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Abstract. Sea-ice concentrations derived from satellite mi-
crowave brightness temperatures are less accurate during
summer. In the Arctic Ocean the lack of accuracy is primar-
ily caused by melt ponds, but also by changes in the proper-
ties of snow and the sea-ice surface itself. We investigate the
sensitivity of eight sea-ice concentration retrieval algorithms
to melt ponds by comparing sea-ice concentration with the
melt-pond fraction. We derive gridded daily sea-ice concen-
trations from microwave brightness temperatures of summer
2009. We derive the daily fraction of melt ponds, open water
between ice floes, and the ice-surface fraction from contem-
porary Moderate Resolution Spectroradiometer (MODIS) re-
flectance data. We only use grid cells where the MODIS sea-
ice concentration, which is the melt-pond fraction plus the
ice-surface fraction, exceeds 90 %. For one group of algo-
rithms, e.g., Bristol and Comiso bootstrap frequency mode
(Bootstrap_f), sea-ice concentrations are linearly related to
the MODIS melt-pond fraction quite clearly after June. For
other algorithms, e.g., Near90GHz and Comiso bootstrap po-
larization mode (Bootstrap_p), this relationship is weaker
and develops later in summer. We attribute the variation of
the sensitivity to the melt-pond fraction across the algorithms
to a different sensitivity of the brightness temperatures to
snow-property variations. We find an underestimation of the
sea-ice concentration by between 14 % (Bootstrap_f) and
26 % (Bootstrap_p) for 100 % sea ice with a melt-pond frac-
tion of 40 %. The underestimation reduces to 0 % for a melt-
pond fraction of 20 %. In presence of real open water be-
tween ice floes, the sea-ice concentration is overestimated by

between 26 % (Bootstrap_f) and 14 % (Bootstrap_p) at 60 %
sea-ice concentration and by 20 % across all algorithms at
80 % sea-ice concentration. None of the algorithms investi-
gated performs best based on our investigation of data from
summer 2009. We suggest that those algorithms which are
more sensitive to melt ponds could be optimized more easily
because the influence of unknown snow and sea-ice surface
property variations is less pronounced.

1 Introduction

Sea-ice area and extent are derived from the sea-ice concen-
tration, i.e., the fraction of a given area of the ocean cov-
ered with sea ice. Observations of the brightness temperature
by satellite passive microwave sensors have been the back-
bone of sea-ice concentration retrieval for more than 35 years
because these are independent of daylight and are quite in-
sensitive to the cloud cover. These satellite sensors measure
the brightness temperature at window frequencies between
6 and ∼ 90 GHz at vertical and horizontal polarization, at
a constant incidence angle of ∼ 53◦, which we use for the
present paper. Numerous sea-ice concentration retrieval al-
gorithms have been developed during the past decades (see
e.g., Ivanova et al., 2015). To retrieve the sea-ice concen-
tration, all algorithms exploit the contrast in the microwave
brightness temperature between open water and sea ice in
some way. During cold conditions, i.e., as long as freezing
conditions prevail, sea-ice concentrations are retrieved with
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these algorithms as accurate as 2–5 % for the near 100 %
ice cover (Ivanova et al., 2015, 2014; Andersen et al., 2007;
Meier, 2005). However, during melting conditions, the re-
trieval accuracy is reduced substantially and sea-ice concen-
trations can be biased low compared to the actual sea-ice con-
centration (Ivanova et al., 2013; Rösel et al., 2012b; Comiso
and Kwok, 1996; Steffen and Schweiger, 1991; Cavalieri et
al., 1990).

One potential reason for the reduced accuracy is the
change in microphysical properties inside the sea ice, for in-
stance, the desalination of the sea ice during the melt pro-
cess or the flushing of air voids in multiyear ice with melt-
water and other melt processes, as for example described in
Scharien et al. (2010). Another potential reason is the change
in surface properties of the sea ice. The three key surface
features of summer melt on Arctic sea ice are a metamor-
phous, wet snow cover, a porous, wet sea-ice surface, and
melt ponds. During summer, the snow cover on sea ice is
usually wet or even saturated with meltwater (Garrity, 1992).
Its density is usually considerably larger during summer than
during winter (Warren et al., 1999; Maykut and Untersteiner,
1971). Diurnal melt–refreeze cycles, i.e., episodes of inter-
mittent melting and refreezing of the snow, which is a com-
mon phenomenon during late spring, result in an increase in
the snow grain size.

Wet snow is an efficient absorber of microwave radiation
and has a microwave emissivity close to 1. It can effectively
block microwave emission from underneath, and thereby
masks differences in volume scattering between first-year
and multiyear ice. Therefore microwave brightness temper-
atures of sea ice covered with wet snow usually are close to
its physical temperature during melt (e.g., Stiles and Ulaby,
1980; Eppler et al., 1992; Hallikainen and Winebrenner,
1992; Garrity, 1992).

