for several reasons - they are simple to understand, easy to

implement, and very fast. However, they have a key flaw - it is easy for these methods to become

stuck in local maxima or any area where the score plateaus (i.e. all neighbors have the same

objective value, thus there is no improvement). They will then yield results that, while optimal for

that section of the search space, are inferior to the global maxima. In any non-trivial landscape

(which encompasses many of those seen in SBSE), results obtained with a hill climber are highly

dependent on the starting solution. A common method of dealing with this risk is to allow the

algorithm a set number of ”restarts.” In that case, it will pick a new starting position if it ever

becomes trapped. This results in a larger sampling of the search space, which is likely to produce

a more globally optimal solution. The implementation of MaxWalkSat introduced in Section 4.2

is a hill climber (hybridized with a random search) with the ability to reset.

Hill climbing techniques are widely used, but it could be desirable for an algorithm to be less

dependent on the starting position. Simulated annealing [65, 79] is one commonly used alterna-

tive. Simulated annealing (SA) is introduced in more detail in Section 4.1. Like hill climbers,

a simulated annealing algorithm will choose a random starting position and move towards better
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solutions in the immediate neighborhood. However, by probabilistically accepting worse solu-

tions, SA allows for a less-restrictive traversal of the search space. As the algorithm progresses,

its temperature function decreases (i.e. it cools according to the output of a controlling equation).

Initially, the temperature is kept at a high level, which increases the probability of accepting a poor

solution. Thus, more of the search space will be explored. As the search progresses, movement

stabilizes and plateaus. One must take caution when choosing a cooling strategy - cool too quickly,

and it is likely that the algorithm will return a sub-optimal solution.

Tracey et al [107,108] used simulated annealing, a genetic algorithm (GA), a hill climber, and a

random search for finding the worst-case execution time (WCET) for a number of well-understood

programs written in the Ada language. In the search technique executed the path through the

program that yielded the already known WCET, the trial would be deemed a success. Overall, the

Simulated Annealing technique completed more trials successfully than the genetic algorithm, and

both of them vastly outperformed the random search and hill climber. Interestingly, their study

found that varying the parameters of each optimization technique would have little effect on the

end results, except in the case where the starting temperature was too low for the SA algorithm. In

that case, the dependency on the starting position was too high.

Tracey [106, 108] also applied a variety of techniques, including SA and a GA, to the problem

of specification conformance. The conformance of an implementation to its original specification

is checked by executing the test object with some generated testing data, which is then validated

against the specification. The two subsystems chosen for this experiment come from a safety-

critical nuclear primary protection system, written in the Pascal language. The search techniques

were wildly successful in finding the ”mutant” situations that did not conform to the specification.

Both the annealer and genetic algorithm identified all of the 170 existing violations. The hill

climber and random search only found about 90% of the anomalies.

Mahdavi et al [70] used hill climbing algorithms to study the problem of automated software

module clustering, which is important for systems with unclear module boundaries of where struc-
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ture had degraded as the system evolved. In their work, they demonstrate that the results from a

set of multiple ”climbs” can be combined to form the building blocks for subsequent clustering

efforts. Each climb outputs a module dependency graph, and when these graphs are looked at in

sequence, common features emerge that may indicate a good cluster. When that dependency graph

is used as the input for the next hill-climb, that execution tends to reach even higher score peaks.

This process substantially reduces the search space and reveals certain hard-wired portions of the

solution.

3.1.2 Tabu Search

Tabu search [42, 43] is a popular meta-heuristic search method. Like a hill climber, a tabu search

picks a random starting position, examines its local neighborhood for locations that better satisfy

an objective function, and jumps to these positions. Tabu search distinguishes itself by modifying

the neighborhood structure at each stage. The solutions admitted to the new neighborhood are

determined through the use of memory structures. These memory structures constrain the search

space by classifying certain moves as forbidden (taboo), and frees the search through a mechanism

that allows the algorithm to forget certain taboos over time. This ensures that a tabu search (TS)

algorithm never becomes stuck in a local maxima, and that it never falls back into one of these

points once it emerges from it.

The most important internal structure in a tabu search is the tabu list, a move list that blocks

certain portions of the neighborhood deemed to violate a list of logical rules (as informed by the

objective function). In the simplest form, this list is a memory of the solutions that have been

recently visited. By listing these locations as taboo, the search will never spend time revisiting

covered ground. Items will gradually expire from this list as their user-supplied tabu tenure expires.

Other facets of the tabu list are dependent on the constraints of the search problem. For instance,

a tabu search covering the traveling salesperson problem may have a list prohibiting certain arcs

from being removed over the next N moves.
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By marking certain attributes as being taboo, entire portions of the search space will be con-

strained. Unfortunately, these regions may still include optimal solutions. To avoid this problem,

a list of aspirational criteria is used (this may be as simple as reconsidering any solution that is

taboo, yet yields a better score when subjected to the objective function). If any of these criteria

are satisfied, the tabu list will be overridden and that state may reenter the neighborhood.

In a recent article [33], Diaz et al. applied tabu search to the task of automatic generation of

structural software tests. Such structural test generation is almost exclusively conducted by evo-

lutionary algorithms (genetic algorithms, particle swarm optimization), which makes the choice

of tabu search interesting. Their test generator, TSGen, manipulates its tabu list by utilizing one

cost function for intensifying the search and another for diversifying the search when such inten-

sification is unsuccessful. The algorithm combines its memory list with a backtracking process in

order to avoid becoming stuck in localized areas. In order to test their tabu search, they set it loose

on three structural testing problems - one a standard benchmark (the triangle classifier problem)

and two more complex (line rectangle classifier and the distance between two dates). On all three

problems, TSGen achieved 100% coverage in a fraction of the time that it took a random search to

address the problem.

Stardom [102] has benchmarked the efficiency of several meta-heuristic techniques on the

problem of finding adequate covering arrays (also called packing arrays). Covering arrays are used

in software testing to account for the numerous possible configurations that a piece of software can

be executed under. It is often impossible to test every possible configuration; therefore, covering

arrays are used to select the ideal subset of configurations to test. In a series of experiments where

the goal was to find the best covering array possible in the shortest amount of time, Stardom found

that genetic algorithms were completely ineffective in comparison to simulated annealing and tabu

search. The simulated annealer was very useful for finding covering arrays when an array’s neigh-

borhood was smaller, but overall, the tabu search returned the highest-quality solutions.

In a similar piece of research, Kari Nurmela used a tabu search to construct covering arrays that
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would, ideally, improve on previous upper-bounds on the size of an optimal covering array [86].

Covering arrays contain a parameter t where, in any t coordinate positions, all combinations of

those coordinate values occur at least once. When t = 2, all vectors for a covering array are binary,

and the make-up of an optimal array is known; however, for all other cases, only upper and lower-

bounds can be known. Nurmela’s tabu search selects an uncovered t-combination at random and

checks for rows that require the change of a single element such that the row will cover the selected

combination. The algorithm will move based on which element requires the lowest cost to change.

That element will be added to the tabu list, preventing any further changes to it for a set period

of time. Their tabu search was able to improve upper bounds, with the caveat that the more time

given to the algorithm, the better the results returned.

3.1.3 Genetic and Evolutionary Algorithms

Inspired by early experiments with the computational simulation of evolution [12, 55], genetic

algorithms (and the broader field of evolutionary algorithms) have become one of the most famous

meta-heuristics used in the search-based software engineering literature. They are inspired by

Darwin’s Theory of Evolution, with the general idea being to take a group of candidate solutions

and mutate them over several generations - filtering out bad ”genes” and promoting good ones.

Genetic algorithms rely on four major attributes: population, selection, mutation, and crossover.

During each generation (that is, each step of the algorithm), multiple solutions are considered,

forming a population. Because the initial population is unlikely to have the ”best” solution, some

form of diversity must be induced into the population. Such diversity can be maintained by using

the crossover and mutation operations. During each generation, several ”good” solutions (as scored

by a predetermined objective function) are chosen by the selection mechanism to generate children

for the next generation. The makeup of these children is influenced by the crossover operator.

This function combines parts of the chromosomes, the solution presented by each parent, and

inserts them into the offspring with probability Pcrossover. An example of a crossover can be seen
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Figure 3.1: Demonstration of the crossover operation, from [91, 94].

in Figure 3.1, where the child solution inherits genes from its parents. A mutation mechanism,

demonstrated in Figure 3.2, is used to instill small changes in the chromosomes of each offspring.

This is necessary to prevent the algorithm from being trapped in local maxima. To avoid the loss

of good solutions, a certain number of the best results will be copied to the next generation without

any sort of modification. This new grouping of offspring forms a new population, and the process

is repeated until a certain threshold (commonly in performance score, number of generations, or a

set time period) has passed.

To summarize, a standard genetic algorithm follows this framework:

• Evaluate each member of the population.

• Create a new populations using these scores along with the crossover and mutation mutation

mechanisms to generate offspring.
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Figure 3.2: Demonstration of the mutation operation, from [91, 94].

• Discard the old population and repeat the process.

• Stop if time > maxtime (in number of generations or some real-time threshold).

Genetic algorithms are a specific subset of the broader field of evolutionary algorithms, which

use mechanisms inspired by biological evolution to generate offspring and test them against some

pre-determined fitness function. Evolutionary algorithms have been found to be effective for find-

ing a group of near-optimal solutions for the kind of complex problems that are not suited to a

brute force approach (that is, where the search space is too large). Evolutionary algorithms cannot

always find the best possible solution in a reasonable amount of time. However, they are generally

able to generate a solution that is ”good enough.”

SBSE, as a formal research field, is still in its youth. There are still an unfathomable number

of problems to explore, and an equal number of approaches to these problems. Genetic algorithms

have become an increasingly popular approach to solving search problems. A single glance at the
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”best paper” nominees for the SBSE and Search-based Testing categories at the recent 2009 ACM

Genetic and Evolutionary Computation Conference reveals a number of exciting advances in the

field. Some of the research presented includes:

• Gueorhuiev et al [45] explored software project planning under the hypothesis that all large-

scale projects inevitably contain a degree of uncertainty, which in turn leads to overruns.

The authors have formulated this issue as a multi-objective SBSE problem where project

robustness and completion time are designated as competing objectives. Their genetic al-

gorithm, SPEA II [120], searches for the pareto front, the sweet spots, in the solution space

where there exists an optimal balance of the two opposed goals. While increased robustness

generally results in longer completion times, there exist spots in localized regions where

the manager can trade small amounts of one objective for large gains in the other. SPEA

II seeks out these spots. The authors tested their problem and algorithm on four large real-

world projects from around the world, evaluated over two different models of uncertainty.

The results provided interesting insight into the projects studied, and overall accuracy was

favorable compared to that of a random search.

• Phil McMinn introduced a novel approach to testability transformations [73], source-to-

source program transformations intended to improve the testability of a project. In his

research, transformations are used to generate a pseudo-oracle, an alternate version of a

program whose output can be compared directly to the original. Differences in the gener-

ated output could indicate a fault in the original program. Two transformations are utilized -

one highlighting numerical or roundoff errors, the second detecting race conditions in multi-

threaded code. After one of these pseudo-oracles is generated, any number of SBSE tech-

niques may be used to find differences between the programs. Both genetic algorithms and

random searches were able to utilize the oracles to identify faults and assess their severity.

Additionally, genetic algorithms were found to be able to explicitly maximize the differences
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between the originals and the oracles, which allowed for the generation of test cases where

failures are highly pronounced.

• Harman et al [53] presented an application of genetic algorithms to sensitivity analysis,

which is a technique addressing problems with unreliable cost estimates on software projects.

In particular, the authors use SBSE techniques to aid a theoretical decision maker in explor-

ing sensitivity of the cost estimates for the Next Release Problem (several examples of this

problem are discussed in Section 2.4). In short, the ”Next Release Problem” is concerned

with finding the appropriate balance between customer satisfaction and available resources

for the (N + 1)th version of a project. Harman’s paper presents single and multi-objective

formulations of the NRP with sensitivity analysis on both real-world and synthetic data,

tested using a greedy algorithm and the NSGA-II [25] genetic algorithm. While some of

their results were expected - such as a strong correlation between the level of inaccuracy

and the impact on the selection of requirements - they also found notable exception to the

trends. They show that unusually sensitive patterns occur in real-world data and how their

algorithms clearly identify them.

• The majority of existing work on evolutionary testing, the automated generation of software

test cases, is targeted towards procedural languages. Ferrer et al proposed an evolutionary

testing method for object-oriented (OO) languages [39] that addresses the inheritance fea-

ture. Their approach uses information mined from the class hierarchy to help test generators

better guide the search process. The authors define a branch distance for logical expressions

containing the instanceo f operator from the Java language. They then explore two mutation

operators based on this distance metric. They study the behavior of these mutation operators

over nine object-oriented software projects. The results gleaned from this benchmarking

prove favorable, demonstrating that information collected from the class hierarchy does help

in the search for better test cases.
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• Much of the research in applying SBSE to software testing has been of an empirical nature -

proposed techniques are validated on software testing benchmarks. Andrea Arcuri’s work [9]

asks why these meta-heuristic techniques are effective in the testing of software projects.

Such insight could theoretically be used to design new, more successful, approaches. Her

work combines an empirical and theoretical analysis, and exploits the benefits of both. She

analyzes the testing of Red-Black Trees, considering a white-box scenario in which the full

coverage of all the branches of the software is sought, evaluated over four different search

techniques (random search, hill climbing, an evolutionary algorithm, and a genetic algo-

rithm). Rather than treating these algorithms as black-boxes, she tries to look inside of them

for properties of the search problem that can be exploited. These discovered properties are

used to tune the evolutionary and genetic algorithms, as well as to further constrain the ran-

dom search and hill climber.

• Rhys et al. [92] are concerned with the automatic generation of test data for Matlab code. The

most critical, and often error-prone, sections of software applications are code that performs

complicated mathematical functions. This code is very difficult to test due to the data types

used and the complex mathematics. The authors have chosen Matlab as an example of

widely-used mathematical software, and they have used its matrix data types and associated

relational operators to extend previous work on search-based test generation. Their paper

introduces a technical framework fro instrumenting Matlab code, a method of representing

matrix data types in a genetic algorithm, an extended set of branch distance functions, a rank-

based selection mechanism that combines this branch distance with a cost component, and

the identification of linear algebra functions that lead to difficulties when present in relational

predicates. They benchmark a genetic algorithm capable of utilizing this information against

a standard random search. A set of experiments proves that, despite the inherent challenges

of mathematical software, automated search methods can generate feasible test data.
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This snapshot of current research in using genetic algorithms on SBSE problems shows the

health and popularity of this approach. KEYS and GAs have never been directly compared, but

in some ways, it could be said that KEYS operates in a similar manner to a genetic algorithm.

At each ”generation,” KEYS produces a set of solutions and finds one ”best” solution from the

population. It uses that one solution to fix a setting (a ”chromosome”) for the next generation.

There are a number of key differences - GAs produce offspring by combining all ”good” solutions

for a generation while KEYS only uses one member of the population to influence a new generation

- but it could be interesting to compare the two approaches. My hypothesis is that standard GAs

would be too slow to compete with KEYS; however, it is possible that certain features of these

algorithms could be imported into future iterations of my algorithms.

3.1.4 Particle Swarm Optimization

Particle swarm optimization (PSO), introduced in 1995 by Kennedy and Eberhart [30,64], attempts

to solve search problems by mimicking the social optimization conducted in any form of group

behavior. Groups of creatures - birds, fish, bees, even humans - solve problems by working with

their neighbors. As they talk to others around them, their beliefs, intentions, and desires change.

Individuals working in swarms tend to, over time, converge into a stable behavior in a close space.

This type of optimization is the basis of PSO.

In the PSO algorithm, a swarm of particles are used to represent potential solutions. Each

of those particles, i, is associated with a velocity vector Vi = [v1
i ,v

2
i , ...,v

D
i ] and a position vector

Xi = [x1
i ,x

2
i , ...,x

D
i ] (D is equal to the number of dimensions in the solution space). The velocity

and position of each particle is initialized to random vectors withing the range of the search space.

Each round, the velocity and position of particle i on a dimension d are updated as follows:

vd
i = ωvd

i + c1randd
1 (pBestd

i − xd
i )+ c2randd

2 (nBestd− xd
i ) (3.1)
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xd
i = xd

i + vd
i (3.2)

where c1 and c2 are acceleration coefficients. The original creators recommend a fixed value of

2.0 for each, but other researchers prefer ad-hoc values [104] or ones that vary with time [3] (with

a larger c1 at the beginning, and a larger c2 at the end). randd
1 and randd

2 are two uniformly

distributed random numbers generated for dimension d. pBesti is the position found to date with

the highest score (as indicated by the problem’s objective function), and nBest is the top-scoring

position in the current neighborhood. Note that in some implementations of PSO, pBesti is split

into local and global values.

ω is an inertial weight introduced into the PSO algorithm by Shi and Eberhart [98]. The inertia

linearly decreases over a series of generations according to:

ω = ωmax− (ωmax−ωmin)
g
G

(3.3)

where g is the current generation, and G is a predefined maximum number of generations. [98,

99] recommend that ωmin and ωmax be set to 0.4 and 0.9 respectively. Research has also been

conducted with a fuzzy adaptive inertial factor [100] and a randomized ω [31].

A user-specified parameter, V d
max, is used as an upper bound on the velocity of dimension d.

Thus, if the magnitude of the velocity |vd
i | exceeds V d

max, then vd
i is set equal to V d

max, with the sign

(positive or negative) determined by the original value of vd
i .

Each round, the particles evaluate the fitness of each candidate solution and remember the lo-

cations of the top-scoring solutions. Each particle makes their pBesti available to the local neigh-

borhood, and the neighborhood best (nBest) is updated to match the very best candidate solution

in the entire local area. These ”best” values are used to help guide the velocity and position func-

tions described in equations 3.1 and 3.2. The algorithm reaches convergence when all particles

approach a certain value and the fitness function stops reporting better values. PSO algorithms

tend to stop either then the velocity function has slowed down to zero, a certain number of genera-
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tions have passed, or if convergence has been detected. To prevent convergence at a local maxima,

stagnation operators are sometimes used to reset the particles if they stop at a position known to be

sub-optimal.

Particle swarm algorithms come with their own share of weaknesses. Like any other population-

based evolutionary algorithm, PSO can be computationally inefficient. Further, the standard algo-

rithm can easily become trapped in local optima. A number of approaches have been proposed to

address both issues [8,67,105,117] (often by incorporating techniques from genetic algorithms [8]

or local search [67]). Despite these limitations, particle swarm optimization has become a popular

approach in the search-based software engineering field because it is easy to implement, easy to

parallelize, and gradient-free [112].

Ferriera et al. [38] have used particle swarm optimization to study errors in network protocols.

Failures in network protocols are critical, thus they must be verified in order to ensure that they

meet all requirements. Such verification can be performed using model checking; however, the

large number of required states limits the size of the models that are possible to check. Particle

swarm optimization was chosen to optimize these models because of the algorithm’s parallel na-

ture, which allows it to outperform other approaches that would fail due to the size of the search

space. PSO cannot be used to verify these network protocols, but it can efficiently find errors in the

software. The authors have implemented their experiment in the Java Pathfinder model checker.

The PSO algorithm was able to generate better quality results than exhaustive algorithms and it

could assess protocols that exhausted the memory constraints of other techniques.

Windisch [114] researched the efficiency of particle swarm optimization in evolutionary struc-

tural testing. In such structural testing, an algorithm automatically generates test cases with the

goal of achieving high code coverage. He and his coauthors performed experiments with twenty-

five artificial test objects and thirteen more complex real-world projects. While both PSO and a

GA needed more time to optimize as the number of parameters increased, a more detailed analysis

revealed that the GA was unable to reach the global maxima within the given number of func-
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tion evaluations when it had to optimize more than one parameter. The PSO algorithm reached

it when optimizing one, two or three parameters. In situations where both algorithms converged

successfully, PSO often reached better solutions given the same number of iterations. In thirteen of

nineteen experimental cases reported, PSO outperformed the GA by orders of magnitude. In the re-

maining six cases, the GA reached better results, but not by any statistically significant amount. In

general, GA featured a slightly faster convergence for simple functions whereas PSO outperformed

GA on complex functions with larger search spaces.

Diaz-Aviles et al. recently presented an approach, using Particle Swarm Optimization, to auto-

matically optimizing the retrieval quality of ranking functions [27]. Their method, Swarm-Rank,

learns a ranking function by optimizing the combination of various types of evidence, such as

content and hyperlink features. At the same time, it works to maximize the mean average preci-

sion of the results returned. In a series of experiments on benchmarking datasets, they compared

Swarm-Rank against the standard BM25, as well as the sate-of-the-art RankingSVM and Rank-

Boost algorithms. Swarm-Rank always outperformed BM25 and was found to be competitive with

both RankingSVM and RankBoost on ranking relevant documents at the very top positions (often

outperforming at least one of the two).

3.1.5 Ant Colony Optimization

Ant Colony Optimization, as formalized by Dorigo and Gambardella [29], is a meta-heuristic

swarm intelligence method similar to the previously discussed particle swarm optimization. In

an ant colony optimization (ACO) algorithm, a series of cooperating agents work to find optimal

solutions to search problems in a manner similar to real-life ants. Certain species of ants are

known to be able to find the shortest path from a food source to their nest without any visual

guidance [90]. Instead, these ants follow a chemical trail, a pheromone, left by ants that have

visited this food source in the past (this process is demonstrated in figure 3.3). Similarly, during

ant colony optimization, the agents traverse a graph, choosing paths by incorporating information

42



Figure 3.3: A demonstration of how real-life ants locate food, from [29].
In (a), an ant has arrived at a fork in the path. As expected, some ants will travel in one direction
and some in the other - shown in (b). (c) shows that, since ants move at a constant speed, the ants
that took the lower path will arrive at the food first. Thus, as seen in (d), pheromone accumulates
at a higher rate on the shorter path (which means that the probability of an ant choosing that path
will grow over time).

based on solutions and their qualities achieved by other agents during elapsed iterations (that is, the

”pheromones” left by past ”ants”). Through the accumulation of pheromones, the agents will be

able to converge upon a set of high-scoring solutions and the shortest path to achieve said solutions.

The ACO meta-heuristic ultimately breaks down into three phases: generate solutions, update

pheromones, and conduct daemon actions. The typical form of a solution depends on the type of

search problem being explored, but they can be simplified as paths through some kind of graph

space. At each step during the construction phase, every agent in the system adds one vertex to its
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path. The ant will then choose to move from vertex i to vertex j with probability:

Pi, j =
(τα

i, j)(η
β

i, j)

Σ(τα
i, j)(η

β

i, j)
(3.4)

where τi, j is the amount of pheromone left on edgei, j and ηi, j is the desirability of that edge. The

desirability is defined as a function of the a priori information known about the search problem.

For instance, desirability could be the gain in the score from an objective function achieved by

taking that step. The α and β exponents are user-supplied weights used to determine the influence

of the pheromones versus the desirability.

At each stage of the problem, an ant will typically have to choose between several competing

edges. This is done through a process called roulette selection, where all actions are given a

probability (see equation 3.4) and the ant chooses a random number between zero and one. The

probability of selecting an action is added to a sum, and if adding another probability to that sum

would push the sum beyond the random number, that action is chosen as the ant’s next step. That

vertex is used to mutate the ant’s current solution, and the ant steps forward in the search space.

Once every agent has selected their next action, a ”pheromone update” takes place. This phase

has two steps - evaporation and deposit. In the evaporation step, a certain amount of pheromone is

removed on each edge according to:

τi, j = (1−ρ)τi, j (3.5)

where ρ is a user-supplied evaporation control rate. The second step, the deposit, adds pheromones

to each visited graph edge as follows:

τ
k
i, j = τ

k
i, j +

1
Ck

(3.6)

where Ck is the calculated cost of the kth ant’s solution. This deposit process, over time, will cause
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the amount of pheromones on a ”good” edge to increase far in excess of the evaporation rate. In

turn, this will make certain sections of the solution space far more attractive to each ant, guiding

them towards the optimal corners.

