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Abstract— Safer and more efficient battery technologies are 

in soaring demand, with a primary focus on transitioning from 

flammable lithium-ion batteries to non-flammable solid-state 

batteries. While solid-state batteries offer enhanced safety 

features, their power density remains a challenge due to poor 

ionic conductivity induced by non-optimal cathode 

microstructures. Laborious experimental processes and time-

consuming data analysis algorithms are obstacles to establishing 

structure–performance correlation and optimizing cathode 

microstructure. In this paper, we present a machine learning 

approach to predict the current or resistance of a composite 

cathode based on scanning electron microscopy (SEM) images, 

given the inputs as a binary image, a voltage, and a conductivity 

value. Our results showed that current or resistance can be 

quickly predicted from input images with high accuracy.  
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I. INTRODUCTION 

Lithium-ion batteries are known to be the most prevalent 
type of battery in use today, despite their flammable liquid 
electrolytes and potential combustion hazards. The safety 
concern underscores the need to develop an alternative, safer 
type of battery, such as solid-state batteries. Although solid-
state batteries offer better safety and higher energy density, 
their power density is low compared to their liquid-electrolyte 
counterparts due to highly tortuous ion conduction pathways 
within cathodes [1]. When the cathode composite possesses an 
unfavorable microstructure, Li+ ions need to travel longer to 
conduct through the cathode, causing higher internal resistance 
and lower cathode utilization at high cycling rates [2]. 

Correlation between microstructure, transport properties, 
and cell performance is often studied with morphological 
characterization and subsequent data analysis [3]. Although 3D 
characterizations such as X-ray tomography and focus ion 
beam (FIB)-assisted SEM offer the most accurate structural 
insights, they tend to be labor-intensive and time-consuming. 
In contrast, 2D cross-sectional images are commonly employed 
for morphological characterization. Hence, having a quick 
prediction of battery performance from cross-sectional images 
can be beneficial.  

The battery’s properties can be predicted using rigorous 
numerical modeling with cross-sectional images showing the 
electrode’s micro-structure. For example, resistance is an 
essential indicator of the battery’s transport property, and it can 
be obtained by simulating the current distribution in the 
electrodes using numerical methods such as the finite different 

method (FDM). However, conventional numerical methods are 
oftentimes expensive for this task. Processing 2000 images 
sized 64×64 pixels using FDM takes approximately 10 minutes 
on an average laptop, whereas it requires up to 39 hours to 
process an equivalent number of images sized 400×400 pixels. 
The time-consuming process of numerical models might not be 
a desired characteristic in some situations, especially for real-
time applications.  

In this paper, we present a machine learning approach to 
quickly predict current or resistance based on cross-sectional 
SEM images of composite cathodes. Our results showed that 
current or resistance can be quickly predicted from input 
images with high accuracy.   

II. METHODOLOGY 

A. Finite Differennce Method 

The conventional FDM is applied to solve equation (1) 
with predefined boundary conditions. Fig. 2 shows an 
illustration of the input images. The yellow region of the image 
represents conductive material, and the black region represents 
non-conductive material. Each region is assigned its 
corresponding conductivity value. By calculating the potential 
at each point, the current density is obtained. 

 𝛻(𝜎. 𝛻𝜙) = 0  () 

Where σ is conductivity [S/m] and ϕ is potential [V]. 
 

The conversion between resistance and current can be 
achieved using equation (2) below. 

 𝑅 = 𝑉/𝐼 ()  

Where R is resistance [Ω], V is voltage [V], and I is current 
[A]. 

B. Machine Learning Model 

The inputs include the generated images, their current or 
resistance values calculated using FDM with the given 
conductive material’s conductivity (1 [S/m] as default), and the 
voltage (1 [V] as default). The Output is the predicted current 
and resistance values.  

The general workflow is shown in Fig. 1. The images are 
inputted into the machine learning model to output the 
predicted current or resistance values. 
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Convolutional neural networks (CNNs) are popular choices 
when working with images. Hence, with some modifications, 
we selected  EfficientNetV2-S as our machine learning model 
[4]. Yet, the original EfficientNet model is not suitable for our 
regression task. Consequently, we replaced the original 
model’s last layers with a multilayer perceptron to output a 
current value. Aside from the regression modification, we also 
use Warmup Cosine scheduling to efficiently perform transfer 
learning. 

 
Figure 1. General workflow. 

III. RESULTS AND DISCUSSION 

Image dataset was generated with electrolyte fraction 
ranging from 0.6 to 1. Electrolyte fraction is the ratio of 
conductive region to the overall region. The training : 
validation : testing proportion is 2500:175:175. An example of 
the generated images is showed in Fig. 2. 

 Figure 2. Generated binary images. (a),(b) electrolyte fraction: 0.6. (c),(d) 
electrolyte fraction: 0.9 

Fig. 3 shows the currents of 2500 training images, with the 
current values exhibiting distinct variations corresponding to 
different levels of electrolyte fraction. 

 

Figure 3. Input current values of 2500 training images. 

Our model was able to predict the currents in only 9.7 ± 0.4 
seconds for 2500 images of size 64×64. Compared to FDM 
which requires approximately 12 minutes for small-sized 
images, the machine learning model demonstrates significantly 
faster processing time making them particularly advantageous 
for handling larger images.  

Fig. 4 shows the prediction results for the test image set. 
The results are highly accurate with the mean absolute 
percentage error of 4.0%. However, the model was only tested 
on a certain type of image that has similar patterns with 
electrolyte fraction larger than 0.6. Hence, we will need to 
work on more cases to generalize the model. To further 
enhance the accuracy for this specific pattern, our approach 

involves categorizing images according to their electrolyte 
fraction and subsequently training the model independently for 
each distinct electrolyte fraction value. 

 

Figure 4. Predicted and actual current values. 

The ionic conductivity of composite cathode can be 

calculated using equation (3). In this work, we assigned l = A 

= 1 so the total conductivity is equal to 1/R, and numerically 

equals the total current (if we have V = 1 [V] in equation (2)). 

From Fig. 4, where the conductivity of the conductive material 

equals 1 [S/m], we can see the current also represents the total 

conductivity. When electrolyte fraction equals 1 (Fig. 4, image 

141-175), meaning the cathode contains only conductive 

material, the output current values are 1 or 100% conductive.  

  𝜎 = 𝑙/(𝑅. 𝐴) () 

Where σ is cathode ionic conductivity [S/m], l is length [m], R 

is total resistance [Ω], and A is cross-sectional area [m2]. 

This paper has proved that ionic conduction properties can 

be predicted from cross-sectional images, though there is a 

tradeoff between accuracy and time as FDM gives a more 

accurate calculation while the machine learning approach is 72 

times faster with a mean accuracy of 96%. The next step we 

want to take in the future is to extend this method to 3D 

images and test more experimental cases. 
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