During the melt phase of melt–refreeze cycles, coarse-
grained snow can be regarded to behave similarly to wet
snow due to its wetness. During the refreeze phase, how-
ever, when it is dry, it absorbs less microwave radiation
than wet snow, and there is more scattering from within the
snow. Therefore, dry coarse-grained snow does not block
or mask microwave emission and volume scattering differ-
ences of the sea ice and/or snow underneath as efficiently as
wet snow does. The amount of volume scattering depends
on microwave frequency and polarization, and on the ver-
tical location of the coarse-grained snow layers relative to
the snow surface. Because the electromagnetic wavelengths
are closer to the snow grain size at higher frequencies, i.e.,
at 37–90 GHz, volume scattering in snow is larger for the
higher than the lower microwave frequencies (Fuhrhop et
al., 1998; Eppler et al., 1992; Hallikainen and Winebrenner,
1992; Gogineni et al., 1992). In Tables 1–3 we give some sen-
sitivities of microwave brightness temperatures with respect
to changes in snow wetness, density, and grain size. These
tables are not meant to be exhaustive. Instead we will use the
sensitivities for our discussion of the results (Sect. 4).

Melt ponds are puddles of meltwater on top of sea ice.
They form during summer from melting snow and sea ice.
Their areal fraction, size and depth is determined by the
onset, length and severity of the melting season, the sea-
ice type and topography, and the snow-depth distribution at
the beginning of melt (Landy et al., 2014; Polashenski et
al., 2012; Petrich et al., 2012; Eicken et al., 2004; Perovich
et al., 2002). The melt-pond water salinity is close to 0 ppt.
Typically, the melt-pond fraction on Arctic sea ice varies be-
tween 10 and 40 % but can also exceed 50 %, for instance,
early in the melt season or on land-fast sea ice (Webster et
al., 2015; Divine et al., 2015; Landy et al., 2014; Polashenski
et al., 2012; Sankelo et al., 2010; Tschudi et al., 2001; Yackel
and Barber, 2000; Fetterer and Untersteiner, 1998).

The penetration depth into liquid water of microwave ra-
diation at the frequencies used here, i.e., between 6 and
89 GHz, is of the order of 1 mm (Ulaby et al., 1986). We
use the penetration depth here as the depth from which most
of the microwave radiation originates. Because of the above-
mentioned very low penetration depth, a water layer with a
depth of a few millimeters is opaque enough to completely
block the microwave signal from the sea ice underneath. A
melt pond on sea ice has the brightness-temperature signal
of open water, and is therefore indistinguishable from open
water in cracks or leads between the sea-ice floes (Gogineni
et al., 1992; Grenfell and Lohanick, 1985). At 6 GHz and
higher frequencies, the signature of freshwater and saltwa-
ter are indistinguishable. Satellite microwave sensors which
have been used for sea-ice concentration retrieval allow for
footprint sizes between∼ 5 and∼ 70 km. Melt ponds, cracks,
and leads are therefore sub-footprint size surface features,
and cannot be resolved individually. A satellite brightness-
temperature measurement of a mixed scene is therefore com-
posed of contributions from the open water, i.e., cracks,
leads, melt ponds, and from the (snow covered) sea ice. This
has two main consequences for a sea-ice concentration prod-
uct computed from such coarse-resolution satellite measure-
ments. The sea-ice concentration in the presence of melt
ponds is likely to be underestimated – because melt ponds
are seen as open water. Whether the footprint contains, for
example, (case A) 100 % sea ice with 40 % melt ponds or
(case B) 60 % sea ice with 40 % open water from leads and
openings, is ambiguous. In both cases, satellite microwave
radiometry retrieves 60 % sea-ice concentration because the
net sea-ice surface fraction of sea ice in the grid cells is 60 %.
If during summer, a sea-ice concentration retrieval algorithm
overestimates the net sea-ice surface fraction in case A, for
example because of a specific summertime microwave sig-
nature of the sea ice, and provides, e.g., ∼ 90 % sea-ice con-
centration, then the same algorithm would most likely also
overestimate the net sea-ice surface fraction in case B. The
algorithm would hence underestimate the actual sea-ice con-
centration in case A but overestimate the actual sea-ice con-
centration in case B.
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Table 1. Typical values of changes in brightness temperature due to changes in snow wetness. Abbreviations TB, PR, GR, V, and H denote
brightness temperature, normalized brightness-temperature polarization difference (“polarization ratio”), normalized brightness-temperature
frequency difference (“gradient ratio”), vertical, and horizontal (polarization), respectively. Abbreviations E92, W14, and G92 refer to Eppler
et al. (1992), Willmes et al. (2014), and Garrity (1992), respectively.