The third phase, daemon actions, is a name given to the set of post-processing steps required

by the search problem. This phase is optional and highly problem-specific.

Although the most obvious use of ant colony optimization is on combinatorial optimization

problems such as the traveling salesperson problem [1, 29] or the quadratic assignment prob-

lem [68, 111], ACO is well-suited to any problem that is rapidly-changing or that requires that the

current ”best” solution be updated regularly [51]. Until 2007, ant colony optimization saw little

use in search-based software engineering, but that has changed rapidly over the past three years

years.

Prandtstetter and Raidl [89] recently applied ant colony optimization and variable neighbor-

hood search (also known as VNS, basically a hill climber with resets) to what is technically an

software engineering problem, though an unconventional one - the reconstruction of shredded

documents. The authors consider four different construction heuristics, favoring quick solutions

over slightly more complete ones. Those heuristics were Prim’s method, border similarity, and

two additional heuristics based on the fact that the edges of pages (the margins) are typically left

blank. The ACO algorithm then applies randomized versions of these heuristics. In experimental

tests, the ACO far outperforms the VNS approach in terms of solution quality (obtaining higher-

quality solutions in thirty-four of forty-five cases). However, the VNS shows shorter execution

times. The solutions obtained from the ACO algorithm are some of the best to date in document

reconstruction, often recreating a large portion of the original text document.

Chicano and Alba [16] applied ant colony optimization to the problem of finding safety prop-

erty violations in concurrent models. Their approach, ACOhg, modifies ant behavior with internal

resorts in order to search very large landscapes. ACOhg is applied to concurrent models in edge-

case scenarios, where other methods have previously failed. In experiments conducted over nine
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models, ACOhg had a 100% success rate in finding the error path, outperforming a standard A*

search. During this search, ACOhg expanded fewer paths than A* and, as a consequence, used less

memory.

Ayari et al. have applied ant colony optimization to fault-based testing [10]. Evolutionary algo-

rithms are usually applied to this task - fault-based testing is expensive and evolutionary algorithms

have been proven to lower the cost of test generation. The authors propose an ant-based scheme,

augmented with a probability density estimation mechanism, for automatic test-input generation in

the context of mutation testing. They compared their approach with a standard genetic algorithm,

a random search, and a hill climber on two different JAVA-based testbeds. On both projects, the

ACO vastly outperformed all of the other approaches (with mean mutation scores of 89% and 88%

against the 35% and 42% scored by the next-best solution, the GA).

3.1.6 Other Methods

As documented by the search-based SE literature [19, 50, 52, 91] and Gu et al [44], there are many

other possible optimization methods. Some of these are:

• Gradient descent methods assume that an objective function F(X) is differentiable at any

single point N. A Taylor-series approximation of F(X) can be shown to decrease fastest if

the negative gradient (−∆F(N)) is followed from point N.

• Discrete methods assume that model variables have a finite range (that may be quite small)

while continuous methods assume the existence of numeric values with a very large (possibly

infinite) range.

• Some methods map discrete values (true/false) into a continuous range (1/0) and then use

integer programming methods like CPLEX [81] to achieve results.

• Other methods find overlaps in goal expressions and generate a binary decision diagram
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(BDD) where parent nodes store the median of overlapping children nodes.

• Sequential versions of most optimization algorithms exist. These implementations run on

one CPU while parallelized methods spread the work over a distributed CPU farm.

This survey of related work is hardly exhaustive - Gu et al. lists hundreds of other methods and no

single researcher can experiment with them all. All the algorithms studied in this thesis are discrete

and sequential. I have spent some time exploring parallel versions of the KEYS optimizers but, as

of yet, the communication overhead outweighs the benefits of parallelism.

As for the general class of gradient descent methods, I do not use them because they assume the

objective function being optimizing is essentially continuous. Any model with an ”if” statement

in it is not continuous since, at the ”if” point, the program’s behavior may become discontinuous.

The DDP requirements models studied in this thesis are discontinuous at every subset of every

possible mitigation.

Likewise, I do not explore the more specific class of integer programming methods for two

reasons. First, Coarfa et al. [20] found that integer programming-based approaches ran an order

of magnitude slower than discrete methods like the MaxWalkSat and KEYS2 algorithms, thus

violating the speed requirement. Similar results have been reported by Gu et.al where discrete

methods ran one hundred times faster than integer programming [44].

Harman offers another reason to avoid integer programming methods. In his search-based SE

manifest [50], he argues that many SE problems are over-constrained and, thus, there may exist no

precise solution that covers all constraints. This implies that a complete solution over all variables

is impossible and partial solution based on heuristic search methods are preferred. Such methods

may not be complete; however, as Clarke [19] remarks, “...software engineers face problems which

consist, not in finding the solution, but rather, in engineering an acceptable or near-optimal solution

from a large number of alternatives.”
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3.2 Treatment Learning

The field of data mining uses techniques from statistics and artificial intelligence to find small, yet

relevant, patterns in large sets of data. The standard practice in this field is to classify, to look at

an object and make a guess at what category it belongs to. As new evidence is examined, these

guesses are refined and improved. While this paradigm doesn’t directly map into the terminology

utilized by the DDP requirements models, a related example of classification might be to look

at a series of projects that use DDP models during the planning phase and ask how many risks

those projects mitigated. If, say, that project mitigated greater then 75% of risks, then a classifier

could categorize that project as attainment-maximized and anything below that as cost-minimized

(as those projects decided that some risk was acceptable in order to save part of the budget).

Treatment learning [74] focuses on a different goal. It does not try to determine what is, it

tries to determine what could be. Classifiers read a collection of data and collect statistics that are

then used that to place unseen data into a series of discrete categories. Treatment learners work

in reverse. They take the classification of a piece of evidence (that is, the category that it belongs

to) and try to reverse-engineer the statistical evidence that led a classifier to assign the data to a

particular class. For instance, rather than deciding whether a project was attainment-maximized

or cost-minimized, a treatment learner might try to identify which mitigations should have been

enabled for an ideal cost-attainment balance (note that this is exactly what KEYS does). Treatment

learners take that evidence and use it to produce a treatment—a small set of rules that, if imposed,

will change the expected classification distribution. By filtering the data for entries that follow the

rules set in the treatment, you should be able to identify why a particular classification was reached.

Ultimately, classifiers will strive to increase the representational accuracy. They will assess

the data and grow a collection of statistical rules with the goal of making more and more accurate

categorizations. As a result, if the data is complex, the decision tree output by the classifier will

also be complex. Treatment learning instead focuses on minimality: what is the smallest rule that
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can be imposed to cause the largest change. Often, these rules are as simple as filtering for the data

where, say, the wind speed on the outside of an aircraft is between 25 and 45 knots.

Stated formally, treatment learning is a form of minimal contrast-set association rule learning.

The treatments contrast undesirable situations with the desirable ones (represented by weighted

classes). Treatment learning, however, is different from other contrast-set methods like STUCCO [13]

because of its focus on minimal theories. Conceptually, a treatment learner explores all possible

subsets of the attribute ranges looking for good treatments. Such a search is infeasible in practice

so the art of treatment learning lies in quickly pruning unpromising attribute ranges (i.e. ignoring

those that, when applied, lead to a class distribution where the target class is in the minority).

Earlier, I pointed out that KEYS behaves similarly to a treatment learner. KEYS is designed

to provide settings for a model, and then test the model output against a continuous objective

function. Settings that maximize this function are saved and imposed on subsequent rounds. A

treatment learning algorithm reflects over pre-classified historical data and identifies the features

that lead to a particular target class, then recommends using those features as a filter to only leave

examples of the target class. KEYS can, in fact, be thought of as a treatment learner that also deals

with the other steps of the process that standard treatment learners ignore. Rather than reflecting

over historical data, KEYS generates a one-hundred record dataset every round when it comes

up with a series of random model configurations. KEYS then enters those model configurations

into an objective function, and receives a score in return. While this technically results in a series

of continuous scores, those scores are effectively turned into two binary classes (best and rest

around a threshold point. The KEYS algorithm then uses those classifications to identify the exact

mitigation (and its value) that led to the most ”best” classifications. That setting is imposed, and

subsequent rounds identify additional settings. Effectively, KEYS is a treatment learner that also

generates and classifies its own data, then continues operating until all settings are fixed.

In the following subsections, I will detail two treatment learning algorithms.
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3.2.1 TAR3

TAR3 [46,47,57,61] (and its predecessor TAR2 [74]) are based on two fundamental concepts—lift

and support. The lift of a treatment is the change that some decision makes to a set of examples

after imposing that decision. TAR3 is given a set of training examples E. Each example e ∈ E

contains a set of attributes, each with a specific value (which have commonly been discretized into

a series of ranges). These attributes (and the range their values fall within are directly mapped to

a specific classification (stated formally - Ri,R j, ...→C). The individual class symbols C1, C2,...

are ranked and sorted based on a utility score (U1 < U2 < ... < UC, where UC is the target class).

Within dataset E, these classes occur at certain frequencies (F1, F2,..., FC) where ∑Fi = 1 (that is,

each class occupies a fraction of the overall dataset). A treatment T of size M is a conjunction

of attribute value ranges R1∧R2...∧RM (these ranges are obtained by discretizing and combining

several of the original continuous attribute values). Some subset of the dataset (e⊆ E) is contained

within the treatment; that is, if the treatment is used to filter E, e ⊆ E is what will remain. In that

subset, the classes occur at frequencies f1, f2,..., fC. TAR3 seeks the smallest treatment T which

induces the biggest changes in the weighted sum of the utilities multiplied by the frequencies of

the classes. This score, the score of e ⊆ E where T has been imposed, is divided by the score of

the baseline (dataset E when no treatment has been applied). Formally, the lift is defined as

lift = ∑cUc fc

∑cUcFc
. (3.7)

The classes used for treatment learning are assigned a score U1 < U2 < ... < UC and the learner

uses this to assess the class frequencies resulting from applying a treatment by finding the subset

of the inputs that falls within the reduced treatment space. In normal operation, a treatment learner

conducts controller learning; that is, it finds a treatment which selects for better classes and rejects

worse classes. By reversing the scoring function, treatment learning can also select for the worst

classes and reject the better classes. This mode is called monitor learning because it locates the
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Figure 3.4: Probability distribution of individual attribute scores.

one thing we should most watch for.

Real-world datasets, especially those from hardware systems, contain some noise —incorrect

or misleading data caused by accidents and miscalculations. If these noisy examples are perfectly

correlated with failing examples, the treatment may become overfitted. An overfitted model may

come with a massive lift score, but it does not accurately reflect the details of the entire dataset. To

avoid overfitting, learners need to adopt a threshold and reject all treatments that fall on the wrong

side of this threshold. We define this threshold as the minimum best support.

Given the desired class, the best support is the ratio of the frequency of that class within the

treatment subset to the frequency of that class in the overall dataset. To avoid overfitting, TAR3

rejects all treatments with best support lower than a user-defined minimum (usually 0.2). As a

result, the only treatments returned by TAR3 will have both a high lift and a high best support.

This is also the reason that TAR3 prefers smaller treatments. The fewer rules adopted, the more

evidence that will exist supporting those rules.

TAR3’s lift and support calculations can assess the effectiveness of a treatment, but they are

not what generates the treatments themselves. A naive treatment learner might attempt to test all

subsets of all ranges of all of the attributes. Because a dataset of size N had 2N possible subsets,

this type of brute force attempt is inefficient. The art of a good treatment learner is in finding good
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heuristics for generating candidate treatments.

The algorithm begins by discretizing every continuous attribute into smaller ranges by sorting

their values and dividing them into a set of equally-sized bins. It then assumes the small-treatment

effect; that is, it only builds treatments up to a user-defined size. Past research [46, 47] has shown

that a treatment’s size should be less than four attributes. TAR3 will then only build treatments

from the discretized ranges with a high heuristic value.

TAR3 determines which ranges to use by first determining the lift score of each attribute’s value

ranges (that is, the score of the class distribution obtained by filtering for the data instances that

contain a value in that particular range for that particular attribute). These individual scores are

then sorted and converted into a cumulative probability distribution, as seen in Figure 3.4. TAR3

randomly selects values from this distribution, meaning that low-scoring ranges are unlikely to be

selected. To build a treatment, n (random from 1...max treatment size) ranges are selected and

combined. These treatments are then scored and sorted. If no improvement is seen after a certain

number of rounds, TAR3 terminates and returns the top treatments.

3.2.2 TAR4.1

TAR3, while effective at generating informative treatments, is not a very efficient algorithm. It

stores all examples from the dataset in RAM and requires three scans of the data in order to dis-

cretize, build theories, and rank the generated treatments. The TAR4.1 treatment learner was

designed to address these inefficiencies [41]. Modeled after the SAWTOOTH [87] incremental

Naive Bayes classifier, TAR4.1’s scoring heuristic allows for an improved runtime, lower memory

usage, and a better ability to scale to large datasets.

Naive Bayes classifiers offer a relationship between fragments of evidence Ei, a prior probabil-
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ity for a class P(H), and a posteriori probability P(H|E) defined by

P(H|E) = ∏
i

P(Ei|H)
P(H)
P(E)

. (3.8)

For numeric features, a features mean µ and standard deviation σ are used in a Gaussian probability

function [115]:

f (x) = 1/(
√

2πσ)e−
(x−µ)2

2σ2 . (3.9)

TAR4.1 still requires two passes through the data, for discretization and for building treatments.

These two steps function in exactly the same manner as the corresponding steps in the TAR3

learner. TAR4.1, however, eliminates the final pass by building a scoring cache during the BORE

classification stage. As explained previously, examples are placed in a U-dimensional hypercube

during classification, with one dimension for each utility. Each example e ∈ E has a normalized

distance 0≤ Di ≤ 1 from an apex, an area where the best examples reside. When BORE classifies

examples into best and rest, that normalized distance is added as a score, called Di (the euclidean

distance from 0), to the down table and a seperate score, 1−Di (or, the distance from the best), is

entered into the up table.

When treatments are scored by TAR4.1, the algorithm does a linear-time table lookup instead

of scanning the entire dataset. Each range R j ∈ examplei adds scores downi and upi to counters

F(R j|rest) and F(R j|best). These counters are a summation of scores for a range R j across the

dataset, and represent how often data examples containing that range appear in the best and rest.
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These summations are then used to compute the following probability and likelihood equations:

P(best) = ∑i upi

∑i upi +∑i downi
, (3.10)

P(rest) = ∑i downi

∑i upi +∑i downi
, (3.11)

P(R j|best) =
F(R j|best)

∑i upi
, (3.12)

P(R j|rest) =
F(R j|rest)
∑i downi

, (3.13)

L(best|Rk∧Rl ∧ ...) = ∏
x

P(Rx|best)∗P(best), (3.14)

L(rest|Rk∧Rl ∧ ...) = ∏
x

P(Rx|rest)∗P(rest). (3.15)

TAR4.1 finds the smallest treatment T that maximizes

P(best|T ) =
L(best|T )2

L(best|T )+L(rest|T )
. (3.16)

Note the squared term in the top of the equation, L(best|T )2. The standard Naive Bayes design

assumes independence between all attributes and keeps singleton counts. By not squaring that

term, TAR4.1 adds redundant information, which alters the generated probabilities. In effect, it

produced treatments with high scores, but without the support required by the TAR3 algorithm.

By squaring that term, the likelihood that a range appears in an area of top scores, those treatments

that lack support are pruned in favor of those that have both a good score and support.

It should also be pointed out that Equation 3.16, the formula that TAR4.1 uses to choose treat-

ments, is the same formula used by KEYS to choose optimal model settings (see Section 4.4.

Both algorithms judge the scores output by an objective function according to a Bayesian ranking

measure. Therefore, they would likely make comparable decisions when applied to the same prob-

lems. However, as pointed out earlier, the two algorithms are not directly comparable as TAR4.1

is generally only used in a single-round process and requires data to be pre-classified.
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3.3 Summary

In this chapter, I have discussed algorithms and fields of research that are related to the work

conducted in this thesis.

The requirements satisfaction problem that I have studied can be though of as a search-based

software engineering problem. We want to search for the set of mitigations that will allow us to

attain the most requirements at the lowest price. KEYS and the algorithms benchmarked against

it all reflect aspects of the SBSE field. We use MaxWalkSat, a hybrid random search/ hill climber

that utilizes resets to escape local maxima. Our experiments also make use of simulated anneal-

ing, which is extremely popular in SBSE research. I have also discussed tabu search, genetic

algorithms, particle swarm optimization, and ant colony optimization in detail.

This chapter has discussed the concept of treatment learning, a machine learning method that

takes a backlog of classified data, weights the classes by desirability, and identifies which features

(and which values of those features) are the most pivotal in predicting for a target class. The KEYS

algorithm can be thought of as a treatment learner that generates and classifies its own data, and

then continues operating until all features have fixed settings.

In fact, the entire treatment learning field can be thought of as an over-elaboration of a very

simple idea - that there exist a small number of important variables that, if controlled, lead to

optimal solutions. This idea is the very basis of the KEYS algorithm, which I will present in detail

in the next chapter.

I will now shift from the general to the specific. The next chapter presents a series of algorithms

- taken from various aspects of the SBSE paradigms presented in this chapter - that will be used to

address the DDP problem.
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Chapter 4

Algorithms

The previous chapters have set forth the DDP requirements satisfaction problem (that is, how to

attain the most goals for the lowest price) and provided a survey of the search-based software

engineering field. In this chapter, I will discuss the algorithms used to search and optimize the

space of model configurations.

Numerous researchers have stressed the difficulties associated with comparing radically dif-

ferent algorithms. For example, Uribe and Stickel [110] doubted that it was fair to compare al-

gorithms that perform constraint satisfaction and no search (like binary decision diagrams) and

methods that perform search and no constraint satisfaction (like Davis-Putnam proofs). For this

reason, model checking researchers like Holzmann eschew comparisons of tools like SPIN [56],

which are search-based, with tools like NuSMV [17], which are BDD-based.

Hence, I take care to only compare algorithms which are similar to my primary approach,

KEYS. In terms of Gu’s exhaustive optimization survey [44], the algorithms that I have selected

(simulated annealing, A* and MaxWalkSat) share certain properties with KEYS and KEYS2. They

are each discrete, sequential, unconstrained algorithms (constrained algorithms work towards a

pre-determined number of possible solutions while unconstrained methods are allowed to adjust to

the goal space). These shared properties ensure that all algorithm comparisons are appropriate.
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1. Procedure SA
2. MITIGATIONS:= set of mitigations
3. SCORE:= score of MITIGATIONS
4. while TIME < MAX_TIME && SCORE < MIN_SCORE //minScore is a constant score (threshold)
5. find a NEIGHBOR close to MITIGATIONS
6. NEIGHBOR_SCORE:= score of NEIGHBOR
7. if NEIGHBOR_SCORE > SCORE
8. MITIGATIONS:= NEIGHBOR
9. SCORE:= NEIGHBOR_SCORE
10. else if prob(SCORE, NEIGHBOR_SCORE, TIME, temp(TIME, MAX_TIME)) > RANDOM)
11. MITIGATIONS:= NEIGHBOR
12. SCORE:= NEIGHBOR_SCORE
13. TIME++
14. end while
15. return MITIGATIONS

Figure 4.1: Pseudocode for SA

For full source code of these techniques, please see the appendices.

4.1 Simulated Annealing

Simulated annealing (SA) is a classic stochastic search algorithm. It was first described in 1953 [79]

and refined in 1983 [65]. The algorithm’s namesake, annealing, is a technique from metallurgy,

where a material is heated, then cooled. The heat causes the atoms in the material to wander ran-

domly through different energy states and the cooling process increases the chances of finding a

state with a lower energy than the starting position.

During each round, SA “picks” a neighboring set of mitigations. To calculate this neighbor, a

function traverses the mitigation settings of the current state and randomly flips those mitigations

(at a 5% chance). If the neighbor has a better score, SA will move to it and set it as the current

state. If no score improvement is seen, the algorithm will decide whether or not to move based on

the probability function:

prob(w,x,y, temp(y,z)) = e((w−x)∗ y
temp(y,z) ) (4.1)
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temp(y,z) =
(z− y)

z
(4.2)

If the value of the prob function is greater than a randomly generated number, SA will move to

that state anyways. This randomness is the very cornerstone of the Simulated Annealing algorithm.

Initially, the “atoms” (current solutions) will take large random jumps, sometimes to even sub-

optimal new solutions. These random jumps allow simulated annealing to sample a large part of

the search space, while avoiding being trapped in local minima. Eventually, the “atoms” will cool

and stabilize and the search will converge to a simple hill climber.

As shown in line 4 of Figure 4.1, the algorithm will continue to operate until the number of

tries is exhausted or a score meets the threshold requirement.

Other uses for the simulated annealing algorithm in the search-based software engineering field

are discussed in Section 3.1.1.

4.2 MaxFunWalk (MaxWalkSat)

The design of simulated annealing dates back to the 1950s. In order to benchmark KEYS against

a more state-of-the-art algorithm, I implemented the variant of MaxWalkSat described below.

WalkSat is a local search method designed to address the problem of boolean satisfiability [63].

MaxWalkSat is a variant of that algorithm that applies weights to each clause in a conjunctive

normal form equation [96]. While WalkSat tries to satisfy the entire set of clauses, MaxWalkSat

tries to maximize the sum of the weights of the satisfied clauses.

In one respect, both algorithms can be viewed as a variant of simulated annealing (or the hill

climbing approaches seen in Section 3.1.1). Whereas simulated annealing always selects the next

solution randomly, the WalkSat algorithms will sometimes perform random selection while, other

times, conduct a local search to find the next best setting to one variable.

MaxFunWalk is a generalization of MaxWalkSat:
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1. Procedure MaxFunWalk
2. for TRIES:=1 to MAX-TRIES
3. SELECTION:=A randomly generate assignment of mitigations
4. for CHANGED:=1 to MAX-CHANGES
5. if SCORE satisfies THRESHOLD return
6. CHOSEN:= a random selection of mitigations from SELECTION
7. with probability P
8. flip a random setting in CHOSEN
9. with probability (P-1)
10. flip a setting in CHOSEN that maximizes SCORE
11. end for
12. end for
13. return BESTSCORE

Figure 4.2: Pseudocode for MaxFunWalk

• MaxWalkSat is defined over CNF formulae. The success of a collection of variable settings

is determined by how many clauses are “satisfiable” (defined using standard boolean truth

tables).

• MaxWalkFun, on the other hand, assumes that there exist an arbitrary function that can assess

a collection of variable settings. Here, we use the DDP model as a assessment function.

Note that MaxWalkFun = MaxWalkSat if the assessment is conducted via a logical truth table.

The MaxFunWalk procedure is shown in Figure 4.2. When run, the user supplies an ideal cost

and attainment. This setting is normalized, scored, and set as a goal threshold. If the current setting

of mitigations satisfies that threshold, the algorithm terminates.

MaxFunWalk begins by randomly setting every mitigation. From there, it will attempt to make

a single change until the threshold is met or the allowed number of changes runs out (100 by

default). A random subset of mitigations is chosen and a random number P between 0 and 1 is

generated. The value of P will decide the form that the change takes:

• P≤ α: A stochastic decision is made. A setting is changed completely at random within the

set CHOSEN.

• P> α: Local search is utilized. Each mitigation in CHOSEN is tested until one is found that
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improves the current score.

The best setting of α is domain-specific. For this study, we used α = 0.3.

If the threshold is not met by the time that the allowed number of changes is exhausted, the set

of mitigations is completely reset and the algorithm starts over. This measure allows the algorithm

to avoid becoming trapped in local maxima. For the DDP models, I found that the number of

retries has little effect on solution quality.

If the threshold is never met, MaxFunWalk will reset and continue to make changes until the

maximum number of allowed resets is exhausted. At that point, it will return the best settings

found.

As an additional measure to improve the results found by MaxFunWalk, a heuristic was imple-

mented to limit the number of mitigations that could be set at one time. If too many are set, the

algorithm will turn off a few in an effort to bring the cost factor down while minimizing the effect

on the attainment.

4.3 A* Search

A* is a best-first path finding algorithm that uses distance from origin (G) and estimated cost

to goal (H) to find the best path [54]. The algorithm is widely used in a multitude of research

areas [58, 88, 93, 103].

