
LinKRID: Vetting Imbalance
Reference Counting in Linux

Kernel with Symbolic Execution
Jian Liu, Lin Yi, Weiteng Chen, Chenyu Song,

Zhiyun Qian, Qiuping Yi

Boston, USA

Kernel Memory Management Bugs

27

12
0

27
48

10
0

10

20

30

40

50

60

70

Memory Leak UAF Double Free

Refcount-related issues Other

A statistic on memory management-related issues in Linux 4.14

Reference Counter in Kernels

• Key idea: each object includes a ref_count
- Assume obj * p = NULL;
- p = obj1; // obj1->ref_count++
- p = obj2; // obj1->ref_count--, obj2->ref_count++

• If an object’s ref_count == 0, it is garbage
- No pointers target that object
- thus, it can be safely freed

•Manually managed à error prone

Refcount Bugs

CVE-2014-0728

CVE-2016-4557

• Two types of bugs

• Failure to increase the counter when a
new reference is created -> dangling
pointer(s) -> use-after-free (UAF)

• Failure to decrement the counter when a
reference has been removed -> memory
leaks

Challenge-1: Refcount Bug Modeling

• Existing stratigies to model refcount bugs
1. RID[1] and CID[2] : IPP-based (Inconsistent Path Pair) modeling

• Check the inconsistency between path pair which have same arguments and
return value

• Limited checking scenario, e.g., inconsistency within a single path (CVE-2016-
0728)

2. Pungi[3]: Affine abstraction modeling
• Check refcount changes equal to the number of escaped references
• Not special to Linux Kernel, e.g., Linux refcount wrappers
• High False Positives Rate in Kernel

[1] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi. RID: Finding Reference Count Bugs with Inconsistent Path Pair Checking. ASPLOS 2016.
[2] Xin Tan, et al. "Detecting Kernel Refcount Bugs with {Two-Dimensional} Consistency Checking. USENIX Security 2021.
[3] Siliang Li and Gang Tan. Finding reference-counting errors in Python/C programs with affine analysis. ECOOP 2014.

Challenge-2: Refcount Bug Checking

• How to scale up the path-sensitive analyse Linux kernel codes, eg.
CVE-2017-11176

1. RID[1]: symbolic execution
• without details on how to scale up

2. CID[2] and Pungi[3]: static analysis

do_mq_notify
netlink_getsockbyfilp

netlink_detachskb

netlink_attachskb
sock_hold(sk)

sock_put(sk)

sock_put(sk) (error)

use-after-free

localizing
code lines: 26M+
functions: 300K+

Challenge-3: Kernel Refcount Conventions

• Existing works without considering kernel refcount conventions[1]
(e.g., CVE-2016-4805)

1. External reference:
• strictly abide the reference consistency invariant

2. Internal reference (or weak reference):
• It simply means the object “exists”
• Violates the refcount consistency invariant
• Used inside a software cache, such as a radix tree, a double linked list...

[1]Neil Brown. Linux kernel design patterns - part 1. https://lwn.net/Articles/336224/, 2009.

An example of internal reference

(a) Creation (b) Usage

(c) Escape (d) Release

Our Key Observations
• Bug Oracle: the refcount and corresponding reference changes

should be consistent
• Invariant: Δ#(reference) == #escaped - #released

LinkRID Workflow

Summary-based Chain Analysis

• Ideas: using under-constrained symbolic execution to analyze flow
chains symbolically to identify potential buggy paths
• scalable: bottom-up summary-based computing
• precious: on-the-fly tracking reference and refcount changes

Bug Detection (1)

• Given a flow chain, LinkRID reports a potential bug whenever there
exists a local reference lr satisfying the following condition

Δrefcountlr ≠ |escapelr| ­|releaselr|

• Detailed bug reporting
• branch direction, refcount get/put, source code line...

Bug Detection (2)

• Identifying Internal References: two internal reference patterns
• (1) separate/additional references (released automatically when the refcount

reaches zero)
• (2) released in domain-specific manners, eg.

• Association of Refcount and Reference Changes: heuristic-based
aliasing inferring
• (1) if two local references (e.g., gdm and tty_port) happen to trigger two

warnings in the same function
• (2) one local reference is “embedded” in another

Considering as related
refcount and reference

changes

Considering as
Internal References

Implementation: LinkRID

• Static anlaysis (multiple LLVM Passes with version 9.0.0)
• Call graph construction from KENALI
• Data flow analysis

• Under-constraint symoblic execution engine (based on KLEE 2.0)
• Lazy initializtion of Kernel Objects
• Summary-based symbolic execution

• Bug detector
• Convention filters

• Totoal: 3.5k lines of C++ code and 2.7k line of python code

Evaluation Setup

• Target: Linux 4.14.0 compiled with LLVM
• git commit bebc608
• Compiled with allyesconfig
• LLVM 3.9 with make defconfig and make allyesconfig

• Experimental configuration
• (Virtual machines each with Intel Xeon E3-1220 CPU and 32GB RAM) X 2

Performance

• Time to analyze the whole kernel (with allyesconfig)
• Static analysis: 1 hours

• Identify 445 refcounted structures, 685 refcounted functions and 54731 related
functions

• generate 12075 flow chains
• Symoblic execution: 192 hours

• gnerate 9419 summaries

Effectiveness

• Found 118 new refount bugs in Linux Kernel 4.14.0
• 82 are new bugs, including 30 1-day bugs and 52 0-day bugs.
• 20 patches have already been merged into the Linux upstream.

Conclusion

• LinkRID, a scalable and practical refcount bug discovery tool
• scale up the path-sensitive analysis, with a lightweight static

analysis and an under-constrained symbolic execution
• a set of conventions seemingly erroneous but benign usage

patterns