Snow wetness E92 W14 W14 G92

Change by Typical May–June increase (∼ 2 %) Average May–June increase Melt after refreeze +2 %
TB19H +25 K +16 K +5 K –
TB19V +20 K +14 K +7 K –
TB37H +40 K +32 K +25 K +34 K
TB37V +30 K +32 K +10 K +15 K
TB89H – +50 K – –
TB89V – +60 K – –
PR19 – – +0.02 –
GR3719 – – +0.05 –

Table 2. Typical values of changes in brightness temperature due
to changes in snow density. For abbreviations TB, PR, GR, V, and
H see Table 1. Abbreviations F98 and B15 refer to Fuhrhop et
al. (1998) and Beitsch (2014), respectively.

Snow density F98 B14

Change by +200 kgm−3
+50 kgm−3

PR19 +0.04 –
GR3719 0.00 –
TB89V-TB89H – +2.5 K

This has consequences for climate research. For example,
the sea-ice area, which is defined as the sum of the area of
all sea-ice covered grid cells weighted by the sea-ice con-
centration, will be underestimated from case A but will be
overestimated from case B. The ambiguity in the actual sur-
face properties related to the sea-ice concentration value of
60 % in the example above is also challenging for the ini-
tialization and evaluation of numerical models, and the as-
similation of sea-ice concentration data into such models.
An unambiguous sea-ice concentration is required for, e.g.,
the correct computation of the sea-ice volume. In the termi-
nology of the more advanced thermo-dynamic and dynamic
sea-ice models or model components which treat leads and
melt ponds separately (e.g., Holland et al., 2012; Flocco et
al., 2010), the fraction of sea ice covering the open ocean
is called sea-ice concentration and includes melt ponds. The
fraction of the latter is given separately as the area of the sea-
ice surface covered by melt ponds and is called melt-pond
fraction. It is obvious that such models would have difficul-
ties using a sea-ice concentration product which is biased like
described above for cases A and B. Even numerical models,
which are not as advanced and which do not treat melt ponds
separately, would have difficulties using such a product.

Approaches have been developed, which permit the melt-
pond fraction on sea ice to be derived from satellite observa-
tions in the visible/near-infrared frequency range (Istomina

et al., 2015a, b; Zege et al., 2015; Rösel et al., 2012a). Their
results could be used to correct the above-mentioned ambigu-
ity by quantifying how much of the open water seen (30 % in
the example above) is actually caused by melt ponds. How-
ever, the time series of melt-pond fraction data computed so
far (2002–2009 and 2002–2011) are too short to apply such
a correction for the entire sea-ice concentration data set, over
35 years long, from satellite microwave radiometry. In addi-
tion, such data may have limitations due to cloud cover and
the viewing geometry at high latitudes (see Sect. 2.1).

This calls for a better quantification of the uncertainty
and/or of potential biases in the sea-ice concentration. How
sensitive are present-day sea-ice concentrations algorithms
to the melt-pond fraction? How do these algorithms differ
with respect to the expected bias due to melt ponds, and
how can we explain these differences? We hypothesize that
microwave brightness temperatures and sea-ice concentra-
tions derived from them change linearly with the increase
in surface-water fraction or the decrease in net sea-ice sur-
face fraction due to melt ponds. To the authors’ best know-
ledge, an intercomparison of different algorithms which in-
corporates contemporary information of the melt-pond frac-
tion and an independent sea-ice concentration estimate, as is
the aim of this study, has not previously been carried out.

In the present paper we illustrate how satellite microwave
brightness-temperature measurements vary with the net
sea-ice surface fraction derived from satellite visible/near-
infrared (VIS/NIR) imagery. We compare the sea-ice concen-
tration obtained with different sea-ice concentration retrieval
algorithms from these brightness temperatures with the sea-
ice concentration and with the net sea-ice surface fraction
from VIS/NIR imagery. We isolate the influence of melt-
pond fractions on the net sea-ice surface fraction by limit-
ing our analysis to VIS/NIR imagery sea-ice concentrations
> 90 %. We demonstrate how these brightness temperatures
change with progression of melt and discuss the implications
of this change for sea-ice concentration retrieval.
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Table 3. Typical values of changes in brightness temperature due to changes in snow grain size. For abbreviations TB, PR, GR, V, and H see
Table 1. Abbreviations F98, W14, and G92 refer to Fuhrhop et al. (1998), Willmes et al. (2014), and Garrity (1992), respectively.