A* is a natural choice for DDP optimization since the objective function used to assess DDP

model configurations (see Section 2.2.3) is actually a Euclidean distance measure to the desired

goal of maximum attainment and minimum costs. Hence, for the second potion of the A* heuristic,

we can make direct use of Equation 2.2.

The A* algorithm keeps a closed list in order to prevent backtracking. We begin by adding the

starting state to the closed list. In each “round,” a list of neighbors is populated from the series of

possible states reached by making a change to a single mitigation. If that neighbor is not on the
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1. Procedure A*
2. CURRENT_POSITION:= Starting assignment of mitigations
3. CLOSED[0]:= Add starting position to closed list
4.
5. while END:= false
6. NEIGHBOR_LIST:=list of neighbors
7. for each NEIGHBOR in NEIGHBOR_LIST
8. if NEIGHBOR is not in CLOSED
9. G:=distance from start
10. H:=distance to goal
11. F:=G+H
12. if F<BEST_F
13. BEST_NEIGHBOR:=NEIGHBOR
14. end for
15. CURRENT_POSITION:= BEST_NEIGHBOR
16. CLOSED[++]:=Add new state to closed list
17. if STUCK
18. END:= true
19. end while
20. return CURRENT_POSITION

Figure 4.3: Pseudocode for A*

closed list, two calculations are made:

• G = Distance from the start to the current state plus the additional distance between the

current state and that neighbor.

• H = Distance from that neighbor to the goal (an ideal spot, usually 0 cost and a high attain-

ment). For DDP models, we use Equation 2.2 to compute H.

The best neighbor is the one with the lowest F = G+H. The algorithm “travels” to that neighbor

and adds it to the closed list. Part of the optimality of the A* algorithm is that the distance to the

goal is underestimated. Thus, the final goal is never actually reached by A*. My implementation

terminates once it stops finding better solutions for a total of ten rounds. This number was chosen

to give ample time for A* to become “unstuck” if it hits a corner early on.
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4.4 KEYS and KEYS2

The core premise of KEYS and KEYS2 is that the above algorithms perform over-elaborate searches.

Suppose that the behavior of a large system is determined by a small number of key variables. If

so, then a very rapid search for solutions can be found by (a) finding these keys then (b) explore

the ranges of the key variables.

The following small example illustrates this idea. Within a model, there are chains of reasons

linking inputs to desired goals. Some of the links clash with others. Some of those clashes are

most upstream; they are not dependent on other clashes. In the following chains of reasoning the

clashes are {e,¬e}, {g,¬g} & { j,¬ j}; the most upstream clashes are {e¬e}, & {g¬g},

a−→ b−→ c−→ d −→ e

input1 −→ f −→ g−→ h−→ i−→ j −→ goal

input2 −→k→¬g−→ l −→ m→¬ j−→ goal

¬e

In order to optimize decision making about this model, we must first decide about these most

upstream clashing reasons (the “keys”). Returning to the above reasoning chains, any of {a,b, ..q}

are subject to discussion. However, most of this model is completely irrelevant to the task of

inputi ` goal. For example, the {e,¬e} clash is unimportant to the decision making process as no

reason uses e or ¬e. In the context of reaching goal from inputi, the only important discussions are

the clashes {g,¬g, j,¬ j}. Further, since { j,¬ j} are dependent on {g,¬g}, then the core decision

must be about variable g with two disputed values: true and false.

Setting the keys reduces the number of reachable states within the model. Formally, the reach-

able states reduce to the cross-product of all of the ranges of the collars. This is called the clumping

effect. Only a small fraction of the possible states are actually reachable. The effects of clumping

can be quite dramatic. Without knowledge of these keys, the above model has 220 > 1,000,000
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possible consistent states. However, in the context of inputi ` goal, those 1,000,000 states clumps

to just the following two states: {input1, f ,g,h, i, j,goal} or {input2,k,¬g, l,m,¬ j,goal}.

As documented in the Section 4.6, this notion of keys has been discovered and rediscovered

many times by many researchers. The KEYS algorithm finds the keys uses a Bayesian sampling

method. If a model contains keys then, by definition, those variables must appear in all solutions

to that model. If model outputs are scored by some oracle, then the key variables are those with

ranges that occur with very different frequencies in high/low scoring model outputs. Therefore,

we need not search for the keys- rather, we just need to keep frequency counts on how often ranges

appear in best or rest outputs.

KEYS has two main components - a greedy search and the BORE (best or rest) ranking heuris-

tic. The greedy search explores a space of M mitigations over the course of M “eras.” Initially, the

entire set of mitigations is set randomly. During each era, one more mitigation is set to Mi = X j,

X j ∈ {true, f alse}. In the original version of KEYS [59], the greedy search fixes one variable per

era. A newer variant, KEYS2, fixes an increasing number of variables as the search progresses

(see below for details).

In KEYS (and KEYS2), each era e generates a set < input,score > as follows:

1: MaxTries times repeat:

• Selected[1. . .(e−1)] are settings from previous eras.

• Guessed are randomly selected values for unfixed mitigations.

• Input = selected∪guessed.

• Call model to compute score = dd p(input);

2: The MaxTries scores are divided into β% “best” and remainder become “rest”.

3: The input mitigation values are then scored using BORE (described below).
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1. Procedure KEYS
2. while FIXED_MITIGATIONS != TOTAL_MITIGATIONS
3. for I:=1 to 100
4. SELECTED[1...(I-1)] = best decisions up to this step
5. GUESSED = random settings to the remaining mitigations
6. INPUT = SELECTED + GUESSED
7. SCORES= SCORE(INPUT)
8. end for
9. for J:=1 to NUM_MITIGATIONS_TO_SET
10. TOP_MITIGATION = BORE(SCORES)
11. SELECTED[FIXED_MITIGATIONS++] = TOP_MITIGATION
12. end for
13. end while
14. return SELECTED

Figure 4.4: Pseudocode for KEYS

4: The top ranked mitigations (the default is one, but the user may fix multiple mitigations at

once) are fixed and stored in selected[e].

The search moves to era e + 1 and repeats steps 1,2,3,4. This process stops when every miti-

gation has a setting. The exact settings for MaxTries and β must be set via engineering judgment.

After some experimentation, we used MaxTries = 100 and β = 10. For full details, see Figure 4.4.

KEYS ranks mitigations using a support-based Bayesian ranking measure called BORE. BORE

[18] (short for “best or rest”) divides numeric scores seen over K runs and stores the top 10% in

best and the remaining 90% scores in the set rest (the best set is computed by studying the delta

of each score to the best score seen in any era). It then computes the probability that a value is

found in best using Bayes theorem. The theorem uses evidence E and a prior probability P(H) for

hypothesis H ∈ {best,rest}, to calculate a posteriori probability P(H|E) = P(E|H)P(H) / P(E).

When applying the theorem, likelihoods are computed from observed frequencies. These likeli-

hoods (called ”like” below) are then normalized to create probabilities. This normalization cancels

out P(E) in Bayes theorem. For example, after K = 10,000 runs are divided into 1,000 best solu-

tions and 9,000 rest, the value mitigation31 = f alse might appear 10 times in the best solutions,

but only 5 times in the rest. Hence:
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Figure 4.5: The data architecture of the KEYS algorithm.

E = (mitigation31 = f alse)

P(best) = 1000/10000 = 0.1

P(rest) = 9000/10000 = 0.9

f req(E|best) = 10/1000 = 0.01

f req(E|rest) = 5/9000 = 0.00056

like(best|E) = f req(E|best) ·P(best) = 0.001

like(rest|E) = f req(E|rest) ·P(rest) = 0.000504

P(best|E) =
like(best|E)

like(best|E)+ like(rest|E)
= 0.66 (4.3)

Previously [18], it has been found that Bayes theorem is a poor ranking heuristic since it is easily

distracted by low frequency evidence. For example, note how the probability of E belonging to

the best class is moderately high even though its support is very low; i.e. P(best|E) = 0.66 but

f req(E|best) = 0.01.

To avoid the problem of unreliable low frequency evidence, I augment Equation 4.3 with a
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support term. Support should increase as the frequency of a value increases, i.e. like(best|E) is a

valid support measure. Hence, step 3 of the greedy search ranks values via

P(best|E)∗ support(best|E) =
like(best|E)2

like(best|E)+ like(rest|E)
(4.4)

During each era, KEYS samples the DDP models and fixes the top N = 1 settings. KEYS2

assigns progressively larger values. In era 1, KEYS2 behaves exactly the same as KEYS while in

(say) era 3, KEYS2 will fix the top 3 ranked ranges. Then, in era 4, KEYS2 will fix the top four

ranges. Since it sets more variables at each era, KEYS2 terminates earlier than KEYS. A summary

of the architecture of KEYS can be seen in Figure 4.5. Note that decision ordering diagrams could

be directly generated during execution, just by collection statistics from the SCORES array used in

line 7 of Figure 4.4.

4.5 Other KEYS Variants

KEYS was orders of magnitude faster than prior treatment learning solutions to the DDP require-

ments problem [78]. While other algorithms would take minutes to execute, KEYS is capable of

optimizing the largest models in a fraction of a second. While this is adequate for current require-

ments models, it is always desirable to find faster solutions. Therefore, it became necessary to

research methods that would speed up KEYS’ current performance.

Several different methods and rates have been tested for fixing multiple settings per round.

KEYS2, presented in the previous section, was found to be the best of these for its balance of exe-

cution time and low result variance. KEYS2 was not the first attempt to improve the performance

of the original KEYS, nor was it the last. Some of the other heuristics benchmarked were:

• Fix all mitigations with a performance score within 5% of the top score for that round.

• Set all mitigations that are correlated (i.e. that have the same frequency in the ”best” in-
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stances) to the top-performing configuration.

• Generate fewer random configurations each round. That is, on the first round, it would

generate N configurations (N >= number of mitigations). On the second round, it would

generate N−1 instances.

• Introduce a sloping threshold for the split between the best and rest instances.

• On the first round, fix a mitigation as KEYS normally would. At the same time, this variant

would populate a list of similar-scoring instances. The following round, it would only look

at those instances instead of generating new ones. On the third round, it would form a new

list of ”neighboring” instances and consider those for the fourth round. This continues until

all mitigations have fixed settings.

• A KEYS variant combining the above neighbor concept with KEYS2, setting a larger num-

ber of mitigation values each round.

In benchmarking tests, some of these were faster than KEYS2, but those variants returned either

sub-par performance or too much variance in their judgments (in the language of the decision

ordering diagrams, they were well-behaved but not tame). Other variants represented too small

of a runtime improvement over KEYS. Ultimately, KEYS2’s heuristic was selected as the most

effective.

4.5.1 KEYS-R

While KEYS2 represents a large runtime improvement over the original KEYS, it contains a flaw

that limits future performance improvements. By setting multiple mitigations each round, the

algorithm loses the ”support” built by the one-hundred instances generated each round. Therefore,

while KEYS2 is faster than the original KEYS, its results are less tame.
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The small amount of additional variance in KEYS2 is still within acceptable boundaries; there-

fore, it has found some use in DDP-related experiments. However, this has limited the further

improvements that could be made to the KEYS algorithm. Numerous other variations on how to

set multiple mitigations per round have shown result variance far outside acceptable values. Other

methods have not shown variance problems, but these versions were slower than KEYS2, limiting

their possible use. This issue prompted a new round of research. If the key to speeding up the

KEYS algorithm was not in setting additional mitigations each round, where was it?

When a software profiler was used on KEYS2, one interesting point was revealed. Nearly

70% of the runtime was spent in calling the model (i.e. sending a new set of mitigations to the

precompiled model and receiving back a new cost and attainment value). Each round, both KEYS

and KEYS2 generate one-hundred sets of mitigations and score them. They use these instances

to find the best set of mitigations to fix for that round. The instance generation step is the chief

bottleneck in the KEYS algorithm. However, a large number of instances is needed to provide the

support necessary to accurately rank mitigations. If fewer instances are generated, you have the

same issue as when too many mitigations are set. There is a larger variance in results, and those

results tend to contain higher cost and lower attainment values. Therefore, the question is how to

call the model fewer times while retaining high support for the instance set.

A new variant of the KEYS algorithm, KEYS-R addresses this issue by retaining certain subsets

of previously-generated instances and reusing them in later rounds. KEYS-R begins by calculating

two threshold values. These values are the highest possible cost (i.e. the cost if all mitigations

are used) and the highest possible attainment. The central loop (instance generation, ranking, and

mitigation fixing) commence in the same way as the original KEYS. One hundred new instances

are generated and stored. The key difference comes in the next step. Once an instance is scored,

its cost and attainment values are compared to the previously-calculated threshold values. If an

instance scores within ten percent of these values (if its cost is less than 10% of the highest possible

cost and its attainment is greater than 90% of the model’s possible attainment), it is stored in a
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collection of the best instances. If the instance’s cost value is within 10% to 35% of the cost

threshold and its attainment is from 65% to 90% of the possible attainment value, it is stored in a

collection of middle instances.

Each round, before a new set of instances is generated, a random subset of the top and middle

sets are used instead of generating new instances. In order to ensure that support is maintained,

new instances must be generated. Therefore, up to 33 instances can come from each set, and the

remaining 34 will be randomly generated new instances.

As individual mitigations are fixed, these previously used instances will begin to lose their sup-

port value. That is to say, results will lose their rigidity and variance will increase. Therefore, it

is still important that we not reuse an instance too many times. A balance must be maintained be-

tween the stored instances and the newly-generated ones. To address this, a decay timer is attached

to each instance when it is added to either the top or middle subsets. Whenever a new instance

is added to once of these subsets, it will immediately replace an instance whose decay timer has

expired. This allows support to be maintained while reducing the number of new instances that

must be generated each round.

Benchmarking experiments assessing KEYS-R can be seen in Section 5.3.

4.6 Other Work on “Keys”

The core premise of the KEYS algorithm is that a small number of important variables effectively

set the rest, greatly reducing the search space. Elsewhere [77], dozens of papers that have reported

this same effect under a variety of names, including narrows, master-variables, back doors, and

feature subset selection.

Amarel [5] observed that search problems contain narrow sets of variables or collars that must

be used in any solution. In such a search space, what matters is not so much how you get to these

collars, but what decision you make when you get there. Amarel defined macros encoding paths

69



between narrows, effectively permitting a search engine to jump between them.

In a similar theoretical analysis, Menzies & Singh [77] computed the odds of a system selecting

solutions to goals using complex, or simpler, sets of preconditions. In their simulations, they found

that a system will naturally select for tiny sets of preconditions (a.k.a. the keys) at a very high

probability.

Numerous researchers have examined feature subset selection; i.e. what happens when a data

miner deliberately ignores some of the variables in the training data. For example, Kohavi and

John [66] showed in numerous datasets that as few as 20% of the variables are key - the remaining

80% of variables can be ignored without degrading a learner’s classification accuracy.

Williams et.al. [113] discuss how to use keys (which they call “back doors”) to optimize search.

Constraining these back doors also constrains the rest of the program. So, to quickly search a

program, they suggest imposing some set values on the key variables. They showed that setting the

keys can reduce the solution time of certain hard problems from exponential to polytime, provided

that the keys can be cheaply located, an issue on which Williams et.al. are curiously silent.

Crawford and Baker [24] compared the performance of a complete TABLEAU prover to a very

simple randomized search engine called ISAMP. Both algorithms assign a value to one variable,

then infer some consequence of that assignment with forward checking. If contradictions are

detected, TABLEAU backtracks while ISAMP simply starts over and re-assigns other variables

randomly. Incredibly, ISAMP took less time than TABLEAU to find more solutions using just a

small number of tries. Crawford and Baker hypothesized that a small set of master variables set

the rest and that solutions are not uniformly distributed throughout the search space. TABLEAU’s

depth-first search sometimes drove the algorithm into regions containing no solutions. On the other

hand, ISAMP’s randomized sampling effectively searches in a smaller space.

In summary, this ”keys” assumption, that a small subset of variables are far more important

than all others, is supported in many different domains.
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4.7 Summary

This chapter has discussed a series of algorithm implementations intended to offer ideal solutions

to the DDP problem (that is, a balance between the budget and the attainment of goals). Each

algorithm chosen for my experiments is discrete, sequential, and unconstrained, and thus, is ap-

propriate for comparison to the others. These methods all operate in different ways - A* treats the

search space as a graph, while simulated annealing jumps between solutions based on a probability

function - but they all utilize the same objective function and offer compatible results.

In this chapter, I have also presents my own approach to the problem - the KEYS (and KEYS2)

algorithm. This technique focuses on the idea that a small number of variables have a dispropor-

tionate influence over the search space, and by setting those variables, you can quickly force the

results into a somewhat-optimal area of the search space. There is much evidence for such a notion

in the data mining field, as shown in Section 4.6.

The next chapter details a series of case studies benchmarking the algorithms presented in this

chapter.
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Chapter 5

Case Studies

Previous chapters have discussed the DDP models and a series of algorithms designed to comment

on an optimal combination of settings to these models. Chapter 4 has also discussed external

research relevant to this thesis.

This chapter presents a series of experiments where we benchmark KEYS and KEYS2 against

andard techniques for solving the DDP requirements satisfaction problem. I will also detail scale-

up results that show KEYS’ ability to handle models multiple times larger than those seen in the

present day. Lastly, I will show the results of one attempt to develop a more powerful variant of

KEYS2.

5.1 Benchmarking KEYS and KEYS2

Each of the algorithms described in Chapter 3 was tested on the five models of Figure 2.4. Note

that:

• Models one and three are trivially small. They were used them to debug source code, but

have been left out the core experiments. I report my results using models two, four and five

since they are large enough to stress test real-time optimization.
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• Model 4 was discussed in [75] in detail. The largest, model 5 was optimized previously in

[36]. At that time (2002), it took 300 seconds to generate solutions using an old, very slow,

rule learning method.

• All five models were assessed by the KEYS algorithm in [59]. However, that paper pre-

sented no comparison results.

I have also studied how well KEYS and KEYS2 scale to larger models. Further, I have instru-

mented KEYS and KEYS2 to generate decision ordering diagrams. The results from all of these

experiments are shown below.

5.1.1 Attainment and Costs

All of the comparison algorithms (KEYS, KEYS2, simulated annealing, A*, and MaxFunWalk)

were run 1000 times on each model. Such a high number of repeats was chosen because it yielded

enough data points to give a clear picture of the span of results, and ensured that outlying values

would have no effect on the experiment outcomes. At the same time, it is a low enough number

that I can still generate a complete set of results in a fairly short time span.

The results are pictured in Figure 5.1. Attainment is along the x-axis and cost (in thousands)

is along the y-axis. Note that better solutions fall towards the bottom right of each plot; that is, the

area of lower costs and higher attainment. Also, better solutions exhibit less variance and, as such,

the results are clumped closely together.

These graphs give a clear picture of the results obtained by the various algorithms. Two meth-

ods are clearly inferior:

• Simulated annealing exhibits the worst variance, lowest attainments, and highest costs.

• MaxFunWalk is better than SA (less variance, lower costs, higher attainment) but its variance

is still far too high to use in any sort of critical situation.
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As for the other techniques:

• On larger models such as model4 and model5, KEYS and KEYS2 exhibit lower variance,

lower costs, and higher attainments than A*.

• On smaller models such as model2, A* usually produces higher attainments and lower vari-

ance than the KEYS algorithms (this advantage disappears on the larger models). However,

observe the results near the (0,0) point of model2’s A* results: sometimes A*’s heuristic

search failed completely for that model.
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Figure 5.1: 1000 results of running five algorithms on three models (15,000 runs in all). The y-
axis shows cost and the x-axis shows attainment. The size of each model is measured in number
of mitigations. Note that better solutions fall towards the bottom right of each plot; i.e. lower costs
and higher attainment. Also better solutions exhibit less variance, i.e. are clumped tighter together.
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Model 2 (31 mitigations) Model 4 (58 mitigations) Model 5 (99 mitigations)
SA 0.577 1.258 0.854

MaxFunWalk 0.122 0.429 0.398
A* 0.003 0.017 0.048

KEYS 0.011 0.053 0.115
KEYS2 0.006 0.018 0.038

Figure 5.2: Runtimes in seconds, averaged over 100 runs, measured using the “real time” value
from the Unix times command. The size of each model is measured in number of mitigations (and
for more details on model size, see Figure 2.4).

5.1.2 Runtime Analysis

Measured in terms of attainment and cost, there is little difference between KEYS and KEYS2.

However, as shown by Figure 5.2, KEYS2 runs twice to three times as fast as its predecessor.

Interestingly, Figure 5.2 ranks two of the algorithms in a similar order to Figure 5.1:

• Simulated annealing is clearly the slowest;

• MaxFunWalk is somewhat better but not as fast as the other algorithms.

As to A* versus KEYS or KEYS2:

• A* is faster than KEYS;

• and KEYS2 runs in time comparable to A*.

Measured purely in terms of runtimes, there is little to recommend KEYS2 over A*. However,

A*’s heuristic guesses were sometimes observed to be sub-optimal (recall the above discussion on

the (0,0) results in model2’s A* results). Such sub-optimality was never observed for KEYS2.

5.1.3 Decision Ordering Algorithms

The decision ordering diagrams of Figure 5.3 show the effects of the decisions made by KEYS

and KEYS2. For both algorithms, at x = 0, all of the mitigations in the model are set at random.

During each subsequent era, more mitigations are fixed (KEYS sets one at a time, KEYS2 freezes

75



 0

10

20

30

 1  10  20  30

C
os

t (
K

)

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 1  10  20  30

A
tta

in
m

en
t

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

Figure 5.3a: Internal Decisions on Model 2.
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Figure 5.3b: Internal Decisions on Model 4.

 0

500

1000

1500

 1  10  20  30  40  50  60  70  80  90

C
os

t (
K

)

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

 0

 50

 100

 150

 200

 250

 1  10  20  30  40  50  60  70  80  90

A
tta

in
m

en
t

Number of decisions made

KEYS - Median
KEYS - Spread

KEYS2 - Median
KEYS2 - Spread

Figure 5.3c: Internal Decisions on Model 5.

Figure 5.3: Median and spread of partial solutions learned by KEYS and KEYS2. X-axis shows
the number of decisions made. “Median” shows the 50th percentile of the measured value seen in
100 runs at each era. “Spread” shows the difference between the 75th and 50th percentile.
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an incrementally increasing number). The lines in each of these plots show the median and spread

seen in the one-hundred calls to the model function during each round.

Note that the these diagrams are both tame and well-behaved, as defined in Chapter 2:

• Tame: The ”spread” values quickly shrink to a small fraction of the median.

• Well-behaved: The median values move smoothly to a plateau of best performance (high

attainment, low costs).

On termination (at maximum value of x), KEYS and KEYS2 arrive at nearly identical median

results (caveat: for model2, KEYS2 attains slightly more requirements at a slightly higher cost

than KEYS). The spread plots for both algorithms are almost indistinguishable except, again, for

model 2. In that model, the KEYS2 spread is less than KEYS. Based on these diagrams, we can

observe that KEYS2 achieves approximately the same results as KEYS, but (as shown in Figure 5.2

and Figure 5.5) it does so in less time.

A core assumption of this work is the “keys” concept - that a small minority of important model

variables restrict the remaining majority. Figure 5.3 offers significant support for this assumption.

It can be observed that most of the improvement in costs and attainments were achieved after

KEYS and KEYS2 made only a handful of decisions (often ten or fewer).

It is insightful to reflect on the effectiveness of different algorithms at generating these deci-

sion ordering diagrams. KEYS2 is the most direct and fastest method, and by its very design,

automatically generates these diagrams. As mentioned above, all of the required information can

be collected during one execution of KEYS2. On the other hand, simulated annealing, A*, and

MaxFunWalk would require a post-processor to generate the diagrams:

• Given D possible decisions, At each era, KEYS and KEYS2 collects statistics on partial

solutions where 1,2,3, ..|d| variables are fixed (where d is the set of decisions) while the

remaining D−d decisions are made at random.
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Year Num. Variables
2004 30
2008 100
2010 300
2013 800

Figure 5.4: Growth trends; number of variables in DDP’s data dictionary.

• A*, Simulated Annealing, and MaxFunWalk work with full solutions since at each step they

offer settings to all di ∈D variables. In the current form, they cannot comment on partial so-

lutions. Modified forms of these algorithms could theoretically add in extra instrumentation

and extra post-processing to comment on partial solutions using methods like feature subset

selection [48] or a sensitivity analysis [95].

5.2 Scale-Up Studies

In order to provide useful blind-spot exploration, our DDP optimization tools must run fast enough

that humans can get feedback before they must move on to other issues. Our previous solutions

to the DDP optimization problem are too slow. Ideally, we wish for requirements optimization to

occur in ”real-time”; i.e. to offer advice before an expert’s attention wanders to other issues.

Figure 5.4 shows the growth rate (historically and projected) of the number of variables within

a DDP model. It is expected that, by 2013, DDP models will be roughly eight times larger than

they were in 2008 and twice as large as they are today. As shown in Figure 5.2, KEYS and KEYS2

report results that could be considered ”real-time.” However, it remains unclear whether they scale

to the complex models that we expect to see in the near future?

In order to study how well the scalability of KEYS and KEYS2, an instance generator was

created that:

• Examined the real-world DDP models of Figure 2.4;

• Extracted statistics related to the different types of nodes (mitigations or risks or require-
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Runtime (secs) KEYS
KEYS2

model expansion model size KEYS KEYS2
2 1 62 0.01 0.01 1.07
2 2 124 0.03 0.02 1.23
4 1 139 0.04 0.02 2.29
5 1 201 0.13 0.04 3.18
2 4 248 0.10 0.05 2.09
4 2 278 0.17 0.05 3.48
5 2 402 0.50 0.12 4.26
2 8 496 0.44 0.14 3.21
4 4 556 0.73 0.16 4.66
5 4 804 1.98 0.38 5.21
4 8 1112 2.97 0.52 5.71
5 8 1608 8.06 1.35 5.96
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Figure 5.5: Runtimes KEYS vs KEYS2 (medians over 1000 repeats) as models increase in size.
The “model” number in column one corresponds to Figure 2.4. The “expansion factor” of column
two shows how much the instance generator expanded the model. The “model sizes” of column
three are the sum of mitigations, requirements, and risks seen in the expanded model.

ments) and the number of edges between different types of nodes;

• Used those statistics to build random models that were 2,4,8, and 16 times larger than the

original models.

For more on the model generator, see Section 2.2.2. It is worth noting that, for the purposes of this

scale-up study, I have actually stepped ahead of the expected growth curve. The artificial models

generated for this contain up to 1600 mitigations (twice as large as those that JPL is expected to be

designing in 2013, and sixteen times larger than the largest models studied in this thesis).

Figure 5.5 and Figure 5.6 show the effect of changing the size of the model on the number of

times that the model is asked to generate a score for both KEYS and KEYS2.

Figure 5.7 shows the results of curve fitting to the plots of Figure 5.5 and Figure 5.6. The

KEYS and KEYS2 performance curves fit a low-order polynomial (of degree two) with very high

coefficients of determination (R2 ≥ 0.98). That is to say, the KEYS2 algorithm is of complexity

size O(N2).

The evidence in Figure 5.7 suggests that one could scale either KEYS or KEYS2 to larger

models without an inordinate increase in execution time. However, I would still have to recommend

KEYS2. The column marked KEY S
KEY S2 in Figure 5.6 shows the ratio of the number of calls made by
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Calls to model KEYS
KEYS2

model expansion model size KEYS KEYS2
2 1 62 3100 800 3.9
2 2 124 6200 1100 5.6
4 1 139 5800 1100 5.3
5 1 201 9900 1400 7.1
2 4 248 12400 1600 7.8
4 2 278 11600 1500 7.7
5 2 402 19800 2000 9.9
2 8 496 24800 2200 11.3
4 4 556 23200 2200 10.5
5 4 804 39600 2800 14.1
4 8 1112 46400 3000 15.5
5 8 1608 79200 4000 19.8
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Figure 5.6: Number of model calls made by KEYS vs KEYS2 (medians over 1000 results) as
models increase in size. This figure uses the same column structure as Figure 5.5.

KEYS KEYS2
runtimes model calls runtimes model calls

exponential 0.82 0.83 0.88 0.93
polynomial (of degree 2) 0.99 0.99 0.99 0.98

Figure 5.7: Coefficients of determination R2 of KEYS/KEYS2 performance figures, fitted to two
different functions: exponential or polynomial of degree two. Higher values indicate a better curve
fit. In all cases, the best fit is not exponential.

KEYS vs KEYS2. As models get larger, the number of calls to the model are an order of magnitude

greater in KEYS than in KEYS2. If applied to models with slower runtimes than those current DDP

models, then this order of magnitude is highly undesirable.

5.3 Benchmarking KEYS-R

While KEYS2 represents a speed upgrade over the original KEYS, it still has one clear limitation.

By setting multiple mitigations each round, the algorithm loses the ”support” built by the one-

hundred instances generated each round. Therefore, while KEYS2 is faster than the original KEYS,

its results contain slightly more variance. Other attempts to increase the number of mitigations set

per round have resulted in variance outside of useful bounds. When a software profiler was used

on KEYS2, one interesting point was revealed. Nearly 70% of the runtime was spent in asking

the model for a new (cost,attainment) performance pairing. Each round, both KEYS and KEYS2
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generate one-hundred random sets of mitigation settings and score them, using these scores to find

mitigations to fix for subsequent rounds (thus, the model is called one hundred times each round).

This instance generation step is the chief bottleneck in the KEYS algorithm. However, one cannot

just cut the number of random configurations generated at each step - a large number of instances

is needed to provide the support necessary to accurately rank mitigations. If fewer instances are

generated, the same issue arises as when too many mitigations are fixed. There is a larger variance

in results, and those results tend to contain higher cost and lower attainment values. KEYS-R,

as explained in Section 4.5.1, was developed as an attempt to find a balance between speed and

support. It retains certain high-scoring instances and attempts to reuse them in later rounds.

For two of the models from the original experiment (models 2 and 4), as well as several of the

artificially-generated models from Sections 2.2.2 and 5.2, I ran each KEYS, KEYS2, and KEYS-R

one-hundred times in order to filter for outliers and obtain stable results. For each algorithm and

model, the final attainment, cost, and runtimes were recorded. The results are presented in the

following subsections.

5.3.1 Attainment and Costs

As expected, the original KEYS obtains the absolute best balance between cost and attainment,

with KEYS2 performing similarly. Unfortunately, KEYS-R does not do very well in comparison

to KEYS2. KEYS-R returns similar attainments, but much higher cost values. In certain extreme

cases, like artificial model 5-8, it returns a cost estimate three times higher the value given by the

original KEYS. These median results were compared using the Mann-Whitney U tests, only to

reach the same conclusion. KEYS slightly outperforms KEYS2, and both outperform KEYS-R.

The results that consistently emerged for each model, as output by a Mann-Whitney test were:

• Two wins for KEYS;

• One win and one loss for KEYS2;
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Original:
Model KEYS KEYS2 KEYS-R

model2.c 7325 7325 6250
model4.c 876500 921500 711500

Artificial:

Model KEYS KEYS2 KEYS-R
model2-2.c 0 140 140
model2-4.c 125 710 1055
model2-8.c 1080 3435 5540
model2-16.c 10815 22030 35050
model4-2.c 1000 36500 39500
model4-4.c 35500 146000 226000
model4-8.c 220000 577000 670000
model4-16c 1422500 2733000 5285000
model5-2.c 13575 43050 59500
model5-4.c 93000 228000 325500
model5-8.c 430050 796650 1233575

Figure 5.8: Median cost results for each of our algorithms run on each model.

Original:
Model KEYS KEYS2 KEYS-R

model2.c 0.7 0.7 0.7
model4.c 3013 3011 2858

Artificial:

Model KEYS KEYS2 KEYS-R
model2-2.c 54 54 54
model2-4.c 112 112 112
model2-8.c 228 228 228
model2-16.c 460 460 460
model4-2.c 3835 3835 3835
model4-4.c 8727 8727 8727
model4-8.c 18492 18492 18492
model4-16c 34975 34975 34975
model5-2.c 523 523 523
model5-4.c 845 845 845
model5-8.c 1788 1788 1788

Figure 5.9: Median attainment results for each of our algorithms run on each model.
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• Two losses for KEYS-R.

What is occurring here is that KEYS-R, though designed to maintain support, clearly fails to

do so. In the best case, it is likely that the rules governing instance decay were too simple. It is also

equally possible that the entire concept of instance retention is flawed - configurations that scored

well at one point just might not be useful later in the search process.

One point of interest is that KEYS-R performed very differently on the original models as

opposed to the artificially generated ones. The results are not necessarly better, they have just gone

in the opposite direction. When executed on the original models, KEYS-R returns pairings with

lower costs than KEYS or KEYS2 (this is good) but lower attainments as well (this is bad). The

rules governing instance retention were perhaps too loose for the artificially-generated models and

too strict on the original models. Very few instances are scored as ”best” (a subset of instances

retained within the KEYS-R algorithm). For example, in one trial involving model 4 from the

original set, only three instances were ever stored in the best subset. In the artificial version of that

model, one-hundred (the limit before decayed instances are replaced) examples are stored. This

implies that KEYS-R is very dependent on the actual construction of the model. Things like the

number of connections between specific risks and mitigations seem to drastically affect the results

that appear.

5.3.2 Runtime Analysis

As Figure 5.10 shows, KEYS-R falls right between KEYS and KEYS2 in terms of runtime. This

is crucial, as standard KEYS is too slow to provide realtime results on the largest of our artificial

models (in one case, taking almost nine seconds).

KEYS2 and KEYS-R outperform the original KEYS on every model. However, the fact that

is does not run faster than KEYS2, and that it returns sub-optimal cost and attainment pairings,

leaves little reason to recommend it over the existing solutions to DDP model optimization. Un-
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Original:
Model KEYS KEYS2 KEYS-R

model2.c 0.00881 0.00497 0.00838
model4.c 0.04724 0.01523 0.03763

Artificial:

Model KEYS KEYS2 KEYS-R
model2-1.c 0.00833 0.00775 0.00671
model2-2.c 0.02720 0.02216 0.0197
model2-4.c 0.10398 0.04964 0.07067
model2-8.c 0.44088 0.13736 0.30278
model2-16.c 1.76741 0.48072 1.29550
model4-1.c 0.04375 0.01911 0.02502
model4-2.c 0.17386 0.05003 0.09178
model4-4.c 0.73049 0.15686 0.39623
model4-8.c 2.97024 0.59174 1.83779
model4-16c 12.60780 1.88267 8.8363
model5-1.c 0.12882 0.04055 0.07276
model5-2.c 0.49749 0.11666 0.29788
model5-4.c 1.97696 0.37918 1.34306
model5-8.c 8.05896 1.35119 5.97226

Figure 5.10: Runtime results for each of our algorithms run on each model.

less lingering issues with its instance-retention model were addressed, it is unlikely that KEYS-R

could be considered as a replacement for KEYS2. Future directions for KEYS research will likely

involve quick-caching methods (elaborated on in Section 6.2) rather than any form of full instance

retention.

5.4 Summary

The experiments shown in this chapter have shown that when assessed in terms of (a) reduc-

ing inference times, (b) increasing solution quality, and (c) decreasing the variance of the gener-

ated solution, KEYS2 out-performs other search algorithms including simulated annealing, A*,

MaxWalkSat.

KEYS and KEYS2 are extremely fast algorithms, and I created a series of increasingly large

synthetic models to test their ability to scale to the complex projects of the future. The second
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experiment shows that KEYS2 will scale to models up to sixteen times larger than those currently

in existence with no discernible issues.

Finally, I have compared KEYS and KEYS2 to a new version of KEYS designed to retain

certain ”good” instances (called KEYS-R). Unfortunately, the KEYS-R experiment yielded poor

results, with both KEYS and KEYS2 demonstrating higher-quality (cost,attainment) pairings (and

KEYS2 demonstrating faster execution times).

The next chapter offers a more detailed analysis of these results, as well as potential plans for

future work.
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Chapter 6

Conclusions

6.1 Conclusions

Requirements tools such as the Defect Detection and Prevention model (used at NASA for early

life-cycle discussions), contain a shared group memory that stores all of the requirements, risks,

and mitigations of each member of this group. Software tools can explore this shared memory to

find consequences and interactions that may have been overlooked.

Studying that group memory is a non-linear optimization task: possible benefits (like the attain-

ment of requirements) must be traded off against the increased cost of applying various mitigations.

Harman [50] cautions that solutions to non-linear problems may be “brittle.” That is, small changes

to the search results may dramatically alter the effectiveness of the solution. Hence, when report-

ing an analysis of this shared group memory, it is vitally important to comment on the robustness

of the solution.

Decision ordering diagrams (Sections 2.2.4 and 5.1.3) are one such solution robustness as-

sessment method. These diagrams rank all of the possible decisions from most-to-least influential.

Each point x on the diagrams shows the effects on imposing the conjunction of decisions 1≤ j≤ x.

These diagrams can comment on the robustness and neighborhood of solution {d1..dx} using two
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operators:

1. By considering the variance of the performance statistics after applying {d1..dx}.

2. By comparing the results of using the first x decisions to that of using the first x−1 or x+1

actions.

Since the decisions are sorted by importance, this analysis of robustness and neighborhood takes,

at most, time linear of the number of decisions made. That is, theoretically, it takes linear time to

use a decision ordering diagram (see 2.2.4).

Empirically, it take low-order polynomial time to generate a decision ordering diagram using

the KEYS2 algorithm. This algorithm makes the “keys” assumption - that a small group of vari-

ables control all of the others - and uses Bayesian ranking mechanism to quickly find those keys.

As discussed in the Section 4.6, this assumption holds over a wide range of models used in a wide

range of domains. The keys assumption can be remarkably effective: empirical results show that

KEY2 can generate decision ordering diagrams faster than both standard and state-of-the art tech-

niques in the search field (Section 5.1). Better yet, curve fits to our empirical results in Section 5.2

show that KEYS runs in O(N2) and, thus, should scale to very large models.

Prior to this work, two pre-experimental concerns were that:

• An algorithm would need to trade solution robustness against solution quality. More robust

solutions may not have the highest quality.

• Demonstrating solution robustness requires multiple calls to an analysis procedure.

At least for the models studied here, neither concern was realized. KEYS2 generated the highest

quality solutions (lowest cost, highest attainments) and did so more quickly than the other methods

(full results in Section 5.1).

In Section 2.2.4 it was argued that decision ordering diagrams are useful when they are timely

to generate while being well-behaved and tame. KEYS2’s results are the most timely (fastest to
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generate) of all of the methods studied here. As to the other criteria, Figure 5.3 shows that KEYS2’s

decision ordering diagrams:

• Move smoothly to a plateau with only a small amount of variance;

• Have very low spreads, compared to the median results.

That is, at least for the models explored here, KEYS2 generated decision ordering diagrams they

are both well-behaved and tame.

In summary, I recommend KEYS2 for generating decision ordering diagrams since, apart from

the (slightly slower) KEYS algorithm, I am currently unaware of other search-based software en-

gineering methods that enable such a rapid reflection of solution robustness.

6.2 Recommendations for Future Work

The scale-up study conducted in Section 5.2 states that, by 2013, DDP models will be more

than twice their current size. As these DDP models grow, it is not just the number of variables

that grow. Larger models are more densely interconnected. More mitigations affect more risks,

and more risks affect more requirements. Our current top optimization techniques terminate in

a matter of milliseconds. They effectively report real-time results for current models. However,

further optimization is required in order to support the models that we expect to see in the future.

Furthermore, by setting multiple mitigations per round, KEYS2’s judgments are based on less

evidence and thus contain more variance (that is, less tame). The small amount of variance in

KEYS2 is within acceptable bounds, but other attempts to fix a higher number of configurations

per round have fallen outside of these limits.

Research into how to improve the KEYS algorithm revealed that over 70% of the execution

time is spent polling the model for the cost and attainment performance values. Each round, both

KEYS and KEYS2 generate one-hundred sets of mitigation configurations and score them. They
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use these instances to set the optimal mitigations to fixed values. This instance generation step

is the chief bottleneck in the KEYS algorithm. However, a large number of instances is needed

to provide the support necessary to accurately rank mitigations. If fewer instances are generated,

the algorithm’s result variance will still fall outside of appropriate limits. Therefore, the basis for

future research should be in how to retain high support while executing the model fewer times.

One attempt, KEYS-R, focused on reusing existing configuration sets that recieved high scores

from the objective function (for more, see Section 4.5.1). This KEYS variation was fast, but its

results were notably poor. It failed because it tried to reuse high-scoring items without regard for

whether or not they still provided an adequate level of support. One possible future extension to

the KEYS formula could solve the issues of the original algorithm by using active learning [21]

to reflect over the space of past decisions. Think of a natural thought process; someone who is

looking for a specific book would not search every shelf of a store in order of appearance. Instead,

they would walk directly to the appropriate section. The same idea guides active learning. Most

machine learning algorithms are passive, they simply read over (or randomly generate) a set of

examples with no regard for the contents of that sample population. In contrast, an algorithm that

makes use of active learning is able to exercise some level of control over the input that it trains

on.

In short, the performance of KEYS could be improved by - rather than attempting to reuse

instances - saving them and providing a quick method of looking up previously assessed model

configurations. This proposed improvement clusters an initial set of configurations, sorts these

clusters into a cover tree, and only consults the model for a score when an instance’s performance

cannot be assessed from the space of past judgments.

KEYS (and its extension, KEYS2)is a powerful algorithm because it only explores a small

fraction of the total number of configurations. It is a safe expectation that, out of the sheer number

of possible settings, that not all possible configurations of the mitigations will lead to different

effects. By extension, it becomes possible that KEYS can assess new configurations of the model
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Figure 6.1: The data architecture of a KEYS variant using a cache.

without actually executing the model, but rather by remembering what happened with past settings.

Figure 6.1 shows the dataflow of a KEYS variant extended with an automated cache. In this

system, KEYS will track the configurations used in the past as well as their unique score. Past data

can be efficiently grouped, and a nearest-neighbor technique could extrapolate new combinations.

By clustering the old results by their performance scores, KEYS could reflect over old settings

in order to offer potentially ideal new combinations. Likewise, KEYS can pull out performance

scores of configurations that fall into regions explored in the past (that is, the smooth regions where

results can be extrapolated).

A cluster can be said to be linear if, on average, performance scores can be interpolated from

neighboring instances. If a cluster is linear and contains three items x,y,z and y,z are the nearest

neighbors to x, then the (cost,attainment) score pair of x should be the same as a linear inter-

polation between y and z. The assumption behind this theory is based on analogy-based effort

estimation [97] - the kth nearest neighbors to the test instance are linear. The performance score
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for one instance can be averaged from its neighbors. Consequently, if a new proposed set of miti-

gation settings falls into a linear cluster, then KEYS needs not waste CPU time polling the model

for a score. Instead, it can just interpolate the result in linear time.

For this cache-enabled variant of KEYS to outperform the original algorithm, it is essential that

the clustering and processing of cache entries takes less time than executing all possible configu-

rations during each round. For this to succeed, KEYS must be able to quickly and incrementally

cluster a large vector space. Without efficient clustering, KEYS will not scale well to models with

a large number of mitigations. Numerous studies [2, 60, 76, 109] have looked at the clustering of

large vectors of settings, and they have found that many existing tools require complex and costly

computations that must be repeated with every new set of configurations.

One way to avoid some of the computational overhead when dealing with new data is to do

a single clustering on the initial set of one-hundred configurations that KEYS proposes. Once

these clusters are computed, the algorithm can assign a unique identifier to each one. A cover-

tree algorithm can be run on these clusters in order to generate a hierarchical distance tree. The

generation of this tree will be much faster if the data is in a set number of clusters, rather than

having to process every initial set of mitigation settings. From this point, every unseen set of

configurations can be quickly mapped to the most appropriate cluster by dropping it through the

tree.

Interestingly, once linear clusters are identified, KEYS could be trained to avoid them. New

configurations that fall into linear clusters, especially those clusters associated with worse perfor-

mance scores, add no information about the effects of different configurations. Once these regions

are known, the KEYS algorithm can rule out large sections of the search space by ignoring regions

which are linear or, on average, produce results that are significantly worse than other regions.

An interesting, and open, research question is how many clusters are appropriate and how

many data items should ”fall” into a region before any sort of re-clustering occurs. The fewer

the clusters, the more approximate the reasoning. Until this hypothetical version of KEYS is
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implemented, it is impossible to know the space of trade-offs between efficiency and cluster size;

however, one potential approach is to use the PID incremental discretizer, as proposed by Gama

and Pinto [40]. This discretizer maintains two arrays - a lower and upper - each with different

discretizers. The upper array is filled with new data, and if the frequency counts grow too large,

PID splits each bin into two new bins. At certain intervals, the upper array migrates its contents into

a summarized set of breakpoints in the lower array. This simple scheme has been recommended

by Yang and Webb [116] because it is simple to implement and because, by only propagating

frequency counts to the lower array, PID has been shown to be seven to ten times more efficient

than other algorithms.

Unfortunately, any change in the bin boundaries of the data will require the recreation of clus-

ters. This is an expensive process, as it also requires a rebuilding of the cover tree and a complete

pass through all of the data. Incremental re-clustering is necessary to maintain the accuracy of

KEYS’ predictions, but how often this should occur remains an open question.