Snow grain size F98 F98 W14 G92
Upper snow layer Bottom snow layer Upper snow layer –

Change by +0.5 mm +0.5 mm Increase due to Increase due to surface
surface refreezing crust formation

GR3719 −0.025 +0.05 −0.04 –
PR19 +0.01 +0.02 0.0 –
TB37V – – −20 K −10 K
TB37H – – −35 K −20 K
TB19V – – −10 K –
TB19H – – −15 K –

Figure 1. Spatial distribution of the MODIS sea-ice parameter data set superposed with the fraction of first-year ice (a), multiyear ice (b),
and the number of co-located daily MODIS sea-ice parameter data for the entire period June–August (c).

The paper is organized as follows. Section 2 describes the
data sets and methods used for the intercomparison of bright-
ness temperatures and sea-ice concentrations derived with
several algorithms and the melt-pond fraction. In Sect. 3 we
are going to present the results of this intercomparison, which
we discuss in Sect. 4. Section 5 concludes our findings.

2 Data and methods

The paper focuses on the melt season, i.e., the months of
June, July, and August, of the year 2009. The spatial do-
main of our investigations is a region of the Arctic Ocean (see
Fig. 1). This region is determined by the area and data which
we chose to compute the sea-ice cover parameters from satel-
lite VIS/NIR imagery, described in Sect. 2.1.

2.1 Sea-ice parameters from VIS/NIR satellite imagery

2.1.1 Data sets and methodology

We derive the open-water fraction, melt-pond fraction,
and net sea-ice surface fraction from reflectance mea-

surements of the Moderate Resolution Imaging Spectro-
radiometer (MODIS) aboard the Earth Observing Sys-
tem (EOS) satellite TERRA. We use the MODIS Surface
Reflectance daily L2G Global 500 m and 1 km product
(MOD09GA, http://reverb.echo.nasa.gov/reverb/). We obtain
the L2G data on the sinusoidal tile grid used for MODIS
L2 data from http://landweb.nascom.nasa.gov/developers/
sn_tiles/sn_grid.html. We project the MODIS reflectance
data together with land, cloud, and ancillary information
onto the NSIDC polar stereographic grid with a tangential
plane at 70◦ N with a grid resolution of 0.5 km. Subsequently,
we use all reprojected tiles to compose an Arctic mosaic
of the MODIS wavelength bands 1: 459–479 nm, 3: 620–
670 nm, and 4: 841–876 nm. We apply a spectral unmixing
approach to classify the fractions of open water (between the
ice floes), melt ponds, and sea ice, which can be barren or
snow covered. For this we use typical reflectance values of
these surface types in the above-mentioned wavelength bands
(Tschudi et al., 2008). The methodology is explained in more
detail together with validation results in Rösel et al. (2012a),
and yields the distribution of the fractions of open water, melt
ponds, and net sea-ice surface fraction at 0.5 km grid reso-
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lution. We average these distributions onto a NSIDC polar-
stereographic grid with 12.5 km grid resolution. Together
with the above-mentioned fractions the standard deviation of
the melt-pond fraction per grid cell and the number of clear-
sky 0.5 km grid cells contributing to each 12.5 km grid cell
are stored in netCDF file format. The number of clear-sky
grid cells is taken as a measure of the cloud fraction later.
The grid resolution of 12.5 km is chosen in accordance to the
8-day melt-pond fraction data set derived with the same ap-
proach but using 8-day composite MODIS reflectance data
for the years 2000–2011 (Rösel et al., 2012a). We compute
the MODIS sea-ice concentration by subtracting the open-
water fraction from 100 %; note that the MODIS sea-ice con-
centration includes the sea ice covered by melt ponds, while
the net sea-ice surface fraction does not. Open-water frac-
tion, melt-pond fraction, and net sea-ice surface fraction add
up to 100 %. For the comparison with the microwave bright-
ness temperatures (Sect. 2.2) and sea-ice concentrations de-
rived from them (Sect. 2.3), we average the MODIS sea-ice
parameter data set to 100km× 100km grid resolution. In
addition, in order to mitigate the influence by variations in
the actual sea-ice concentration on our results, we only use
grid cells with MODIS sea-ice concentration > 90 % unless
stated otherwise. Throughout the paper we use the term “ice-
surface fraction” for the net sea-ice surface fraction.

2.1.2 Quality assessment of the MODIS sea-ice
parameters

The quality of MODIS reflectance measurements carried out
at high latitudes may be degraded from high sun zenith an-
gles, long pathways through the atmosphere, cloud shadows,
and, in addition, shadows caused by ridges in the sea-ice
cover. We use only reflectance values with the highest qual-
ity. This ensures that cloudy pixels and pixels with cloud
shadows, pixels with sun zenith angles > 85◦ and pixels with
sensor viewing angles > 60◦, data from faulty or poorly cor-
rected L1B pixels, pixels containing the default or the highest
aerosol level and pixels without any correction for the atmo-
spheric influence are not used.