Research following the development of KEYS2 has revealed a limiting factor in further at-

tempts to improve the algorithm. Over 70% of the execution time is spent polling the model for

the cost and attainment values associated with a particular configuration. This proposed extension

to KEYS solves such issues by utilizing active learning. An initial set of configurations is gener-

ated and clustered, these clusters are sorted into a cover tree, and the model is only consulted when

a configuration’s performance cannot be assessed from the space of past judgments. This caching

concept should see a performance gain for the KEYS algorithm, which could be further increased

by training KEYS to avoid linear (i.e. smooth) areas of data where performance is less than ideal.
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Appendix A

Obtaining the System

We have placed on-line all the materials required for other researchers to conduct further investiga-
tion into this problem. All the code, Makefiles, scripts, and so on used in this paper are available at
http://unbox.org/wisp/tags/ddpExperiment/install. For security reasons, all the avail-
able JPL requirements models have been “sanitized”; i.e. all words replaced with anonymous
variables.
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Appendix B

Source Code

B.1 KEYS/KEYS2

B.1.1 keys.h
# i f n d e f k e y s h
# d e f i n e k e y s h

# i n c l u d e <s t d i o . h>
# i n c l u d e <s t d l i b . h>
# i n c l u d e <t ime . h>
# i n c l u d e <math . h>
# i n c l u d e <u n i s t d . h>
# i n c l u d e ” model . h ”

# d e f i n e T o t a l M i t i g a t i o n s MITIGATION

vo id repor tMed ianAndSpread ( f l o a t ∗∗ Data ) ;
vo id f indMedianAndSpread ( f l o a t i n p u t A r r a y [ ] , i n t s i z e , f l o a t ∗median , f l o a t ∗ s p r e a d ) ;
vo id r a n k M i t i g a t i o n s ( f l o a t ∗∗ Data , f l o a t ∗ D i s t a n c e ) ;
vo id s w e e t S p o t ( f l o a t ∗∗ Data , f l o a t ∗ D i s t a n c e ) ;
i n t s e l e c t V a l u e ( i n t va l1 , i n t v a l 2 ) ;
vo id a d d I n s t a n c e ( f l o a t cos tVar , f l o a t a t t V a r , f l o a t ∗∗ Data ) ;
f l o a t minValue ( f l o a t va l1 , f l o a t v a l 2 ) ;
f l o a t f i n d B e s t D i s t a n c e ( f l o a t i n p u t A r r a y [ ] , i n t s i z e ) ;
vo id model ( f l o a t ∗ c o s t , f l o a t ∗ a t t , f l o a t m [ ] ) ;

# e n d i f

B.1.2 keys.c
# i n c l u d e ” keys . h ”

/∗
########################################################################
#
# KEYS: DDP model o p t i m i z a t i o n t o o l
# C o p y r i g h t (C) 2007−2008 Omid J a l a l i , Gregory Gay
#
# Th i s program i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / o r modify
# i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
# t h e Free S o f t w a r e Founda t ion , e i t h e r v e r s i o n 3 of t h e L i c e n s e .
#
# Th i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
# b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
# GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
#
# You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
# a l o n g wi th t h i s program . I f not , s e e <h t t p : / / www. gnu . o rg / l i c e n s e s />.
########################################################################
∗ /

i n t c o s t F l a g , a t t F l a g , d i s p l a y F l a g , randomFlag , runF lag , m a x F u t i l e F l a g ;
f l o a t c o s t L i m i t , a t t L i m i t ;
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i n t Seed ;
i n t RunTota l ;

f l o a t F i x e d M i t i g a t i o n s [ T o t a l M i t i g a t i o n s + 1 ] ;
f l o a t mArray [ T o t a l M i t i g a t i o n s + 1 ] ;

i n t mCounter , e ra , run , T o t a l I n s t a n c e s , i n s t a n c e C o u n t e r , d i sp layMode ;
f l o a t MinCost , MaxCost , MinAtt , MaxAtt ;
f l o a t i n f i n i t y , s m a l l ;

i n t r e c e n t S e t M i t i g a t i o n ;
f l o a t r e c e n t S e t M i t i g a t i o n S t a t u s ;

f l o a t Las tMinCost , Las tMaxAtt ;

i n t main ( i n t a rgc , c h a r ∗∗ a rgv )
{

/ / t h i s i s r e q u i r e d t o s e t up t h e ddp model .
se tupMode l ( ) ;

Seed = 0 ;

c h a r ∗ c o s t V a l u e = NULL;
c h a r ∗ a t t V a l u e = NULL;
c h a r ∗ d i s p l a y V a l u e = NULL;
c h a r ∗ randomValue = NULL;
c h a r ∗ runValue = NULL;
c h a r ∗ f u t i l e V a l u e = NULL;
i n t c ;
i n t f u t i l e = 0 ;
i n t MaxFu t i l e ;

d i s p l a y F l a g = 0 ;
c o s t F l a g = 0 ;
a t t F l a g = 0 ;
randomFlag = 0 ;
r u n F l a g = 0 ;
m a x F u t i l e F l a g = 0 ;

i n f i n i t y = pow ( 1 0 , 2 0 ) ;
s m a l l = pow (10 , −20) ;

o p t e r r = 0 ;

w h i l e ( ( c = g e t o p t ( a rgc , argv , ” a : c : d : f : h : r : t : ” ) ) != −1)
{

s w i t c h ( c )
{

c a s e ’ a ’ :
a t t F l a g = 1 ;
a t t V a l u e = o p t a r g ;
b r e a k ;

c a s e ’ c ’ :
c o s t F l a g = 1 ;
c o s t V a l u e = o p t a r g ;
b r e a k ;

c a s e ’d ’ :
d i s p l a y F l a g = 1 ;
d i s p l a y V a l u e = o p t a r g ;
b r e a k ;

c a s e ’ f ’ :
m a x F u t i l e F l a g = 1 ;
f u t i l e V a l u e = o p t a r g ;
b r e a k ;

c a s e ’ r ’ :
randomFlag = 1 ;
randomValue = o p t a r g ;
b r e a k ;

c a s e ’ t ’ :
r u n F l a g = 1 ;
runValue = o p t a r g ;
b r e a k ;

c a s e ’h ’ :
c a s e ’ ? ’ :

p r i n t f ( ”\ nThe o p t i o n s must have t h e f o r m a t −a A t t a i n m e n t L o w e r L i m i t −c Cos tUppe rL imi t ”+
”−d DisplayMode −f F u t i l e −r Seed − t To t a lRuns .\ n ” ) ;

p r i n t f ( ”\ n A t t a i nm e n t Lo w e rL i m i t :\ n\ t T h i s i s t h e lower l i m i t ”+
” t h a t t h e u s e r can s e t f o r a t t a i n m e n t . \ n ” ) ;

p r i n t f ( ”\ tThe t o o l t r i e s t o f i n d a m i t i g a t i o n s e t t h a t g i v e s an a t t a i n m e n t ”+
” e q u a l t o o r h i g h e r t h a n t h i s v a l u e . \ n ” ) ;

p r i n t f ( ”\ tHowever , t h i s i s n o t g u a r a n t e e d e s p e c i a l l y f o r l i m i t s s e t t o o h igh .\ n ” ) ;
p r i n t f ( ”\ nCos tUpperL imi t :\ n\ t T h i s i s t h e upper l i m i t t h a t t h e u s e r can s e t f o r c o s t .\ n ” ) ;
p r i n t f ( ”\ tThe t o o l t r i e s t o f i n d a m i t i g a t i o n s e t t h a t g i v e s a c o s t e q u a l t o ”+

” o r lower t h a n t h i s v a l u e . \ n ” ) ;
p r i n t f ( ”\ tHowever , t h i s i s n o t g u a r a n t e e d e s p e c i a l l y f o r l i m i t s s e t t o o low .\ n ” ) ;
p r i n t f ( ”\ n D i s p l a y Mode :\ n\ t D i s p l a y mode 1 p r i n t s t h e f i n a l r e s u l t s .\ n ” ) ;
p r i n t f ( ”\ t D i s p l a y mode 2 p r i n t s median and s p r e a d of each m i t i g a t i o n−f i x i n g round .\ n ” ) ;
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p r i n t f ( ”\ t D i s p l a y mode 3 i s f o r debugg ing p u r p o s e s on ly and p r i n t s e v e r y t h i n g needed .\ n ” ) ;
p r i n t f ( ”\ t D i s p l a y mode 4 i s f o r debugg ing p u r p o s e s on ly and p r i n t s c o s t and ”+

” a t t a i n m e n t o f each run . \ n ” ) ;
p r i n t f ( ”\ n F u t i l e :\ n\ t T h i s i s t h e number o f t r i a l s b e f o r e t h e t o o l d e c i d e s ”+

” t h a t no improvements were seen . \ n ” ) ;
p r i n t f ( ”\ t I t can be a number between 1 and t h e number o f m i t i g a t i o n s used .\ n ” ) ;
p r i n t f ( ”\ t I t can be t u r n e d o f f by s e t t i n g i t t h e number o f m i t i g a t i o n s ”+

” used . The d e f a u l t v a l u e i s 1 0 .\ n ” ) ;
p r i n t f ( ”\ nSeed :\ n\ t S e e d i s used i n random number g e n e r a t i o n . ” +

”By d e f a u l t , i t i s g e n e r a t e d u s i n g t h e sys tem t ime . \ n ” ) ;
p r i n t f ( ”\ nTo ta lRuns :\ n\ tThe number o f t o t a l r u n s t h a t i s used i n t e r n a l l y . ” +

” The d e f a u l t v a l u e i s 100 .\ n ” ) ;
r e t u r n ( 1 ) ;
b r e a k ;

d e f a u l t :
b r e a k ;

}
}

i f ( a t t F l a g == 1 && a t t V a l u e != NULL)
a t t L i m i t = ( f l o a t ) a t o f ( a t t V a l u e ) ;

e l s e
a t t L i m i t = − i n f i n i t y ;

i f ( c o s t F l a g == 1 && c o s t V a l u e != NULL)
c o s t L i m i t = ( f l o a t ) a t o f ( c o s t V a l u e ) ;

e l s e
c o s t L i m i t = i n f i n i t y ;

i f ( randomFlag == 1 && randomValue != NULL)
Seed = a t o i ( randomValue ) ;

e l s e
Seed = 1 ;

i f ( r u n F l a g == 1 && runValue != NULL)
RunTota l = a t o i ( runVa lue ) ;

e l s e
RunTota l = 100 ;

i f ( d i s p l a y F l a g == 1 && d i s p l a y V a l u e != NULL)
disp layMode = a t o i ( d i s p l a y V a l u e ) ;

e l s e
d i sp layMode = 1 ;

i f ( m a x F u t i l e F l a g == 1 && f u t i l e V a l u e != NULL)
MaxFu t i l e = a t o i ( f u t i l e V a l u e ) ;

e l s e
MaxFu t i l e = 9 9 ;

f l o a t a t t , c o s t ;

f l o a t ∗D i s t a n c e = new f l o a t [ RunTota l + 1 ] ;

f l o a t ∗∗Data = new f l o a t ∗ [ RunTota l + 1 ] ;
f o r ( i n t i = 0 ; i < RunTota l + 1 ; i ++)

Data [ i ] = new f l o a t [ T o t a l M i t i g a t i o n s + 2 ] ;

i f ( randomFlag == 1)
s r a n d ( Seed ) ;

e l s e
s r a n d ( ( u n s i g n e d i n t ) t ime (NULL ) ) ;

/ / s e t a l l m i t i g a t i o n s t o non−f i x e d v a l u e o f −1
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)

F i x e d M i t i g a t i o n s [ mCounter ] = −1;

i f ( d i sp layMode == 2)
p r i n t f ( ” Era , M i t i g a t i o n Number , M i t i g a t i o n Value , Median o f Cost , ” +

” Spread o f Cost , Median o f At t a inmen t , Spread of A t t a i n m e n t \n ” ) ;

MinCost = i n f i n i t y ;
MaxCost = − i n f i n i t y ;

MinAtt = i n f i n i t y ;
MaxAtt = − i n f i n i t y ;

Las tMinCos t = MinCost ;
Las tMaxAtt = MaxAtt ;

/ / Temp . Find t h e max c o s t , max a t t
i n t x ;
f o r ( x =1; x<=T o t a l M i t i g a t i o n s ; x ++){

mArray [ x ] = 1 ;
}
model (& c o s t ,& a t t , mArray ) ;
/ / p r i n t f (”%.1 f ,%.5 f \n ” , c o s t , a t t ) ;
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f o r ( x =1; x<=T o t a l M i t i g a t i o n s ; x ++){
mArray [ x ] = 0 ;

}

f o r ( e r a = 1 ; e r a <= T o t a l M i t i g a t i o n s ; e r a ++)
{

T o t a l I n s t a n c e s = 0 ;

f o r ( run = 1 ; run <= RunTota l ; run ++)
{

f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

/ / i f i n t h e p r e v i o u s r u n s t h e m i t i g a t i o n i s f i x e d t o a c e r t a i n v a l u e (0 o r 1 ) t h e n use t h a t v a l u e .
/ / o t h e r w i s e , s e l e c t i t a t random
i f ( F i x e d M i t i g a t i o n s [ mCounter ] == −1)

mArray [ mCounter ] = s e l e c t V a l u e ( 0 , 1 ) ;
e l s e

mArray [ mCounter ] = F i x e d M i t i g a t i o n s [ mCounter ] ;
}
/ / f i n d t h e c o s t and a t t u s i n g t h e s e m i t i g a t i o n s
model (& c o s t , &a t t , mArray ) ;

i f ( d i sp layMode == 4)
p r i n t f (”%.1 f ,%.5 f \n ” , c o s t , a t t ) ;

/ / s t o r e t h e c u r r e n t i n s t a n c e
a d d I n s t a n c e ( c o s t , a t t , Data ) ;

}

/ / f i n d t h e swee t s p o t and d i s t a n c e s from swee t s p o t f o r each d i s t a n c e
s w e e t S p o t ( Data , D i s t a n c e ) ;

/ / r ank t h e m i t i g a t i o n s and f i n d t h e m i t i g a t i o n t h a t s h o u l d be f i x e d
r a n k M i t i g a t i o n s ( Data , D i s t a n c e ) ;

i f ( d i sp layMode == 2)
repor tMed ianAndSpread ( Data ) ;

i f ( MinCost < Las tMinCos t && MaxAtt >= LastMaxAtt )
{

Las tMinCos t = MinCost ;
Las tMaxAtt = MaxAtt ;
f u t i l e = 0 ;

}
e l s e i f ( f u t i l e > MaxFu t i l e )
{

i f ( d i sp layMode == 1 | | disp layMode == 3)
p r i n t f ( ” T e r m i n a t e d a t e r a : %d\n ” , e r a ) ;

e r a = T o t a l M i t i g a t i o n s + 1 ;
f u t i l e ++;

}
e l s e

f u t i l e ++;
}

/ / show t h e f i n a l r e s u l t s
i f ( d i sp layMode == 1 | | disp layMode == 3)
{

f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

mArray [ mCounter ] = F i x e d M i t i g a t i o n s [ mCounter ] ;
i f ( F i x e d M i t i g a t i o n s [ mCounter ] == −1)

mArray [ mCounter ] = 0 ;
}
model (& c o s t ,& a t t , mArray ) ;
f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)

p r i n t f ( ”m[%d ] , ” , mCounter ) ;
p r i n t f ( ” c o s t , a t t a i n m e n t \n ” ) ;
f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)

p r i n t f (”%.0 f , ” , mArray [ mCounter ] ) ;
p r i n t f (”%.1 f ,%.5 f \n ” , c o s t , a t t ) ;

}
}

vo id repor tMed ianAndSpread ( f l o a t ∗∗ Data )
{

f l o a t t empCos tArray [ T o t a l I n s t a n c e s ] , t empAt tAr ray [ T o t a l I n s t a n c e s ] ;
f l o a t cos tMedian , c o s t S p r e a d , a t tMed ian , a t t S p r e a d ;

/ / s o r t t h e c o s t and a t t ( i n d i v i d u a l l y ) and f i n d t h e median and s p r e a d
f o r ( i n s t a n c e C o u n t e r = 1 ; i n s t a n c e C o u n t e r <= T o t a l I n s t a n c e s ; i n s t a n c e C o u n t e r ++)
{

t empCos tAr ray [ i n s t a n c e C o u n t e r ] = Data [ i n s t a n c e C o u n t e r ] [ 1 ] ;
t empAt tAr ray [ i n s t a n c e C o u n t e r ] = Data [ i n s t a n c e C o u n t e r ] [ 2 ] ;

}
f indMedianAndSpread ( tempCostArray , T o t a l I n s t a n c e s ,& cos tMedian ,& c o s t S p r e a d ) ;
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f indMedianAndSpread ( tempAt tArray , T o t a l I n s t a n c e s ,& a t tMed ian ,& a t t S p r e a d ) ;

p r i n t f (”%d,%d ,%.0 f ,%.5 f ,%.5 f ,%.5 f ,%.5 f \n ” , e ra , r e c e n t S e t M i t i g a t i o n ,
r e c e n t S e t M i t i g a t i o n S t a t u s , cos tMedian , c o s t S p r e a d , a t tMed ian , a t t S p r e a d ) ;

}

vo id f indMedianAndSpread ( f l o a t i n p u t A r r a y [ ] , i n t s i z e , f l o a t ∗median , f l o a t ∗ s p r e a d )
{

f l o a t tempValue ;
i n t i , j ;
f l o a t tempArray [ s i z e ] ;

f o r ( i = 1 ; i <= s i z e ; i ++)
tempArray [ i ] = i n p u t A r r a y [ i ] ;

/ / s o r t
f o r ( i = 1 ; i <= s i z e ; i ++)
{

tempValue = tempArray [ i ] ;
j = i ;

w h i l e ( ( j > 1) && ( tempArray [ j −1] > tempValue ) )
{

tempArray [ j ] = tempArray [ j −1];
j = j − 1 ;

}
tempArray [ j ] = tempValue ;

}

∗median = tempArray [ s i z e / 2 ] ;
∗ s p r e a d = tempArray [3∗ s i z e / 4 ] − tempArray [ s i z e / 2 ] ;

}

f l o a t f i n d B e s t D i s t a n c e ( f l o a t i n p u t A r r a y [ ] , i n t s i z e )
{

f l o a t tempValue ;
i n t i , j ;
f l o a t tempArray [ s i z e ] ;

f o r ( i = 1 ; i <= s i z e ; i ++)
tempArray [ i ] = i n p u t A r r a y [ i ] ;

/ / s o r t
f o r ( i = 1 ; i <= s i z e ; i ++)
{

tempValue = tempArray [ i ] ;
j = i ;

w h i l e ( ( j > 1) && ( tempArray [ j −1] > tempValue ) )
{

tempArray [ j ] = tempArray [ j −1];
j = j − 1 ;

}
tempArray [ j ] = tempValue ;

}

r e t u r n tempArray [ i n t ( 0 . 1 ∗ s i z e ) ] ;
}

vo id r a n k M i t i g a t i o n s ( f l o a t ∗∗ Data , f l o a t ∗ D i s t a n c e )
{

f l o a t t empScoreOff [ T o t a l M i t i g a t i o n s ] , tempScoreOn [ T o t a l M i t i g a t i o n s ] ,
t empBes tFreqCoun t [ T o t a l M i t i g a t i o n s ] [ 2 ] , t empRes tFreqCoun t [ T o t a l M i t i g a t i o n s ] [ 2 ] ;

f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

t empBes tFreqCoun t [ mCounter ] [ 0 ] = 0 ;
t empBes tFreqCoun t [ mCounter ] [ 1 ] = 0 ;
t empRes tFreqCoun t [ mCounter ] [ 0 ] = 0 ;
t empRes tFreqCoun t [ mCounter ] [ 1 ] = 0 ;

}

f l o a t b e s t V a l u e = f i n d B e s t D i s t a n c e ( D i s t a n c e , T o t a l I n s t a n c e s ) ;

f o r ( i n s t a n c e C o u n t e r = 1 ; i n s t a n c e C o u n t e r <= T o t a l I n s t a n c e s ; i n s t a n c e C o u n t e r ++)
{

i f ( d i sp layMode == 3)
{

f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)
p r i n t f (”%.0 f , ” , Data [ i n s t a n c e C o u n t e r ] [ mCounter + 2 ] ) ;

p r i n t f (”%.3 f ,%.3 f , \ t ” , Data [ i n s t a n c e C o u n t e r ] [ 1 ] , Data [ i n s t a n c e C o u n t e r ] [ 2 ] ) ;
}

/ / i f i t i s i n t h e Bes t d i s t a n c e from t h e swee t spo t ,
/ / c o u n t t h e f r e q u e n c y of each m i t i g a t i o n (0 and 1) f o r t h e b e s t i n s t a n c e s
i f ( D i s t a n c e [ i n s t a n c e C o u n t e r ] <= b e s t V a l u e )
{
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i f ( d i sp layMode == 3) p r i n t f (”%.3 f b e s t from %.3 f \n ” , D i s t a n c e [ i n s t a n c e C o u n t e r ] , b e s t V a l u e ) ;
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

/ / keep t r a c k o f t h e m i t i g a t i o n ’ s c o u n t s i f i t i s n o t a l r e a d y f i x e d
i f ( F i x e d M i t i g a t i o n s [ mCounter ] == −1)
{

i f ( Data [ i n s t a n c e C o u n t e r ] [ mCounter +2] == 0)
tempBes tFreqCoun t [ mCounter ] [ 0 ] + + ;

e l s e i f ( Data [ i n s t a n c e C o u n t e r ] [ mCounter +2] == 1)
tempBes tFreqCoun t [ mCounter ] [ 1 ] + + ;

}
}

}
/ / e l s e i t i s i n t h e Res t d i s t a n c e from t h e swee t s p o t and so
/ / c o u n t t h e f r e q u e n c y of each m i t i g a t i o n (0 and 1) f o r t h e r e s t i n s t a n c e s
e l s e
{

i f ( d i sp layMode == 3) p r i n t f (”%.3 f r e s t from %.3 f \n ” , D i s t a n c e [ i n s t a n c e C o u n t e r ] , b e s t V a l u e ) ;
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

/ / keep t r a c k o f t h e m i t i g a t i o n ’ s c o u n t s i f i t i s n o t a l r e a d y f i x e d
i f ( F i x e d M i t i g a t i o n s [ mCounter ] == −1)
{

i f ( Data [ i n s t a n c e C o u n t e r ] [ mCounter +2] == 0)
tempRes tFreqCoun t [ mCounter ] [ 0 ] + + ;

e l s e i f ( Data [ i n s t a n c e C o u n t e r ] [ mCounter +2] == 1)
tempRes tFreqCoun t [ mCounter ] [ 1 ] + + ;

}
}

}
}

f l o a t maxScore = − i n f i n i t y ;
i n t m a x S c o r e d M i t i g a t i o n = 0 ;
f l o a t m a x S c o r e d M i t i g a t i o n S t a t u s = −1;
f l o a t b e s t , r e s t ;

/ / n o r m a l i z e each f r e q u e n c y c o u n t by d i v i d i n g i t by t h e t o t a l number o f i n s t a n c e s and s c o r e each m i t i g a t i o n
/ / u s i n g t h e b e s t ˆ 2 / ( b e s t + r e s t ) and keep min and max
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

/ / do t h i s on ly i f m i t i g a t i o n i s n o t f i x e d a l r e a d y
i f ( F i x e d M i t i g a t i o n s [ mCounter ] == −1)
{

/ / f i n d t h e s c o r e o f t h e m i t i g a t i o n when i t i s o f f
b e s t = tempBes tFreqCoun t [ mCounter ] [ 0 ] / T o t a l I n s t a n c e s ;
r e s t = tempRes tFreqCoun t [ mCounter ] [ 0 ] / T o t a l I n s t a n c e s ;

i f ( b e s t == 0 && r e s t == 0)
tempScoreOff [ mCounter ] = 0 ;

e l s e
t empScoreOff [ mCounter ] = pow ( b e s t , 2 ) / ( b e s t + r e s t ) ;

i f ( d i sp layMode == 3) p r i n t f ( ”m%d wi th b e s t :%.3 f and r e s t :%.3 f \n ” , mCounter , b e s t , r e s t ) ;

/ / keep i t s i n f o r m a t i o n i f i t i s t h e max s c o r e seen so f a r
i f ( t empScoreOff [ mCounter ] > maxScore )
{

maxScore = tempScoreOff [ mCounter ] ;
m a x S c o r e d M i t i g a t i o n = mCounter ;
m a x S c o r e d M i t i g a t i o n S t a t u s = 0 ;

}

/ / f i n d t h e s c o r e o f t h e m i t i g a t i o n when i t i s on
b e s t = tempBes tFreqCoun t [ mCounter ] [ 1 ] / T o t a l I n s t a n c e s ;
r e s t = tempRes tFreqCoun t [ mCounter ] [ 1 ] / T o t a l I n s t a n c e s ;

i f ( b e s t == 0 && r e s t == 0)
tempScoreOn [ mCounter ] = 0 ;

e l s e
tempScoreOn [ mCounter ] = pow ( b e s t , 2 ) / ( b e s t + r e s t ) ;

i f ( d i sp layMode == 3) p r i n t f ( ”m%d wi th b e s t :%.3 f and r e s t :%.3 f \n ” , mCounter , b e s t , r e s t ) ;

/ / keep i t s i n f o r m a t i o n i f i t i s t h e max s c o r e seen so f a r
i f ( tempScoreOn [ mCounter ] > maxScore )
{

maxScore = tempScoreOn [ mCounter ] ;
m a x S c o r e d M i t i g a t i o n = mCounter ;
m a x S c o r e d M i t i g a t i o n S t a t u s = 1 ;

}
i f ( d i sp layMode == 3) p r i n t f ( ” s c o r e o f m%d 0:%.3 f 1:%.3 f \n ” , mCounter ,

t empScoreOff [ mCounter ] , tempScoreOn [ mCounter ] ) ;
}

}

i f ( d i sp layMode == 3)
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p r i n t f ( ” chosen m i t i g a t i o n i s m%d wi th s t a t u s %.0 f has s c o r e %.3 f \n ” ,
m a x S c o r e d M i t i g a t i o n , m a x S c o r e d M i t i g a t i o n S t a t u s , maxScore ) ;

F i x e d M i t i g a t i o n s [ m a x S c o r e d M i t i g a t i o n ] = m a x S c o r e d M i t i g a t i o n S t a t u s ;
r e c e n t S e t M i t i g a t i o n = m a x S c o r e d M i t i g a t i o n ;
r e c e n t S e t M i t i g a t i o n S t a t u s = m a x S c o r e d M i t i g a t i o n S t a t u s ;

}

vo id s w e e t S p o t ( f l o a t ∗∗ Data , f l o a t ∗ D i s t a n c e )
{

i f ( c o s t F l a g == 1)
MaxCost = c o s t L i m i t ;

i f ( a t t F l a g == 1)
MinAtt = a t t L i m i t ;

i f ( d i sp layMode == 3) p r i n t f ( ”MIN and MAX %.3 f ,%.3 f ,%.3 f ,%.3 f \n ” , MinCost , MaxCost , MinAtt , MaxAtt ) ;

f l o a t n o r m a l i z e d C o s t , n o r m a l i z e d A t t ;
/ / n o r m a l i z e t h e a t t and c o s t u s i n g t h e i r
f o r ( i n s t a n c e C o u n t e r = 1 ; i n s t a n c e C o u n t e r <= T o t a l I n s t a n c e s ; i n s t a n c e C o u n t e r ++)
{

n o r m a l i z e d C o s t = ( Data [ i n s t a n c e C o u n t e r ] [ 1 ] − MinCost ) / ( MaxCost − MinCost + s m a l l ) ;
n o r m a l i z e d A t t = ( Data [ i n s t a n c e C o u n t e r ] [ 2 ] − MinAtt ) / ( MaxAtt − MinAtt + s m a l l ) ;
D i s t a n c e [ i n s t a n c e C o u n t e r ] = pow ( pow ( ( n o r m a l i z e d C o s t − 0 ) , 2 ) + pow ( ( n o r m a l i z e d A t t − 1 ) , 2 ) , 0 . 5 ) ;

}
}

i n t s e l e c t V a l u e ( i n t va l1 , i n t v a l 2 )
{

do ub l e randomValue = ( do ub l e ) r and ( ) / ( ( d oub l e ) (RAND MAX) + ( d ou b l e ) ( 1 ) ) ;
i n t r e t u r n V a l u e ;

i f ( randomValue < 0 . 5 )
r e t u r n V a l u e = v a l 1 ;

e l s e
r e t u r n V a l u e = v a l 2 ;

r e t u r n r e t u r n V a l u e ;
}

vo id a d d I n s t a n c e ( f l o a t cos tVar , f l o a t a t t V a r , f l o a t ∗∗ Data )
{

T o t a l I n s t a n c e s ++;
Data [ T o t a l I n s t a n c e s ] [ 1 ] = c o s t V a r ;
Data [ T o t a l I n s t a n c e s ] [ 2 ] = a t t V a r ;

f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
Data [ T o t a l I n s t a n c e s ] [ mCounter +2] = mArray [ mCounter ] ;

i f ( MinCost > Data [ T o t a l I n s t a n c e s ] [ 1 ] )
MinCost = Data [ T o t a l I n s t a n c e s ] [ 1 ] ;

i f ( MaxCost < Data [ T o t a l I n s t a n c e s ] [ 1 ] )
MaxCost = Data [ T o t a l I n s t a n c e s ] [ 1 ] ;

i f ( MinAtt > Data [ T o t a l I n s t a n c e s ] [ 2 ] )
MinAtt = Data [ T o t a l I n s t a n c e s ] [ 2 ] ;

i f ( MaxAtt < Data [ T o t a l I n s t a n c e s ] [ 2 ] )
MaxAtt = Data [ T o t a l I n s t a n c e s ] [ 2 ] ;

}

f l o a t minValue ( f l o a t va l1 , f l o a t v a l 2 )
{

i f ( v a l 1 < v a l 2 )
r e t u r n v a l 1 ;

e l s e
r e t u r n v a l 2 ;

}

B.1.3 keys2.c
# i n c l u d e ” keys . h ”

/∗
########################################################################
#
# KEYS2 : DDP model o p t i m i z a t i o n t o o l
# C o p y r i g h t (C) 2008−2009 Omid J a l a l i , Gregory Gay
#
# Th i s program i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / o r modify
# i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
# t h e Free S o f t w a r e Founda t ion , e i t h e r v e r s i o n 3 of t h e L i c e n s e .
#
# Th i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
# b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
# GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
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#
# You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
# a l o n g wi th t h i s program . I f not , s e e <h t t p : / / www. gnu . o rg / l i c e n s e s />.
########################################################################
∗ /

i n t c o s t F l a g , a t t F l a g , d i s p l a y F l a g , randomFlag , runF lag , m a x F u t i l e F l a g ;
f l o a t c o s t L i m i t , a t t L i m i t ;
i n t Seed ;
i n t RunTota l ;

f l o a t F i x e d M i t i g a t i o n s [ T o t a l M i t i g a t i o n s + 1 ] ;
f l o a t mArray [ T o t a l M i t i g a t i o n s + 1 ] ;

i n t mCounter , e ra , run , T o t a l I n s t a n c e s , i n s t a n c e C o u n t e r , d i sp layMode ;
f l o a t MinCost , MaxCost , MinAtt , MaxAtt ;
f l o a t i n f i n i t y , s m a l l ;

i n t r e c e n t S e t M i t i g a t i o n ;
f l o a t r e c e n t S e t M i t i g a t i o n S t a t u s ;

f l o a t Las tMinCost , Las tMaxAtt ;

i n t m i t i g a t i o n s R e m a i n =1;

i n t main ( i n t a rgc , c h a r ∗∗ a rgv )
{

/ / t h i s i s r e q u i r e d t o s e t up t h e ddp model .
se tupMode l ( ) ;

Seed = 0 ;

c h a r ∗ c o s t V a l u e = NULL;
c h a r ∗ a t t V a l u e = NULL;
c h a r ∗ d i s p l a y V a l u e = NULL;
c h a r ∗ randomValue = NULL;
c h a r ∗ runValue = NULL;
c h a r ∗ f u t i l e V a l u e = NULL;
i n t c ;
i n t f u t i l e = 0 ;
i n t MaxFu t i l e =1000000;
i n t round =1;
i n t e c n t r =0 ;
i n t t i c =1 ;

d i s p l a y F l a g = 0 ;
c o s t F l a g = 0 ;
a t t F l a g = 0 ;
randomFlag = 0 ;
r u n F l a g = 0 ;
m a x F u t i l e F l a g = 0 ;

i n f i n i t y = pow ( 1 0 , 2 0 ) ;
s m a l l = pow (10 , −20) ;

o p t e r r = 0 ;

w h i l e ( ( c = g e t o p t ( a rgc , argv , ” a : c : d : f : h : r : t : ” ) ) != −1)
{

s w i t c h ( c )
{

c a s e ’ a ’ :
a t t F l a g = 1 ;
a t t V a l u e = o p t a r g ;
b r e a k ;

c a s e ’ c ’ :
c o s t F l a g = 1 ;
c o s t V a l u e = o p t a r g ;
b r e a k ;

c a s e ’d ’ :
d i s p l a y F l a g = 1 ;
d i s p l a y V a l u e = o p t a r g ;
b r e a k ;

c a s e ’ f ’ :
m a x F u t i l e F l a g = 1 ;
f u t i l e V a l u e = o p t a r g ;
b r e a k ;

c a s e ’ r ’ :
randomFlag = 1 ;
randomValue = o p t a r g ;
b r e a k ;

c a s e ’ t ’ :
r u n F l a g = 1 ;
runValue = o p t a r g ;
b r e a k ;

c a s e ’h ’ :
c a s e ’ ? ’ :
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p r i n t f ( ”\ nThe o p t i o n s must have t h e f o r m a t −a A t t a i n m e n t L o w e r L i m i t −c Cos tUppe rL imi t ”+
”−d DisplayMode −f F u t i l e −r Seed − t To t a lRuns . \ n ” ) ;

p r i n t f ( ”\ n A t t a i nm e n t Lo w e rL i m i t :\ n\ t T h i s i s t h e lower l i m i t ”+
” t h a t t h e u s e r can s e t f o r a t t a i n m e n t . \ n ” ) ;

p r i n t f ( ”\ tThe t o o l t r i e s t o f i n d a m i t i g a t i o n s e t t h a t g i v e s an a t t a i n m e n t ”+
” e q u a l t o o r h i g h e r t h a n t h i s v a l u e . \ n ” ) ;

p r i n t f ( ”\ tHowever , t h i s i s n o t g u a r a n t e e d e s p e c i a l l y f o r l i m i t s s e t t o o h igh .\ n ” ) ;
p r i n t f ( ”\ nCos tUppe rL imi t :\ n\ t T h i s i s t h e upper l i m i t t h a t t h e u s e r can s e t f o r c o s t .\ n ” ) ;
p r i n t f ( ”\ tThe t o o l t r i e s t o f i n d a m i t i g a t i o n s e t t h a t g i v e s a c o s t e q u a l t o ”+

” o r lower t h a n t h i s v a l u e . \ n ” ) ;
p r i n t f ( ”\ tHowever , t h i s i s n o t g u a r a n t e e d e s p e c i a l l y f o r l i m i t s s e t t o o low .\ n ” ) ;
p r i n t f ( ”\ n D i s p l a y Mode :\ n\ t D i s p l a y mode 1 p r i n t s t h e f i n a l r e s u l t s . \ n ” ) ;
p r i n t f ( ”\ t D i s p l a y mode 2 p r i n t s median and s p r e a d of each m i t i g a t i o n−f i x i n g round .\ n ” ) ;
p r i n t f ( ”\ t D i s p l a y mode 3 i s f o r debugg ing p u r p o s e s on ly and p r i n t s e v e r y t h i n g needed .\ n ” ) ;
p r i n t f ( ”\ t D i s p l a y mode 4 i s f o r debugg ing p u r p o s e s on ly and p r i n t s c o s t and ”+

” a t t a i n m e n t o f each run . \ n ” ) ;
p r i n t f ( ”\ n F u t i l e :\ n\ t T h i s i s t h e number o f t r i a l s b e f o r e t h e t o o l d e c i d e s ”+

” t h a t no improvements were seen . \ n ” ) ;
p r i n t f ( ”\ t I t can be a number between 1 and t h e number o f m i t i g a t i o n s used .\ n ” ) ;
p r i n t f ( ”\ t I t can be t u r n e d o f f by s e t t i n g i t t h e number o f m i t i g a t i o n s ”+

” used . The d e f a u l t v a l u e i s 1 0 .\ n ” ) ;
p r i n t f ( ”\ nSeed :\ n\ t S e e d i s used i n random number g e n e r a t i o n . ” +

”By d e f a u l t , i t i s g e n e r a t e d u s i n g t h e sys tem t ime . \ n ” ) ;
p r i n t f ( ”\ nTo ta lRuns :\ n\ tThe number o f t o t a l r u n s t h a t i s used i n t e r n a l l y . ” +

” The d e f a u l t v a l u e i s 100 .\ n ” ) ;
p r i n t f ( ”\ n ” ) ;
r e t u r n ( 1 ) ;
b r e a k ;

d e f a u l t :
b r e a k ;

}
}

i f ( a t t F l a g == 1 && a t t V a l u e != NULL)
a t t L i m i t = ( f l o a t ) a t o f ( a t t V a l u e ) ;

e l s e
a t t L i m i t = − i n f i n i t y ;

i f ( c o s t F l a g == 1 && c o s t V a l u e != NULL)
c o s t L i m i t = ( f l o a t ) a t o f ( c o s t V a l u e ) ;

e l s e
c o s t L i m i t = i n f i n i t y ;

i f ( randomFlag == 1 && randomValue != NULL)
Seed = a t o i ( randomValue ) ;

e l s e
Seed = 1 ;

i f ( r u n F l a g == 1 && runValue != NULL)
RunTota l = a t o i ( runVa lue ) ;

e l s e
RunTota l = 100 ;

i f ( d i s p l a y F l a g == 1 && d i s p l a y V a l u e != NULL)
disp layMode = a t o i ( d i s p l a y V a l u e ) ;

e l s e
d i sp layMode = 1 ;

i f ( m a x F u t i l e F l a g == 1 && f u t i l e V a l u e != NULL)
MaxFu t i l e = a t o i ( f u t i l e V a l u e ) ;

e l s e
MaxFu t i l e = 1000000;

f l o a t a t t , c o s t ;

f l o a t ∗D i s t a n c e = new f l o a t [ RunTota l + 1 ] ;

f l o a t ∗∗Data = new f l o a t ∗ [ RunTota l + 1 ] ;
f o r ( i n t i = 0 ; i < RunTota l + 1 ; i ++)

Data [ i ] = new f l o a t [ T o t a l M i t i g a t i o n s + 2 ] ;

i f ( randomFlag == 1)
s r a n d ( Seed ) ;

e l s e
s r a n d ( ( u n s i g n e d i n t ) t ime (NULL ) ) ;

/ / s e t a l l m i t i g a t i o n s t o non−f i x e d v a l u e o f −1
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)

F i x e d M i t i g a t i o n s [ mCounter ] = −1;

i f ( d i sp layMode == 2)
p r i n t f ( ” Era , M i t i g a t i o n Number , M i t i g a t i o n Value , Median o f Cost , ” +

” Spread o f Cost , Median o f At t a inmen t , Spread of A t t a i n m e n t \n ” ) ;

MinCost = i n f i n i t y ;
MaxCost = − i n f i n i t y ;
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MinAtt = i n f i n i t y ;
MaxAtt = − i n f i n i t y ;

Las tMinCos t = MinCost ;
Las tMaxAtt = MaxAtt ;

e r a =0;

/ / f o r ( mCounter =1 ; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)
/ / {
/ / mArray [ mCounter ] = 1 ;
/ / }
/ / model (& c o s t , &a t t , mArray ) ;
/ / p r i n t f (”%.1 f ,%.5 f \n ” , c o s t , a t t ) ;

w h i l e ( m i t i g a t i o n s R e m a i n )
{

T o t a l I n s t a n c e s = 0 ;

f o r ( run = 1 ; run <= RunTota l ; run ++)
{

f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

/ / i f i n t h e p r e v i o u s r u n s t h e m i t i g a t i o n i s f i x e d t o a c e r t a i n v a l u e (0 o r 1 ) t h e n use t h a t v a l u e .
/ / o t h e r w i s e , s e l e c t i t a t random
i f ( F i x e d M i t i g a t i o n s [ mCounter ] == −1)

mArray [ mCounter ] = s e l e c t V a l u e ( 0 , 1 ) ;
e l s e

mArray [ mCounter ] = F i x e d M i t i g a t i o n s [ mCounter ] ;
}
/ / f i n d t h e c o s t and a t t u s i n g t h e s e m i t i g a t i o n s
model (& c o s t , &a t t , mArray ) ;

i f ( d i sp layMode == 4)
p r i n t f (”%.1 f ,%.5 f \n ” , c o s t , a t t ) ;

/ / s t o r e t h e c u r r e n t i n s t a n c e
a d d I n s t a n c e ( c o s t , a t t , Data ) ;

}

/ / f i n d t h e swee t s p o t and d i s t a n c e s from swee t s p o t f o r each d i s t a n c e
s w e e t S p o t ( Data , D i s t a n c e ) ;

/ / r ank t h e m i t i g a t i o n s and f i n d t h e m i t i g a t i o n t h a t s h o u l d be f i x e d
/ / p r i n t f (”% i ,% i \n ” , round , t i c ) ;
f o r ( e c n t r =1 ; e c n t r <=round ; e c n t r ++)
{

r a n k M i t i g a t i o n s ( Data , D i s t a n c e ) ;
e r a ++;
i f ( e ra>=T o t a l M i t i g a t i o n s )

b r e a k ;
}
round ++;

i f ( d i sp layMode == 2)
repor tMed ianAndSpread ( Data ) ;

/ / p r i n t f (”%d , f u t i l e :%d,% f , l a s t :%f ,% f , l a s t :% f \n ” , e ra , f u t i l e , MinCost , Las tMinCost , MaxAtt , Las tMaxAtt ) ;
i f ( MinCost < Las tMinCos t && MaxAtt >= LastMaxAtt )
{

Las tMinCos t = MinCost ;
Las tMaxAtt = MaxAtt ;
f u t i l e = 0 ;

}
e l s e i f ( f u t i l e > MaxFu t i l e )
{

i f ( d i sp layMode == 1 | | disp layMode == 3)
p r i n t f ( ” T e r m i n a t e d a t e r a : %d\n ” , e r a ) ;

e r a = T o t a l M i t i g a t i o n s + 1 ;
f u t i l e ++;

}
e l s e

f u t i l e ++;

i f ( e ra>=T o t a l M i t i g a t i o n s )
m i t i g a t i o n s R e m a i n =0;

}

/ / show t h e f i n a l r e s u l t s
i f ( d i sp layMode == 1 | | disp layMode == 3)
{

f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

mArray [ mCounter ] = F i x e d M i t i g a t i o n s [ mCounter ] ;
i f ( F i x e d M i t i g a t i o n s [ mCounter ] == −1)

mArray [ mCounter ] = 0 ;
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}
model (& c o s t ,& a t t , mArray ) ;
f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)

p r i n t f ( ”m[%d ] , ” , mCounter ) ;
p r i n t f ( ” c o s t , a t t a i n m e n t \n ” ) ;
f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)

p r i n t f (”%.0 f , ” , mArray [ mCounter ] ) ;
p r i n t f (”%.1 f ,%.5 f \n ” , c o s t , a t t ) ;

}
}

vo id repor tMed ianAndSpread ( f l o a t ∗∗ Data )
{

f l o a t t empCos tArray [ T o t a l I n s t a n c e s ] , t empAt tAr ray [ T o t a l I n s t a n c e s ] ;
f l o a t cos tMedian , c o s t S p r e a d , a t tMed ian , a t t S p r e a d ;

/ / s o r t t h e c o s t and a t t ( i n d i v i d u a l l y ) and f i n d t h e median and s p r e a d
f o r ( i n s t a n c e C o u n t e r = 1 ; i n s t a n c e C o u n t e r <= T o t a l I n s t a n c e s ; i n s t a n c e C o u n t e r ++)
{

t empCos tAr ray [ i n s t a n c e C o u n t e r ] = Data [ i n s t a n c e C o u n t e r ] [ 1 ] ;
t empAt tAr ray [ i n s t a n c e C o u n t e r ] = Data [ i n s t a n c e C o u n t e r ] [ 2 ] ;

}
f indMedianAndSpread ( tempCostArray , T o t a l I n s t a n c e s ,& cos tMedian ,& c o s t S p r e a d ) ;
f indMedianAndSpread ( tempAt tArray , T o t a l I n s t a n c e s ,& a t tMed ian ,& a t t S p r e a d ) ;

p r i n t f (”%d,%d ,%.0 f ,%.5 f ,%.5 f ,%.5 f ,%.5 f \n ” , e ra , r e c e n t S e t M i t i g a t i o n ,
r e c e n t S e t M i t i g a t i o n S t a t u s , cos tMedian , c o s t S p r e a d , a t tMed ian , a t t S p r e a d ) ;

}

vo id f indMedianAndSpread ( f l o a t i n p u t A r r a y [ ] , i n t s i z e , f l o a t ∗median , f l o a t ∗ s p r e a d )
{

f l o a t tempValue ;
i n t i , j ;
f l o a t tempArray [ s i z e ] ;

f o r ( i = 1 ; i <= s i z e ; i ++)
tempArray [ i ] = i n p u t A r r a y [ i ] ;

/ / s o r t
f o r ( i = 1 ; i <= s i z e ; i ++)
{

tempValue = tempArray [ i ] ;
j = i ;

w h i l e ( ( j > 1) && ( tempArray [ j −1] > tempValue ) )
{

tempArray [ j ] = tempArray [ j −1];
j = j − 1 ;

}
tempArray [ j ] = tempValue ;

}

∗median = tempArray [ s i z e / 2 ] ;
∗ s p r e a d = tempArray [3∗ s i z e / 4 ] − tempArray [ s i z e / 2 ] ;

}

f l o a t f i n d B e s t D i s t a n c e ( f l o a t i n p u t A r r a y [ ] , i n t s i z e )
{

f l o a t tempValue ;
i n t i , j ;
f l o a t tempArray [ s i z e ] ;

f o r ( i = 1 ; i <= s i z e ; i ++)
tempArray [ i ] = i n p u t A r r a y [ i ] ;

/ / s o r t
f o r ( i = 1 ; i <= s i z e ; i ++)
{

tempValue = tempArray [ i ] ;
j = i ;

w h i l e ( ( j > 1) && ( tempArray [ j −1] > tempValue ) )
{

tempArray [ j ] = tempArray [ j −1];
j = j − 1 ;

}
tempArray [ j ] = tempValue ;

}

r e t u r n tempArray [ i n t ( 0 . 1 ∗ s i z e ) ] ;
}

vo id r a n k M i t i g a t i o n s ( f l o a t ∗∗ Data , f l o a t ∗ D i s t a n c e )
{

f l o a t t empScoreOff [ T o t a l M i t i g a t i o n s ] , tempScoreOn [ T o t a l M i t i g a t i o n s ] ;
f l o a t t empBes tF reqCoun t [ T o t a l M i t i g a t i o n s ] [ 2 ] , t empRes tFreqCoun t [ T o t a l M i t i g a t i o n s ] [ 2 ] ;
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f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

t empBes tFreqCoun t [ mCounter ] [ 0 ] = 0 ;
t empBes tFreqCoun t [ mCounter ] [ 1 ] = 0 ;
t empRes tFreqCoun t [ mCounter ] [ 0 ] = 0 ;
t empRes tFreqCoun t [ mCounter ] [ 1 ] = 0 ;

}

f l o a t b e s t V a l u e = f i n d B e s t D i s t a n c e ( D i s t a n c e , T o t a l I n s t a n c e s ) ;

f o r ( i n s t a n c e C o u n t e r = 1 ; i n s t a n c e C o u n t e r <= T o t a l I n s t a n c e s ; i n s t a n c e C o u n t e r ++)
{

i f ( d i sp layMode == 3)
{

f o r ( mCounter =1 ; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)
p r i n t f (”%.0 f , ” , Data [ i n s t a n c e C o u n t e r ] [ mCounter + 2 ] ) ;

p r i n t f (”%.3 f ,%.3 f , \ t ” , Data [ i n s t a n c e C o u n t e r ] [ 1 ] , Data [ i n s t a n c e C o u n t e r ] [ 2 ] ) ;
}

/ / i f i t i s i n t h e Bes t d i s t a n c e from t h e swee t spo t ,
/ / c o u n t t h e f r e q u e n c y of each m i t i g a t i o n (0 and 1) f o r t h e b e s t i n s t a n c e s
i f ( D i s t a n c e [ i n s t a n c e C o u n t e r ] <= b e s t V a l u e )
{

i f ( d i sp layMode == 3) p r i n t f (”%.3 f b e s t from %.3 f \n ” , D i s t a n c e [ i n s t a n c e C o u n t e r ] , b e s t V a l u e ) ;
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

/ / keep t r a c k o f t h e m i t i g a t i o n ’ s c o u n t s i f i t i s n o t a l r e a d y f i x e d
i f ( F i x e d M i t i g a t i o n s [ mCounter ] == −1)
{

i f ( Data [ i n s t a n c e C o u n t e r ] [ mCounter +2] == 0)
tempBes tFreqCoun t [ mCounter ] [ 0 ] + + ;

e l s e i f ( Data [ i n s t a n c e C o u n t e r ] [ mCounter +2] == 1)
tempBes tFreqCoun t [ mCounter ] [ 1 ] + + ;

}
}

}
/ / e l s e i t i s i n t h e Res t d i s t a n c e from t h e swee t s p o t and so c o u n t
/ / t h e f r e q u e n c y of each m i t i g a t i o n (0 and 1) f o r t h e r e s t i n s t a n c e s
e l s e
{

i f ( d i sp layMode == 3) p r i n t f (”%.3 f r e s t from %.3 f \n ” , D i s t a n c e [ i n s t a n c e C o u n t e r ] , b e s t V a l u e ) ;
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

/ / keep t r a c k o f t h e m i t i g a t i o n ’ s c o u n t s i f i t i s n o t a l r e a d y f i x e d
i f ( F i x e d M i t i g a t i o n s [ mCounter ] == −1)
{

i f ( Data [ i n s t a n c e C o u n t e r ] [ mCounter +2] == 0)
tempRes tFreqCoun t [ mCounter ] [ 0 ] + + ;

e l s e i f ( Data [ i n s t a n c e C o u n t e r ] [ mCounter +2] == 1)
tempRes tFreqCoun t [ mCounter ] [ 1 ] + + ;