Mäkynen et al. (2014) hypothesized that our daily MODIS
melt-pond fractions are positively biased by about 5–10 %
during early melt. In situ observations carried out north of
Greenland revealed a melt-pond fraction of 0 % and a sea-ice
concentration of 100 % during the first 2 weeks of June 2009
(Mäkynen et al., 2014). Melt onset dates given in Perovich
et al. (2014) support this observation. In order to confirm
this notion, we derived histograms of the MODIS melt-pond
fraction and the MODIS sea-ice concentration using the
data with 12.5 km grid resolution for latitudes north of
83◦ N for all days before 7, 9, 11, and 13 June, respectively
(Fig. 2). MODIS melt-pond fractions peak at 8 %. There
are no grid cells with a melt-pond fraction below 4 %. The
MODIS sea-ice concentration peaks at 98 % without any
grid cell with values > 98 %, suggesting a bias of 2 %. We

Figure 2. Histograms of MODIS melt-pond fraction (a) and
MODIS sea-ice concentration (b) derived when sea-ice cover was
near 100 % and melt ponds were not yet present (see text for details)
for the first 7, 9, 11, and 13 days of June 2009.

can also confirm the magnitudes of the above-mentioned
biases from version 01 of the 8-day MODIS melt-pond
fraction product (Kern et al., 2015), and conclude the
presence of a systematic bias. Therefore we apply a bias
correction and subtract 8 % from the melt-pond fractions
and add 2 % to MODIS sea-ice concentrations. A similar
correction (−8 % and +3 %) was applied to melt-pond
fraction and sea-ice concentration of version 01 of the 8-day
MODIS melt-pond fraction product (Rösel et al., 2012a;
doi:10.1594/WDCC/MODIS__Arctic__MPF yielding ver-
sion 02: doi:10.1594/WDCC/MODIS__Arctic__MPF_V02).
For the daily product used here, we set the few negative
melt-pond fractions resulting from the bias correction to
zero.

Even though a state-of-the-art cloud masking scheme has
been applied to the MODIS reflectance data before the
MODIS sea-ice parameter retrieval (Rösel et al., 2012a),
there is still a substantial number of misclassified grid cells. It
has been demonstrated that even with a multi-channel instru-
ment such as MODIS, cloud classification is a challenge over
bright surfaces such as sea ice or snow (Chan and Comiso,
2013; Karlsson and Dybbroe, 2010). In order to mitigate the
influence from misclassifications due to residual clouds, we
only use 100 km grid cells with a cloud cover < 5 %. About
15 500 grid cells remain for the analysis. We note that for
MODIS collection 6 data (we use collection 5), a further
improvement of cloud cover properties in the high latitudes
is not foreseen (King et al., 2013; Baum et al., 2012). We
find that by changing the cloud-cover threshold to 2 % or to
10 % (not shown), the number of co-located grid cells does
change but the results shown in Sect. 3 do not. We estimate
the average uncertainty in the melt-pond fraction, net sea-
ice surface fraction, and MODIS sea-ice concentration due
to cloud-induced misclassifications to ∼ 5 %.

The potential misclassification of one of the surface types
is more important. The reflectance values used are fixed
for the entire summer season and the entire Arctic domain.

www.the-cryosphere.net/10/2217/2016/ The Cryosphere, 10, 2217–2239, 2016
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Therefore the MODIS sea-ice parameter retrieval does not
account for the spatiotemporal variability in the spectral
properties of the melt ponds or the non-ponded sea ice. These
spectral properties change as a function of ice type and melt-
season duration. The spectral properties of melt ponds on
first-year ice are likely to approach those of leads and open-
ings as the melt season progresses, while for melt ponds on
multiyear ice these change less due its larger thickness and
different internal structure. This could result in an overesti-
mation of the melt-pond fraction relative to the open-water
fraction for first-year ice or vice versa because the spectral
space between sea ice and water is larger than between melt
ponds and open water (leads). Such a misclassification would
have, however, no implications for the net sea-ice surface
fraction. It would affect only the melt pond or the open-water
fraction. Therefore such a misclassification does not likely
influence the main results of the present paper, but should be
kept in mind when interpreting MODIS sea-ice concentra-
tions (see Sect. 3.2).

Rösel et al. (2012a) report root mean square difference
(RMSD) values between MODIS melt-pond fraction and in-
dependent melt-pond fraction observations of 4–11 %. We
compare the MODIS sea-ice concentration with visual ship-
based sea-ice concentration observations from seven ship
expeditions into the Arctic Ocean, and obtain an average
RMSD of (10.3±3.3) % (range: 6.0–15.2 %). A comparison
of our daily MODIS melt-pond fraction data set with con-
temporary daily melt-pond fraction estimates based on En-
visat MERIS data derived with the approach of Istomina et
al. (2015a) revealed a consistent agreement (Marks, 2015).
Based on these results we are quite confident that the average
uncertainty of the melt-pond fraction is better than 10 % and
that the MODIS ice-surface fraction is as accurate as ∼ 5 %.