}
}

}
}

f l o a t maxScore = − i n f i n i t y ;
i n t m a x S c o r e d M i t i g a t i o n = 0 ;
f l o a t m a x S c o r e d M i t i g a t i o n S t a t u s = −1;
f l o a t b e s t , r e s t ;

/ / n o r m a l i z e each f r e q u e n c y c o u n t by d i v i d i n g i t by t h e t o t a l number o f i n s t a n c e s
/ / and s c o r e each m i t i g a t i o n u s i n g t h e b e s t ˆ 2 / ( b e s t + r e s t )
/ / and keep min and max
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

/ / do t h i s on ly i f m i t i g a t i o n i s n o t f i x e d a l r e a d y
i f ( F i x e d M i t i g a t i o n s [ mCounter ] == −1)
{

/ / f i n d t h e s c o r e o f t h e m i t i g a t i o n when i t i s o f f
b e s t = tempBes tFreqCoun t [ mCounter ] [ 0 ] / T o t a l I n s t a n c e s ;
r e s t = tempRes tFreqCoun t [ mCounter ] [ 0 ] / T o t a l I n s t a n c e s ;

i f ( b e s t == 0 && r e s t == 0)
tempScoreOff [ mCounter ] = 0 ;

e l s e
t empScoreOff [ mCounter ] = pow ( b e s t , 2 ) / ( b e s t + r e s t ) ;

i f ( d i sp layMode == 3) p r i n t f ( ”m%d wi th b e s t :%.3 f and r e s t :%.3 f \n ” , mCounter , b e s t , r e s t ) ;

/ / keep i t s i n f o r m a t i o n i f i t i s t h e max s c o r e seen so f a r
i f ( t empScoreOff [ mCounter ] > maxScore )
{

maxScore = tempScoreOff [ mCounter ] ;
m a x S c o r e d M i t i g a t i o n = mCounter ;
m a x S c o r e d M i t i g a t i o n S t a t u s = 0 ;

}
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/ / f i n d t h e s c o r e o f t h e m i t i g a t i o n when i t i s on
b e s t = tempBes tFreqCoun t [ mCounter ] [ 1 ] / T o t a l I n s t a n c e s ;
r e s t = tempRes tFreqCoun t [ mCounter ] [ 1 ] / T o t a l I n s t a n c e s ;

i f ( b e s t == 0 && r e s t == 0)
tempScoreOn [ mCounter ] = 0 ;

e l s e
tempScoreOn [ mCounter ] = pow ( b e s t , 2 ) / ( b e s t + r e s t ) ;

i f ( d i sp layMode == 3) p r i n t f ( ”m%d wi th b e s t :%.3 f and r e s t :%.3 f \n ” , mCounter , b e s t , r e s t ) ;

/ / keep i t s i n f o r m a t i o n i f i t i s t h e max s c o r e seen so f a r
i f ( tempScoreOn [ mCounter ] > maxScore )
{

maxScore = tempScoreOn [ mCounter ] ;
m a x S c o r e d M i t i g a t i o n = mCounter ;
m a x S c o r e d M i t i g a t i o n S t a t u s = 1 ;

}
i f ( d i sp layMode == 3) p r i n t f ( ” s c o r e o f m%d 0:%.3 f 1:%.3 f \n ” ,

mCounter , t empScoreOff [ mCounter ] , tempScoreOn [ mCounter ] ) ;
}

}

i f ( d i sp layMode == 3) p r i n t f ( ” chosen m i t i g a t i o n i s m%d wi th s t a t u s %.0 f has s c o r e %.3 f \n ” , m a x S c o r e d M i t i g a t i o n ,
m a x S c o r e d M i t i g a t i o n S t a t u s , maxScore ) ;

F i x e d M i t i g a t i o n s [ m a x S c o r e d M i t i g a t i o n ] = m a x S c o r e d M i t i g a t i o n S t a t u s ;
r e c e n t S e t M i t i g a t i o n = m a x S c o r e d M i t i g a t i o n ;
r e c e n t S e t M i t i g a t i o n S t a t u s = m a x S c o r e d M i t i g a t i o n S t a t u s ;

}

vo id s w e e t S p o t ( f l o a t ∗∗ Data , f l o a t ∗ D i s t a n c e )
{

i f ( c o s t F l a g == 1)
MaxCost = c o s t L i m i t ;

i f ( a t t F l a g == 1)
MinAtt = a t t L i m i t ;

i f ( d i sp layMode == 3) p r i n t f ( ”MIN and MAX %.3 f ,%.3 f ,%.3 f ,%.3 f \n ” , MinCost , MaxCost , MinAtt , MaxAtt ) ;

f l o a t n o r m a l i z e d C o s t , n o r m a l i z e d A t t ;
/ / n o r m a l i z e t h e a t t and c o s t u s i n g t h e i r
f o r ( i n s t a n c e C o u n t e r = 1 ; i n s t a n c e C o u n t e r <= T o t a l I n s t a n c e s ; i n s t a n c e C o u n t e r ++)
{

n o r m a l i z e d C o s t = ( Data [ i n s t a n c e C o u n t e r ] [ 1 ] − MinCost ) / ( MaxCost − MinCost + s m a l l ) ;
n o r m a l i z e d A t t = ( Data [ i n s t a n c e C o u n t e r ] [ 2 ] − MinAtt ) / ( MaxAtt − MinAtt + s m a l l ) ;
D i s t a n c e [ i n s t a n c e C o u n t e r ] = pow ( pow ( ( n o r m a l i z e d C o s t − 0 ) , 2 ) + pow ( ( n o r m a l i z e d A t t − 1 ) , 2 ) , 0 . 5 ) ;

}
}

i n t s e l e c t V a l u e ( i n t va l1 , i n t v a l 2 )
{

d oub l e randomValue = ( d ou b l e ) r and ( ) / ( ( d ou b l e ) (RAND MAX) + ( d ou b l e ) ( 1 ) ) ;
i n t r e t u r n V a l u e ;

i f ( randomValue < 0 . 5 )
r e t u r n V a l u e = v a l 1 ;

e l s e
r e t u r n V a l u e = v a l 2 ;

r e t u r n r e t u r n V a l u e ;
}

vo id a d d I n s t a n c e ( f l o a t cos tVar , f l o a t a t t V a r , f l o a t ∗∗ Data )
{

T o t a l I n s t a n c e s ++;
Data [ T o t a l I n s t a n c e s ] [ 1 ] = c o s t V a r ;
Data [ T o t a l I n s t a n c e s ] [ 2 ] = a t t V a r ;

f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
Data [ T o t a l I n s t a n c e s ] [ mCounter +2] = mArray [ mCounter ] ;

i f ( MinCost > Data [ T o t a l I n s t a n c e s ] [ 1 ] )
MinCost = Data [ T o t a l I n s t a n c e s ] [ 1 ] ;

i f ( MaxCost < Data [ T o t a l I n s t a n c e s ] [ 1 ] )
MaxCost = Data [ T o t a l I n s t a n c e s ] [ 1 ] ;

i f ( MinAtt > Data [ T o t a l I n s t a n c e s ] [ 2 ] )
MinAtt = Data [ T o t a l I n s t a n c e s ] [ 2 ] ;

i f ( MaxAtt < Data [ T o t a l I n s t a n c e s ] [ 2 ] )
MaxAtt = Data [ T o t a l I n s t a n c e s ] [ 2 ] ;

}

f l o a t minValue ( f l o a t va l1 , f l o a t v a l 2 )
{

i f ( v a l 1 < v a l 2 )
r e t u r n v a l 1 ;

e l s e
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r e t u r n v a l 2 ;
}

B.2 ASTAR

B.2.1 astar.h
# i f n d e f a s t a r h
# d e f i n e a s t a r h

# i n c l u d e <s t d i o . h>
# i n c l u d e <s t d l i b . h>
# i n c l u d e <t ime . h>
# i n c l u d e <math . h>
# i n c l u d e <u n i s t d . h>
# i n c l u d e ” model . h ”

# d e f i n e T o t a l M i t i g a t i o n s MITIGATION

i n t s e l e c t V a l u e ( i n t va l1 , i n t v a l 2 ) ;
f l o a t minValue ( f l o a t va l1 , f l o a t v a l 2 ) ;
vo id model ( f l o a t ∗ c o s t , f l o a t ∗ a t t , f l o a t m [ ] ) ;
vo id loop ( ) ;
do ub l e s c o r e ( f l o a t a t t , f l o a t c o s t ) ;
vo id repor tMed ianAndSpread ( f l o a t c l o s e d C o s t [ ] , f l o a t c l o s e d A t t a i n [ ] , i n t c ) ;
vo id f indMedianAndSpread ( f l o a t i n p u t A r r a y [ ] , i n t s i z e , f l o a t ∗median , f l o a t ∗ s p r e a d ) ;

# e n d i f

B.2.2 astar.c
/∗
########################################################################
#
# a s t a r : Low−c o s t p a t h s e a r c h f o r DDP models
# C o p y r i g h t (C) 2008 Gregory Gay <g r e g @ 4 c o l o r r e b e l l i o n . com>
#
# Th i s program i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / o r modify
# i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
# t h e Free S o f t w a r e Founda t ion , e i t h e r v e r s i o n 3 of t h e L i c e n s e .
#
# Th i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
# b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
# GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
#
# You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
# a l o n g wi th t h i s program . I f not , s e e <h t t p : / / www. gnu . o rg / l i c e n s e s />.
########################################################################
∗ /

# i n c l u d e ” a s t a r . h ”

f l o a t c o s t L i m i t = 0 . 0 ;
f l o a t a t t L i m i t = 0 . 0 ;

f l o a t maxCost , minCost , maxAtt , minAt t ;
f l o a t mArray [ T o t a l M i t i g a t i o n s + 1 ] ;

i n t mCounter ;
f l o a t i n f i n i t y = pow ( 1 0 , 2 0 ) ;
f l o a t s m a l l = pow (10 , −20) ;

i n t s t a r t m o d e =0;
i n t dispMode =0;

i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] )
{

se tupMode l ( ) ;
i n t i ;
f l o a t b e s t S c o r e ;
u n s i g n e d i n t s eed = ( u n s i g n e d i n t ) t ime (NULL ) ;

f o r ( i =1 ; i<a r g c ; i ++)
{

i f ( s t r c mp ( a rgv [ i ] ,”− c o s t ” )==0)
{

c o s t L i m i t = a t o f ( a rgv [ i + 1 ] ) ;
i ++;
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}
e l s e i f ( s t r cm p ( a rgv [ i ] ,”− a t t a i n m e n t ” )==0)
{

a t t L i m i t = a t o f ( a rgv [ i + 1 ] ) ;
i ++;

}
e l s e i f ( s t r cm p ( a rgv [ i ] ,”− s eed ” )==0)
{

s eed =( u n s i g n e d i n t ) a t o i ( a rgv [ i + 1 ] ) ;
i ++;

}
e l s e i f ( s t r cm p ( a rgv [ i ] ,”− s t a r t ” )==0)
{

s t a r t m o d e =1;
}
e l s e i f ( s t r cm p ( a rgv [ i ] ,”−mode ” )==0)
{

dispMode =1;
}
e l s e
{

p r i n t f ( ” I n v a l i d o p t i o n e n t e r e d . V a l i d f l a g s i n c l u d e :\ n −c o s t [ v a l u e ] : c o s t g o a l \n”+
”− a t t a i n m e n t [ v a l u e ] : a t t a i n m e n t g o a l \n −s eed [ v a l u e ] : random number seed \n”+
”− s t a r t : Use a f i x e d s t a r t i n g p o i n t \n −mode : Verbose mode\n ” ) ;

e x i t ( 1 ) ;
}

}

s r a n d ( seed ) ;

l oop ( ) ;
}

vo id loop ( )
{

i n t i , j , k , l , n , o , p , b e s t N e i g h b o r , sameNeighbor ;
i n t tempN =0;
f l o a t a t t , c o s t , b e s t C o s t , b e s t A t t , f , g , h , b e s t F ;
do ub l e t h r e s h o l d , c u r r e n t S c o r e , b e s t S c o r e ;
f l o a t bestM [ T o t a l M i t i g a t i o n s + 1 ] ;
f l o a t tempM [ T o t a l M i t i g a t i o n s + 1 ] ;

f l o a t c l o s e d [ T o t a l M i t i g a t i o n s + 2 0 ] [ T o t a l M i t i g a t i o n s + 1 ] ;
f l o a t c l o s e d C o s t [ T o t a l M i t i g a t i o n s + 2 0 ] ;
f l o a t c l o s e d A t t a i n [ T o t a l M i t i g a t i o n s + 2 0 ] ;

/ / I n i t i a l i z e t h e c l o s e d a r r a y t o 0
f o r ( i =0 ; i<T o t a l M i t i g a t i o n s +20; i ++)
{

c l o s e d [ i ] [ 1 ] = 5 . 0 ;
}

i n t c =0;

f l o a t n e i g h b o r [ T o t a l M i t i g a t i o n s ] [ T o t a l M i t i g a t i o n s + 1 ] ;
f l o a t n e i g h b o r C o s t [ T o t a l M i t i g a t i o n s ] ;
f l o a t n e i g h b o r A t t a i n [ T o t a l M i t i g a t i o n s ] ;
do ub l e n e i g h b o r D i s t a n c e [ T o t a l M i t i g a t i o n s ] ;
do ub l e randomValue ;
i n t found =0;
maxCost= i n f i n i t y ;
minCost=− i n f i n i t y ;
maxAtt=− i n f i n i t y ;
minAt t = i n f i n i t y ;

/ / make i n i t i a l random a s s i g n m e n t
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

i f ( s t a r t m o d e ==0)
mArray [ mCounter ] = s e l e c t V a l u e ( 0 , 1 ) ;

e l s e i f ( s t a r t m o d e ==1)
mArray [ mCounter ] = 0 ;

}

/ / Add i n i t i a l s t a t e t o t h e c l o s e d l i s t
f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)
{

c l o s e d [ c ] [ mCounter ]= mArray [ mCounter ] ;
}
model (& c o s t ,& a t t , mArray ) ;
f l o a t s t a r t i n g D i s t a n c e = s c o r e ( a t t , c o s t ) ;
c l o s e d C o s t [ c ]= c o s t ;
c l o s e d A t t a i n [ c ]= a t t ;
c ++;

/ / T r a v e r s e s n e i g h b o r s u n t i l b e s t i s found
w h i l e ( found ==0)
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{
/ / Compute n e i g h b o r s by s t o r i n g e v e r y p o s s i b l e m i g i a t i o n c o m b i n a t i o n wi th on ly one change
f o r ( j =0 ; j<T o t a l M i t i g a t i o n s ; j ++)
{

f o r ( mCounter =1 ; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)
{

i f ( mCounter== j +1)
{

i f ( mArray [ mCounter ] = = 0 . 0 )
n e i g h b o r [ j ] [ mCounter ] = 1 . 0 ;

e l s e
n e i g h b o r [ j ] [ mCounter ] = 0 . 0 ;

}
e l s e

n e i g h b o r [ j ] [ mCounter ]= mArray [ mCounter ] ;
}

}

/ / Make c o m p u t a t i o n s f o r each n e i g h b o r
f o r ( l =0 ; l<T o t a l M i t i g a t i o n s ; l ++)
{

i n t same =1;
/ / Check t o s e e i f i t i s on t h e c l o s e d l i s t .
f o r ( n =0; n<T o t a l M i t i g a t i o n s ; n ++)
{

i f ( c l o s e d [ n ] [ 1 ] = = 5 . 0 )
b r e a k ;

same =1;
f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)
{

i f ( same ==0)
b r e a k ;

e l s e i f ( n e i g h b o r [ l ] [ mCounter ] ! = c l o s e d [ n ] [ mCounter ] )
same =0;

}
}
i f ( same ==1)
{

/ / p r i n t f ( ” On t h e c l o s e d l i s t \n ” ) ;
c o n t i n u e ;

}

/ / Compute c o s t and a t t a i n m e n t f o r t h a t n e i g h b o r

f o r ( mCounter =1 ; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)
{

tempM [ mCounter ]= n e i g h b o r [ l ] [ mCounter ] ;
}
model (& n e i g h b o r C o s t [ l ] ,& n e i g h b o r A t t a i n [ l ] , tempM ) ;

i f ( minCost==− i n f i n i t y )
minCost= n e i g h b o r C o s t [ l ] ;

i f ( maxCost== i n f i n i t y )
maxCost= n e i g h b o r C o s t [ l ] ;

i f ( minAt t == i n f i n i t y )
minAt t = n e i g h b o r A t t a i n [ l ] ;

i f ( maxAtt==− i n f i n i t y )
maxAtt= n e i g h b o r A t t a i n [ l ] ;

/ / Compute d i s t a n c e f o r each n e i g h b o r
n e i g h b o r D i s t a n c e [ l ]= s c o r e ( n e i g h b o r A t t a i n [ l ] , n e i g h b o r C o s t [ l ] ) ;

}

/ / Compute ” t h r e s h o l d ” d i s t a n c e f o r h ( x )
t h r e s h o l d = s c o r e ( a t t L i m i t , c o s t L i m i t ) ;
s t a r t i n g D i s t a n c e = s c o r e ( c l o s e d A t t a i n [ 0 ] , c l o s e d C o s t [ 0 ] ) ;

/ / Computer a t t , c o s t , d i s t a n c e f o r c u r r e n t s t a t e
model (& c o s t ,& a t t , mArray ) ;
c u r r e n t S c o r e = s c o r e ( a t t , c o s t ) ;

/ / Compare wi th each n e i g h b o r and choose n e i g h b o r wi th b e s t g+h
b e s t F = i n f i n i t y ;
b e s t N e i g h b o r =0;

f o r ( o =0; o<T o t a l M i t i g a t i o n s ; o ++)
{

g= n e i g h b o r D i s t a n c e [ o ]−( s t a r t i n g D i s t a n c e −c u r r e n t S c o r e ) ;
h= n e i g h b o r D i s t a n c e [ o]− t h r e s h o l d ;
f =g+h ;

i f ( f<b e s t F )
{

b e s t F = f ;
b e s t N e i g h b o r =o ;
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}
}

i f ( tempN== b e s t N e i g h b o r )
sameNeighbor ++;

e l s e
sameNeighbor =0;

/ / S e t s b e s t n e i g h b o r as new s t a t e and adds t o c l o s e d l i s t

i f ( ( c o s t L i m i t / n e i g h b o r C o s t [ b e s t N e i g h b o r ]>0.8)&&( c o s t L i m i t / n e i g h b o r C o s t [ b e s t N e i g h b o r ] <1.2)
&&( a t t L i m i t / n e i g h b o r A t t a i n [ b e s t N e i g h b o r ]>0.8)&&( a t t L i m i t / n e i g h b o r A t t a i n [ b e s t N e i g h b o r ] <1.2) )

{
p r i n t f (”% f , %f \n ” , n e i g h b o r C o s t [ b e s t N e i g h b o r ] , n e i g h b o r A t t a i n [ b e s t N e i g h b o r ] ) ;
found =1;

}

f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)
{

mArray [ mCounter ]= n e i g h b o r [ b e s t N e i g h b o r ] [ mCounter ] ;
c l o s e d [ c ] [ mCounter ]= mArray [ mCounter ] ;

}
c l o s e d C o s t [ c ]= n e i g h b o r C o s t [ b e s t N e i g h b o r ] ;
c l o s e d A t t a i n [ c ]= n e i g h b o r A t t a i n [ b e s t N e i g h b o r ] ;
c ++;
tempN= b e s t N e i g h b o r ;

i f ( sameNeighbor >=10)
{

p r i n t f (”% f , %f \n ” , c o s t , a t t ) ;
found =1;

}
e l s e
{

i f ( dispMode ==1)
{

p r i n t f (”% f , %f \n ” , n e i g h b o r C o s t [ b e s t N e i g h b o r ] , n e i g h b o r A t t a i n [ b e s t N e i g h b o r ] ) ;
}

}
}

}

do ub l e s c o r e ( f l o a t a t t , f l o a t c o s t )
{

i f ( c o s t<minCost )
minCost= c o s t ;

e l s e i f ( c o s t>maxCost )
maxCost= c o s t ;

i f ( a t t<minAt t )
minAt t = a t t ;

e l s e i f ( a t t>maxAtt )
maxAtt= a t t ;

do ub l e n o r m a l i z e d C o s t , n o r m a l i z e d A t t , d i s t a n c e ;

n o r m a l i z e d C o s t =( do ub l e ) ( ( c o s t−minCost ) / ( maxCost−minCost+ s m a l l ) ) ;
n o r m a l i z e d A t t = ( do ub l e ) ( ( a t t−minAt t ) / ( maxAtt−minAt t + s m a l l ) ) ;

d i s t a n c e = pow ( pow ( ( n o r m a l i z e d C o s t ) , 2 ) + pow ( ( n o r m a l i z e d A t t − 1 ) , 2 ) , 0 . 5 ) ;
r e t u r n d i s t a n c e ;

}

f l o a t minValue ( f l o a t va l1 , f l o a t v a l 2 )
{

i f ( v a l 1 < v a l 2 )
r e t u r n v a l 1 ;

e l s e
r e t u r n v a l 2 ;

}

i n t s e l e c t V a l u e ( i n t va l1 , i n t v a l 2 )
{

do ub l e randomValue = ( do ub l e ) r and ( ) / ( ( d oub l e ) (RAND MAX) + ( d ou b l e ) ( 1 ) ) ;
i n t r e t u r n V a l u e ;

/ / p r i n t f (”%d\n ” , randomValue ) ;

i f ( randomValue < 0 . 5 )
r e t u r n V a l u e = v a l 1 ;

e l s e
r e t u r n V a l u e = v a l 2 ;

/ / p r i n t f (”% i \n ” , r e t u r n V a l u e ) ;
r e t u r n r e t u r n V a l u e ;

}
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vo id repor tMed ianAndSpread ( f l o a t c l o s e d C o s t [ ] , f l o a t c l o s e d A t t a i n [ ] , i n t c )
{

f l o a t t empCos tArray [ c ] , t empAt tAr ray [ c ] ;
f l o a t cos tMedian , c o s t S p r e a d , a t tMed ian , a t t S p r e a d ;
i n t i ;

/ / s o r t t h e c o s t and a t t ( i n d i v i d u a l l y ) and f i n d t h e median and s p r e a d
f o r ( i = 0 ; i <c ; i ++)
{

t empCos tAr ray [ i ] = c l o s e d C o s t [ i ] ;
t empAt tAr ray [ i ] = c l o s e d A t t a i n [ i ] ;

}
f indMedianAndSpread ( tempCostArray , c ,& cos tMedian ,& c o s t S p r e a d ) ;
f indMedianAndSpread ( tempAt tArray , c ,& a t tMed ian ,& a t t S p r e a d ) ;

p r i n t f (”%.5 f ,%.5 f ,%.5 f ,%.5 f \n ” , cos tMedian , c o s t S p r e a d , a t tMed ian , a t t S p r e a d ) ;
}

vo id f indMedianAndSpread ( f l o a t i n p u t A r r a y [ ] , i n t s i z e , f l o a t ∗median , f l o a t ∗ s p r e a d )
{

f l o a t tempValue ;
i n t i , j ;
f l o a t tempArray [ s i z e ] ;

f o r ( i = 0 ; i < s i z e ; i ++)
tempArray [ i ] = i n p u t A r r a y [ i ] ;

f o r ( i = 0 ; i < s i z e ; i ++)
{

tempValue = tempArray [ i ] ;
j = i ;

w h i l e ( ( j > 0) && ( tempArray [ j −1] > tempValue ) )
{

tempArray [ j ] = tempArray [ j −1];
j = j − 1 ;

}
tempArray [ j ] = tempValue ;

}

∗median = tempArray [ s i z e / 2 ] ;
∗ s p r e a d = tempArray [3∗ s i z e / 4 ] − tempArray [ s i z e / 2 ] ;