At the time of our analysis and writing, this MODIS prod-
uct was the best we could have, despite the above-mentioned
limitations due to cloud cover and spatiotemporal variation
of the ice-type-dependent spectral properties of the summer
sea-ice cover. The results of our quality analysis and the re-
sults of Marks (2015) confirm that we can take the MODIS
sea-ice parameters as kind of the ground truth against which
we compare brightness temperatures and sea-ice concentra-
tions in Sects. 3 and 4.

2.2 Satellite microwave brightness temperatures

We use brightness temperatures measured by the Advanced
Microwave Scanning Radiometer aboard the EOS-TERRA
satellite: AMSR-E. The AMSR-E data used are from the 6.9,
10.7, 18.7, 36.5, and 89.0 GHz channels, which we abbre-
viate as 6, 10, 19, 37, and 89 GHz henceforth. We take the
AMSR-E swath data from the AMSR-E/Aqua L2A Global
Swath Spatially-Resampled Brightness Temperatures data
set, version 2: http://nsidc.org/data/docs/daac/ae_l2a_tbs.gd.
html (Ashcroft and Wentz, 2013). We resample the bright-
ness temperatures of all channels to the resolution of the

6 GHz channel, which has a 3 dB footprint of 43km×75km,
and co-locate these to the MODIS sea-ice parameters pro-
vided at 100 km grid resolution (Sect. 2.1). We include data
from all AMSR-E passes of the same day as the MODIS data.
Only data with footprints of which centers are located within
5 km of the center of a MODIS sea-ice parameter grid cell are
used. AMSR-E sampling is approximately every 10 km so
this gives us approximately one data point from each AMSR-
E pass.

2.3 Sea-ice concentration algorithms

We compute sea-ice concentrations from this set of co-
located AMSR-E brightness temperatures (Sect. 2.2) using
eight selected sea-ice concentration algorithms investigated
in the European Space Agency Climate Change Initiative –
Sea Ice (SICCI) project. The full suite of sea-ice concentra-
tion algorithms used in the SICCI project is documented in
the SICCI project reports: PVASR (Ivanova et al., 2013) and
ATBD (Ivanova et al., 2014), together with the tie points for
open water and sea ice. The tie points represent winter con-
ditions. The motivation for this is twofold. One is our wish
to intercompare the eight algorithms independently of indi-
vidual tie points being specifically selected in the original al-
gorithms. We want to use one universal set of tie points (see
also Ivanova et al., 2015). This implies the second reason
as to why we use winter tie points in the present study. For
the derivation of the sea-ice tie points, Ivanova et al. (2015)
used high ice concentration areas of convergent ice motion
during winter. This ensures that (i) the areas from which tie
points are retrieved are large enough and (ii) the areas have
indeed 100 % sea-ice concentration. Such an approach does
not work under summer conditions because openings/leads
in the ice cover do not freeze over. In the present study we
focus on a selected number of different (representative) types
of algorithms (Ivanova et al., 2015), and do not include al-
gorithms where a methodology is duplicated. The selected
algorithms are summarized in Table 4.

We categorize the algorithms into four types based
on the way brightness temperatures are used: (1) algo-
rithms based on one polarization and one frequency (e.g.,
One_channel 6H); (2) algorithms based on different fre-
quencies but with the same polarization, such as the fre-
quency mode of the Comiso bootstrap algorithm (Boot-
strap_f); (3) algorithms based on different polarizations but
with the same frequency, such as the polarization mode of the
Comiso bootstrap algorithm (Bootstrap_p); (4) algorithms
based on at least two frequencies and/or polarizations, like
the NASA Team algorithm (NASA_Team).

A fifth type of algorithms is given by the so-called
hybrid algorithms. These combine two or more of the
above-mentioned types of algorithms, such as the EUMET-
SAT OSI-SAF algorithm (Eastwood et al., 2012) or SICCI
(Ivanova et al., 2015), which combine Bristol and Boot-
strap_f or CalVal, which is identical to Bootstrap_f, and the
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Table 4. The sea-ice concentration algorithms. ∗ Analysis not shown in this study.