}

B.3 MaxFunWalk

B.3.1 maxfunwalk.h
# i f n d e f maxfunwalk h
# d e f i n e maxfunwalk h

# i n c l u d e <s t d i o . h>
# i n c l u d e <s t d l i b . h>
# i n c l u d e <t ime . h>
# i n c l u d e <math . h>
# i n c l u d e <u n i s t d . h>
# i n c l u d e <s t r i n g . h>
# i n c l u d e ” model . h ”

# d e f i n e T o t a l M i t i g a t i o n s MITIGATION
# d e f i n e RunTota l 100
# d e f i n e Bes t 10

i n t s e l e c t V a l u e ( i n t va l1 , i n t v a l 2 ) ;
f l o a t minValue ( f l o a t va l1 , f l o a t v a l 2 ) ;
vo id model ( f l o a t ∗ c o s t , f l o a t ∗ a t t , f l o a t m [ ] ) ;
f l o a t l oop ( ) ;
f l o a t s c o r e ( f l o a t a t t , f l o a t c o s t ) ;
i n t numYes ( f l o a t mArray [ ] ) ;

# e n d i f

B.3.2 maxfunwalk.c
/∗
########################################################################
#
# MaxFunWalk : Loca l s e a r c h f o r DDP models
# C o p y r i g h t (C) 2008 Gregory Gay <g r e g @ 4 c o l o r r e b e l l i o n . com>
#
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# Th i s program i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and / o r modify
# i t unde r t h e t e r m s of t h e GNU G e n e r a l P u b l i c L i c e n s e as p u b l i s h e d by
# t h e Free S o f t w a r e Founda t ion , e i t h e r v e r s i o n 3 of t h e L i c e n s e .
#
# Th i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
# b u t WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
# GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
#
# You s h o u l d have r e c e i v e d a copy of t h e GNU G e n e r a l P u b l i c L i c e n s e
# a l o n g wi th t h i s program . I f not , s e e <h t t p : / / www. gnu . o rg / l i c e n s e s />.
########################################################################
∗ /

# i n c l u d e ” maxfunwalk . h ”

i n t m a x t r i e s =100;
i n t maxchanges =100;

f l o a t c o s t L i m i t = 0 . 0 ;
f l o a t a t t L i m i t = 0 . 0 ;

f l o a t maxCost , minCost , maxAtt , minAt t ;
f l o a t mArray [ T o t a l M i t i g a t i o n s + 1 ] ;

i n t mCounter ;
f l o a t i n f i n i t y = pow ( 1 0 , 2 0 ) ;
f l o a t s m a l l = pow (10 , −20) ;

i n t main ( i n t a rgc , c h a r ∗ a rgv [ ] )
{

se tupMode l ( ) ;
i n t i ;
f l o a t b e s t S c o r e ;
u n s i g n e d i n t s eed = ( u n s i g n e d i n t ) t ime (NULL ) ;

f o r ( i =1 ; i<a r g c ; i ++)
{

i f ( s t r c mp ( a rgv [ i ] ,”− m a x t r i e s ” )==0)
{

m a x t r i e s = a t o i ( a rgv [ i + 1 ] ) ;
i ++;

}
e l s e i f ( s t r cm p ( a rgv [ i ] ,”−maxchanges ” )==0)
{

maxchanges= a t o i ( a rgv [ i + 1 ] ) ;
i ++;

}
e l s e i f ( s t r cm p ( a rgv [ i ] ,”− c o s t ” )==0)
{

c o s t L i m i t = a t o f ( a rgv [ i + 1 ] ) ;
i ++;

}
e l s e i f ( s t r cm p ( a rgv [ i ] ,”− a t t a i n m e n t ” )==0)
{

a t t L i m i t = a t o f ( a rgv [ i + 1 ] ) ;
i ++;

}
e l s e i f ( s t r cm p ( a rgv [ i ] ,”− s eed ” )==0)
{

s eed =( u n s i g n e d i n t ) a t o i ( a rgv [ i + 1 ] ) ;
i ++;

}
e l s e
{

p r i n t f ( ” I n v a l i d f l a g . V a l i d f l a g s i n c l u d e :\ n −c o s t [ v a l u e ] : D e s i r e d Cos t \n −a t t a i n m e n t [ v a l u e ] : ” +
” D e s i r e d Value \n −m a x t r i e s [ v a l u e ] : Max R e t r i e s \n −maxchanges [ v a l u e ] : ”+
”Max Changes p e r R e t r y \n −s eed [ v a l u e ] : Random Number Seed\n ” ) ;

e x i t ( 1 ) ;
}

}

s r a n d ( seed ) ;

b e s t S c o r e = loop ( ) ;
}

f l o a t l oop ( )
{

i n t j , k , l , n , randomValue2 , maximized , numY ;
i n t m a x i m i z e d T r i e s =0;
f l o a t a t t , c o s t , c u r r e n t S c o r e , newScore , t h r e s h o l d , b e s t S c o r e , b e s t C o s t , b e s t A t t , t empAt t ;
i n t r a n d o m S e l e c t i o n [ ( T o t a l M i t i g a t i o n s / 2 ) + 1 ] ;
f l o a t bestM [ T o t a l M i t i g a t i o n s + 1 ] ;
do ub l e randomValue ;
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maxCost= i n f i n i t y ;
minCost=− i n f i n i t y ;
maxAtt=− i n f i n i t y ;
minAt t = i n f i n i t y ;

f o r ( j =0 ; j<m a x t r i e s ; j ++)
{

n =0;
/ / make random a s s i g n m e n t
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

mArray [ mCounter ] = s e l e c t V a l u e ( 0 , 1 ) ;
n ++;

}

f o r ( k =0; k<maxchanges ; k ++)
{

model (& c o s t ,& a t t , mArray ) ;

i f ( minCost==− i n f i n i t y )
minCost= c o s t ;

i f ( maxCost== i n f i n i t y )
maxCost= c o s t ;

i f ( minAt t == i n f i n i t y )
minAt t = a t t ;

i f ( maxAtt==− i n f i n i t y )
maxAtt= a t t ;

i f ( c o s t<minCost )
minCost= c o s t ;

e l s e i f ( c o s t>maxCost )
maxCost= c o s t ;

i f ( a t t<minAt t )
minAt t = a t t ;

e l s e i f ( a t t>maxAtt )
maxAtt= a t t ;

/ / S c o r e s and e x i t s i f t h r e s h o l d met

c u r r e n t S c o r e = s c o r e ( a t t , c o s t ) ;
i f ( b e s t S c o r e ==0)
{

b e s t S c o r e = c u r r e n t S c o r e ;
b e s t A t t = a t t ;
b e s t C o s t = c o s t ;
f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)
{

bestM [ mCounter ]= mArray [ mCounter ] ;
}

}
t h r e s h o l d = s c o r e ( a t t L i m i t , c o s t L i m i t ) ;
i f ( ( ( t h r e s h o l d / c u r r e n t S c o r e ) >=0.9999999)&&(( t h r e s h o l d / c u r r e n t S c o r e ) <=1.0000001))
{

i f ( ( ( t h r e s h o l d / c u r r e n t S c o r e )>=( t h r e s h o l d / b e s t S c o r e ))&&(( t h r e s h o l d / c u r r e n t S c o r e ) <=1.0))
{

b e s t S c o r e = c u r r e n t S c o r e ;
b e s t C o s t = c o s t ;
b e s t A t t = a t t ;
f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)
{

bestM [ mCounter ]= mArray [ mCounter ] ;
}

}
p r i n t f (”% f ,% f \n ” , c o s t , a t t ) ;

r e t u r n b e s t S c o r e ;
}
i f ( ( ( t h r e s h o l d / c u r r e n t S c o r e )>=( t h r e s h o l d / b e s t S c o r e ))&&(( t h r e s h o l d / c u r r e n t S c o r e ) <=1.0))
{

b e s t S c o r e = c u r r e n t S c o r e ;
b e s t C o s t = c o s t ;
b e s t A t t = a t t ;
f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)
{

bestM [ mCounter ]= mArray [ mCounter ] ;
}

}

/ / Random p a r t o f s e l e c t i o n

f o r ( l =0 ; l <( T o t a l M i t i g a t i o n s / 2 ) + 1 ; l ++)
{

randomValue = ( d oub l e ) r and ( ) / ( ( d ou b l e ) (RAND MAX) + ( d ou b l e ) ( 1 ) ) ∗ ( T o t a l M i t i g a t i o n s + 1 ) ;
i f ( ( i n t ) randomValue ==0)

randomValue =1;
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r a n d o m S e l e c t i o n [ l ]= ( i n t ) randomValue ;
}

randomValue = ( d oub l e ) r and ( ) / ( ( d ou b l e ) (RAND MAX) + ( dou b l e ) ( 1 ) ) ;

i f ( randomValue <= 0 . 3 )
{

/ / w i th p r o b a b i l i t y p , change a s e t t i n g i n c s u g g e s t e d by b e s t

randomValue2 = ( i n t ) ( ( do ub l e ) r and ( ) / ( ( do ub l e ) (RAND MAX) + ( d ou b l e ) ( 1 ) ) ∗ ( ( T o t a l M i t i g a t i o n s / 2 ) + 1 ) ) ;
i f ( randomValue2 ==0)

randomValue2 =1;
i f ( mArray [ r a n d o m S e l e c t i o n [ randomValue2 ] ] = = 0 )

mArray [ r a n d o m S e l e c t i o n [ randomValue2 ] ] = 1 ;
e l s e

mArray [ r a n d o m S e l e c t i o n [ randomValue2 ] ] = 0 ;

}
e l s e
{

/ / e l s e change a s e t t i n g i n c t h a t maximizes s c o r e
f o r ( m a x i m i z e d T r i e s =0; max imizedTr ie s <( T o t a l M i t i g a t i o n s / 2 ) + 1 ; m a x i m i z e d T r i e s ++)
{

numY=numYes ( mArray ) ;
i f ( ( mArray [ r a n d o m S e l e c t i o n [ m a x i m i z e d T r i e s ]]==0)&&(numY<=( T o t a l M i t i g a t i o n s / 3 ) ) )

mArray [ r a n d o m S e l e c t i o n [ m a x i m i z e d T r i e s ] ] = 1 ;
e l s e

mArray [ r a n d o m S e l e c t i o n [ m a x i m i z e d T r i e s ] ] = 0 ;

tempAt t = a t t ;
model (& c o s t ,& a t t , mArray ) ;
newScore= s c o r e ( a t t , c o s t ) ;
i f ( ( ( t h r e s h o l d / newScore )>=( t h r e s h o l d / c u r r e n t S c o r e ))&&(( t h r e s h o l d / newScore ) <=1.0)

&&( a t t >=tempAt t ) )
{

c u r r e n t S c o r e =newScore ;
b r e a k ;

}
e l s e
{

i f ( ( mArray [ r a n d o m S e l e c t i o n [ m a x i m i z e d T r i e s ]]==0)&&(numY<=( T o t a l M i t i g a t i o n s / 3 ) ) )
mArray [ r a n d o m S e l e c t i o n [ m a x i m i z e d T r i e s ] ] = 1 ;

e l s e
mArray [ r a n d o m S e l e c t i o n [ m a x i m i z e d T r i e s ] ] = 0 ;

}

}
}

}
}

p r i n t f (”% f ,% f \n ” , b e s t C o s t , b e s t A t t ) ;
r e t u r n b e s t S c o r e ;

}

f l o a t s c o r e ( f l o a t a t t , f l o a t c o s t )
{

f l o a t n o r m a l i z e d C o s t , n o r m a l i z e d A t t , d i s t a n c e ;

n o r m a l i z e d C o s t =( c o s t−minCost ) / ( maxCost−minCost+ s m a l l ) ;
n o r m a l i z e d A t t = ( a t t−minAt t ) / ( maxAtt−minAt t + s m a l l ) ;

d i s t a n c e = pow ( pow ( ( n o r m a l i z e d C o s t ) , 2 ) + pow ( ( n o r m a l i z e d A t t − 1 ) , 2 ) , 0 . 5 ) ;
r e t u r n d i s t a n c e ;

}

i n t numYes ( f l o a t mArray [ ] )
{

i n t c n t r , numY ;
f o r ( c n t r =1 ; c n t r <=T o t a l M i t i g a t i o n s ; c n t r ++)
{

i f ( mArray [ c n t r ] = = 1 . 0 )
{

numY++;
}

}

r e t u r n numY ;
}

f l o a t minValue ( f l o a t va l1 , f l o a t v a l 2 )
{

i f ( v a l 1 < v a l 2 )
r e t u r n v a l 1 ;

e l s e
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r e t u r n v a l 2 ;
}

i n t s e l e c t V a l u e ( i n t va l1 , i n t v a l 2 )
{

do ub l e randomValue = ( do ub l e ) r and ( ) / ( ( d oub l e ) (RAND MAX) + ( d ou b l e ) ( 1 ) ) ;
i n t r e t u r n V a l u e ;

i f ( randomValue <= 0 . 5 )
r e t u r n V a l u e = v a l 1 ;

e l s e
r e t u r n V a l u e = v a l 2 ;

r e t u r n r e t u r n V a l u e ;
}

B.4 Simulated Annealing

B.4.1 sa.h
# i f n d e f s a h
# d e f i n e s a h

# i n c l u d e <s t d i o . h>
# i n c l u d e <s t d l i b . h>
# i n c l u d e <t ime . h>
# i n c l u d e <math . h>
# i n c l u d e <u n i s t d . h>
# i n c l u d e ” model . h ”

# d e f i n e T o t a l M i t i g a t i o n s MITIGATION

vo id n e i g h b o r ( f l o a t i n p u t A r r a y [ ] , f l o a t o u t p u t A r r a y [ ] ) ;
do ub l e prob ( f l o a t d i s t a n c e , f l o a t n e i g h b o r D i s t a n c e , i n t k , d ou b l e T ) ;
do ub l e temp ( i n t k , i n t kmax ) ;
f l o a t f i n d S c o r e ( f l o a t F i x e d M i t i g a t i o n s [ ] ) ;
i n t s e l e c t V a l u e ( i n t va l1 , i n t v a l 2 ) ;
f l o a t minValue ( f l o a t va l1 , f l o a t v a l 2 ) ;
vo id model ( f l o a t ∗ c o s t , f l o a t ∗ a t t , f l o a t m [ ] ) ;

# e n d i f

B.4.2 sa.c
# i n c l u d e ” sa . h ”

i n t c o s t F l a g , c o s t L i m i t F l a g , a t t F l a g , s t e p F l a g , s c o r e F l a g , randomFlag ;
f l o a t c o s t F a c t o r , c o s t L i m i t , a t t F a c t o r , minScore ;
i n t kmax ;

i n t main ( i n t a rgc , c h a r ∗∗ a rgv )
{

/ / t h i s i s r e q u i r e d t o s e t up t h e ddp model .
se tupMode l ( ) ;

i n t Seed ;

c h a r ∗ randomValue = NULL;
c h a r ∗ c o s t V a l u e = NULL;
c h a r ∗ c o s t L i m i t V a l u e = NULL;
c h a r ∗ a t t V a l u e = NULL;
c h a r ∗ s t e p V a l u e = NULL;
c h a r ∗ s c o r e V a l u e = NULL;
i n t c ;

randomFlag = 0 ;
c o s t F l a g = 0 ;
c o s t L i m i t F l a g = 0 ;
a t t F l a g = 0 ;
s t e p F l a g = 0 ;
s c o r e F l a g = 0 ;

o p t e r r = 0 ;

w h i l e ( ( c = g e t o p t ( a rgc , argv , ” a : c : l :m: r : s : ” ) ) != −1)
{

s w i t c h ( c )
{

c a s e ’ a ’ :
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a t t F l a g = 1 ;
a t t V a l u e = o p t a r g ;
b r e a k ;

c a s e ’ c ’ :
c o s t F l a g = 1 ;
c o s t V a l u e = o p t a r g ;
b r e a k ;

c a s e ’ l ’ :
c o s t L i m i t F l a g = 1 ;
c o s t L i m i t V a l u e = o p t a r g ;
b r e a k ;

c a s e ’m’ :
s t e p F l a g = 1 ;
s t e p V a l u e = o p t a r g ;
b r e a k ;

c a s e ’ r ’ :
randomFlag = 1 ;
randomValue = o p t a r g ;
b r e a k ;

c a s e ’ s ’ :
s c o r e F l a g = 1 ;
s c o r e V a l u e = o p t a r g ;
b r e a k ;

c a s e ’ ? ’ :
p r i n t f ( ” You e n t e r e d an unknown o p t i o n . The o p t i o n s must have t h e f o r m a t −a A t t a i n m e n t S c a l e F a c t o r

−c C o s t S c a l e F a c t o r − l Uppe rCos tL imi t −m MaxStep −r Seed −s MaxScore . \ n ” ) ;
b r e a k ;

d e f a u l t :
b r e a k ;

}
}

i f ( a t t F l a g == 1 && a t t V a l u e != NULL)
a t t F a c t o r = a t o f ( a t t V a l u e ) ;

e l s e
a t t F a c t o r = 1 ; / / 2 0 0 0 ;

i f ( c o s t L i m i t F l a g == 1 && c o s t L i m i t V a l u e != NULL)
c o s t L i m i t = a t o f ( c o s t L i m i t V a l u e ) ;

e l s e
c o s t L i m i t = 250000; / / 3 0 0 0 0 0 ;

i f ( c o s t F l a g == 1 && c o s t V a l u e != NULL)
c o s t F a c t o r = a t o f ( c o s t V a l u e ) ;

e l s e
c o s t F a c t o r = 0 ; / / 1 ;

i f ( randomFlag == 1 && randomValue != NULL)
Seed = a t o i ( randomValue ) ;

e l s e
Seed = 1 ;

i f ( s t e p F l a g == 1 && s t e p V a l u e != NULL)
kmax = a t o i ( s t e p V a l u e ) ;

e l s e
kmax = 500000; / / 2 0 0 0 0 0 ; / / 1 0 0 0 0 0 ;

i f ( s c o r e F l a g == 1 && s c o r e V a l u e != NULL)
minScore = a t o f ( s c o r e V a l u e ) ;

e l s e
minScore = 200 ; / / 1 5 0 ; / / 1 0 0 0 0 0 ;

i f ( randomFlag == 1)
s r a n d ( Seed ) ;

e l s e
s r a n d ( ( u n s i g n e d i n t ) t ime (NULL ) ) ;

f l o a t F i x e d M i t i g a t i o n s [ T o t a l M i t i g a t i o n s + 1 ] ;
f l o a t N e i g h b o r F i x e d M i t i g a t i o n s [ T o t a l M i t i g a t i o n s + 1 ] ;
f l o a t s c o r e , n e i g h b o r S c o r e ;
i n t k = 0 ;
i n t mCounter ;

/ / i n i t i a l i z e t h e c u r r e n t s t a t e i n i t i a l l y
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)

F i x e d M i t i g a t i o n s [ mCounter ] = 0 ;

/ / f i n d t h e i n i t i a l e ne rg y ( s c o r e )
s c o r e = f i n d S c o r e ( F i x e d M i t i g a t i o n s ) ;

w h i l e ( k < kmax && s c o r e < minScore )
{

/ / p r i n t f (”%d , ” , k ) ;
n e i g h b o r ( F i x e d M i t i g a t i o n s , N e i g h b o r F i x e d M i t i g a t i o n s ) ;
n e i g h b o r S c o r e = f i n d S c o r e ( N e i g h b o r F i x e d M i t i g a t i o n s ) ;
/ / i f improvement seen s w i t c h t o t h e c u r r e n t one
i f ( n e i g h b o r S c o r e > s c o r e )
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{
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)

F i x e d M i t i g a t i o n s [ mCounter ] = N e i g h b o r F i x e d M i t i g a t i o n s [ mCounter ] ;
s c o r e = n e i g h b o r S c o r e ;

}
e l s e
{

do ub l e randomValue = ( d oub l e ) r and ( ) / ( ( d oub l e ) (RAND MAX) + ( d ou b l e ) ( 1 ) ) ;
i f ( p rob ( s c o r e , n e i g h b o r S c o r e , k , temp ( k , kmax ) ) > randomValue )
{

f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
F i x e d M i t i g a t i o n s [ mCounter ] = N e i g h b o r F i x e d M i t i g a t i o n s [ mCounter ] ;

s c o r e = n e i g h b o r S c o r e ;
}

}
k ++;

}

/ / p r i n t F i x e d M i t i g a t i o n s
f l o a t a t t , c o s t ;
f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)

p r i n t f ( ”m[%d ] , ” , mCounter ) ;
p r i n t f ( ” c o s t , a t t a i n m e n t \n ” ) ;
f o r ( mCounter =1; mCounter<=T o t a l M i t i g a t i o n s ; mCounter ++)

p r i n t f (”%.0 f , ” , F i x e d M i t i g a t i o n s [ mCounter ] ) ;
model (& c o s t ,& a t t , F i x e d M i t i g a t i o n s ) ;
p r i n t f (”%.1 f ,%.5 f \n ” , c o s t , a t t ) ;

}

vo id n e i g h b o r ( f l o a t i n p u t A r r a y [ ] , f l o a t o u t p u t A r r a y [ ] )
{

i n t mCounter ;
do ub l e randomValue ;
f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
{

randomValue = ( do ub l e ) r and ( ) / ( ( d oub l e ) (RAND MAX) + ( d ou b l e ) ( 1 ) ) ;
i f ( randomValue < 0 . 0 5 )

/ / f l i p i t from 0 t o 1 and from 1 t o 0
o u t p u t A r r a y [ mCounter ] = 1 − i n p u t A r r a y [ mCounter ] ;

e l s e
o u t p u t A r r a y [ mCounter ] = i n p u t A r r a y [ mCounter ] ;

}
}

do ub l e prob ( f l o a t s c o r e , f l o a t n e i g h b o r S c o r e , i n t k , d ou b l e T )
{

r e t u r n ( d ou b l e ) exp ( ( ( d ou b l e ) s c o r e − ( do ub l e ) n e i g h b o r S c o r e ) ∗ k / T ) ;
}

do ub l e temp ( i n t k , i n t kmax )
{

r e t u r n ( d ou b l e ) ( kmax − k ) / kmax ;
}

f l o a t f i n d S c o r e ( f l o a t F i x e d M i t i g a t i o n s [ ] )
{

i n t mCounter ;
f l o a t a t t , c o s t , s c o r e ;
f l o a t mArray [ T o t a l M i t i g a t i o n s + 1 ] ;

f o r ( mCounter = 1 ; mCounter <= T o t a l M i t i g a t i o n s ; mCounter ++)
mArray [ mCounter ] = F i x e d M i t i g a t i o n s [ mCounter ] ;

/ / f i n d t h e c o s t and a t t u s i n g t h e s e m i t i g a t i o n s
model (& c o s t ,& a t t , mArray ) ;

s c o r e = a t t F a c t o r ∗ a t t − c o s t F a c t o r ∗ c o s t ;

/ / t h i s i s t o p e n a l i z e t h e ones wi th t o o h igh of a c o s t
i f ( c o s t > c o s t L i m i t ) / / && c o s t F a c t o r == 0)

s c o r e = a t t − c o s t ;

/ / p r i n t f (”%.1 f ,%.3 f ,%.1 f \ t %.1 f \n ” , c o s t , a t t , s c o r e , c o s t / a t t ) ;

r e t u r n s c o r e ;
}

i n t s e l e c t V a l u e ( i n t va l1 , i n t v a l 2 )
{

do ub l e randomValue = ( do ub l e ) r and ( ) / ( ( d oub l e ) (RAND MAX) + ( d ou b l e ) ( 1 ) ) ;
i n t r e t u r n V a l u e ;

i f ( randomValue < 0 . 5 )
r e t u r n V a l u e = v a l 1 ;

e l s e
r e t u r n V a l u e = v a l 2 ;

r e t u r n r e t u r n V a l u e ;
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}

f l o a t minValue ( f l o a t va l1 , f l o a t v a l 2 )
{

i f ( v a l 1 < v a l 2 )
r e t u r n v a l 1 ;

e l s e
r e t u r n v a l 2 ;

}
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