Algorithm Acronym Reference Frequencies/combination

Bootstrap_p BP Comiso (1986) 37V, 37H
Bootstrap_f/CalVal BF Comiso (1986) 19V, 37V
Bristol BR Smith (1996) 19V, 37V, 37H
NASA Team NT Cavalieri et al. (1984) 19V, 19H, 37V
ASI ASI Kaleschke et al. (2001), Spreen et al. (2008) 85V, 85H
Near 90GHz linear N90 Ivanova et al. (2014) 85V, 85H
One_channel (6H) 6H Pedersen (1994) 6H
NASA Team 2 NT2 Markus and Cavalieri (2000) 19V, 19H, 37V, 85V, 85H
Eumetsat OSI-SAF∗ ? Eastwood et al. (2012) Bristol, Bootstrap_f
SICCI∗ ? Ivanova et al. (2015) Bristol, Bootstrap_f
Arctic Bootstrap∗ ? Comiso et al. (1997), Comiso (2009) Bootstrap_f, Bootstrap_p

Arctic version of the Comiso bootstrap algorithm (Comiso et
al., 1997; Comiso, 2009), which combines Bootstrap_f and
Bootstrap_p. For the high sea-ice concentrations we focus on
in this paper, these two hybrid algorithms are almost identical
to the algorithm that is employed at high sea-ice concentra-
tions; this is Bristol in the case of the OSI-SAF (zero weight
at < 40 %, full weight at ≥ 80 %) and SICCI (zero weight at
< 70 %, full weight at ≥ 90 %) algorithms, and Bootstrap_p
in the case of the Comiso bootstrap algorithm. Therefore we
do not show the analysis for the hybrid algorithms in this pa-
per.

2.4 Sea-ice age data set

Brightness-temperature changes over Arctic sea ice are dif-
ferent for first-year ice (FYI) and multiyear ice (MYI) (Ep-
pler et al., 1992). In order to separate these two sea-ice types,
we use the Arctic sea-ice age data set (Tschudi et al., 2016).
This data set is available with weekly temporal resolution,
has a grid resolution of 12.5km× 12.5km, and is based on
sea-ice drift trajectory analysis (Tschudi et al., 2010; Fowler
et al., 2003). We prefer this data set over other approaches
that are usually limited to the winter period (e.g., Comiso,
2012; Swan and Long, 2012). We co-locate the sea-ice age
data set with the MODIS sea-ice parameter data set as fol-
lows. For each MODIS data set grid cell, we first find the
sea-ice age grid cell of which center has the smallest distance
to the center of the MODIS data set grid cell. Secondly, we
select a 7× 7 grid cell array around that first co-located grid
cell from the sea-ice age data set. Subsequently, we count the
numbers with which a certain sea-ice age occurs within the
co-located 7× 7 grid cell array, and divide by the total num-
ber (for every ice age) of counts. We assign the ice type FYI
to the respective MODIS data-set grid cell, only if more than
90 % of the counts indicate a sea-ice age of 1 year. We corre-
spondingly assign the ice type MYI only if more than 90 %
of the counts indicate a sea-ice age of 3 years or older. All
other grid cells are kept without any classification into an ice
type. In our co-located data set, FYI is assigned to MODIS

data set grid cells in the northern Chukchi Sea and parts of
the central Arctic Ocean as well as north of Franz Josef Land
(Fig. 1a). Multiyear ice is assigned to MODIS data set grid
cells north of the Canadian Arctic Archipelago (Fig. 1b). The
latter region is also the area where the largest number of co-
locations is found, whereas only few co-locations are found
in the northern Chukchi Sea (Fig. 1c).

3 Results

3.1 MODIS sea-ice parameters

We show the temporal development of the daily sea-ice pa-
rameters obtained with MODIS (Sect. 2.1) for June to Au-
gust 2009 in Fig. 3. These include MODIS sea-ice concen-
tration, the net sea-ice surface fraction, the net surface-water
fraction, which is the open-water fraction plus the melt-pond
fraction, and the melt-pond fraction for each day and each
co-located grid cell. No further averaging is applied, and we
show all grid cells regardless of ice type. Gaps in the time
series and the varying number of data points are caused by
daily variations in cloud cover and the decrease in sea-ice
cover from June to August. Only grid cells with MODIS sea-
ice concentration > 90 % are shown; the number of grid cells
fulfilling this criterion decreases with progressing melt sea-
son.

During the first 2–3 weeks, the MODIS melt-pond frac-
tion in our data set remains near zero. Then the melt-pond
fraction starts to increase, first slowly: days 20–30 (fifth and
sixth 5-day period or pentad of June), then rapidly: days 30–
45 (first to third pentad of July). After a short plateau, where
the melt-pond fraction remains near 35 %, it first declines
rapidly to about 20 % at days 55–60 (last pentad of July) and
then more slowly to about 15 % until the end of our study
period (31 August). Throughout June, MODIS sea-ice con-
centrations are close to 100 % until day 30, and then there is
more variability around 90–95 % after day 55. Net total wa-
ter fraction and net sea-ice surface fraction are linked to the
previous two parameters and add up to 100 %.
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Figure 3. Time series of open-water and sea-ice fractions for all MODIS grid cells used in the present study for 1 June 2009 to 31 August
2009.

Table 5. Statistical parameters of the comparison AMSR-E sea-ice concentration vs. MODIS sea-ice concentration (see Fig. 4) for June
2009. Each column gives the value for all grid cells with MODIS sea-ice concentration > 20 %, the multiyear (MYI) ice grid cells, and the
first-year ice (FYI) grid cells (see Sect. 2.4). Slopes closest to 1, highest correlations, and lowest RMSD values are noted in bold font. Values
obtained for the ASI and NT2 algorithm are shown for completeness but are in italic font.

June Slope Correlation RMSD N
Algorithm All; FYI; MYI All; FYI; MYI All; FYI; MYI All; FYI; MYI

6H 1.16; 1.16; 1.19 0.86; 0.89; −0.28 17.1; 16.6; 18.8 6272; 1127; 649
ASI 1.03; 1.05; 1.04 0.81; 0.86; −0.10 7.7; 10.3; 4.4 –
Bootstrap_f 1.27; 1.28; 1.28 0.72; 0.86; −0.50 27.9; 27.7; 30.2 –
Bootstrap_p 0.92; 0.92; 0.97 0.62; 0.71; −0.01 13.9; 15.3; 9.0 –
Bristol 1.14; 1.15; 1.16 0.75; 0.86; −0.42 16.3; 16.6; 18.6 –
NASA Team 1.00; 1.01; 1.01 0.71; 0.73; 0.32 8.9; 11.7; 6.3 –
Near90_lin 1.02; 1.03; 1.07 0.68; 0.81; −0.37 12.2; 13.0; 11.1 –
NT2 1.02; 1.04; 1.01 0.69; 0.79; 0.07 5.3; 8.5; 2.1 –

3.2 AMSR-E sea-ice concentration compared to
MODIS sea-ice concentration

We first compare sea-ice concentrations derived with the al-
gorithms listed in Table 4 from AMSR-E brightness temper-
atures (Sects. 2.2 and 2.3) with MODIS sea-ice concentra-
tions (Sect. 2.1), with the aim of illustrating how summer-
time AMSR-E sea-ice concentrations compare to an inde-
pendent sea-ice concentration estimate. We include all data
with MODIS sea-ice concentrations > 20 %. We find differ-
ent agreement between AMSR-E and MODIS sea-ice con-
centrations for the different algorithms for June (Table 5),
July (Fig. 4, Table 6), and August (Table 7) of the year
2009. Common to all algorithms is a cluster of data, which is
more or less centered at an AMSR-E sea-ice concentration of
100 %. Slopes of a linear regression forced through the point
(0, 0) range from 0.90 for Bootstrap_p (Fig. 4e) to 1.12 for
Bootstrap_f (Fig. 4b). Values of the root mean square differ-
ence (RMSD) between AMSR-E and MODIS sea-ice con-
centrations vary between 7.4 % for NT2 (Fig. 4f) and 18.1 %
for Bootstrap_f. Only few values of MODIS sea-ice concen-
trations < 80 % exist. For these, AMSR-E sea-ice concen-
trations are generally biased low by between 10 and 20 % –

except for the NT2 algorithm (Fig. 4f). The ASI and NT2 al-
gorithms cut off sea-ice concentrations once they exceed 103
and 100 % ice concentration, respectively. We therefore ex-
clude these two algorithms from the following quality rank-
ing.

We take the slope (the closer to 1 the better), the corre-
lation (the higher the better), and the RMSD (the lower the
better) as a quality measure and find the NASA Team algo-
rithm to outperform all other algorithms listed in Table 4 for
June (Table 5) – no matter whether we use all grid cells or
only FYI or MYI grid cells (see Sect. 2.4). For July (Table 6),
the NASA Team algorithm is as good as the Near90_lin al-
gorithm. For August (Table 7), best slopes are obtained for
the Bootstrap_p algorithm, while lowest RMSD values are
obtained for the NASA Team algorithm. Note that the num-
ber of FYI grid cells is extremely low for August and that
the numbers given in Table 7 for FYI should not be over-
interpreted.

The average correlation, computed from six algorithms,
decreases from June: 0.72± 0.07 to 0.53± 0.18 in July, to
0.42± 0.10 in August. We believe this could be attributed
to the known limitations of AMSR-E and other passive mi-
crowave sea-ice concentration retrieval algorithms during
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Figure 4. AMSR-E sea-ice concentration computed with six of the eight algorithms listed in Table 2 vs. MODIS sea-ice concentration for all
grid cells with MODIS sea-ice concentration > 20 % and cloud fraction < 5 %. Gray and black symbols denote data from the entire period
and July only, respectively. The black line denotes a linear regression of the sea-ice concentrations of July forced through (0,0) with the
slope as given in each image. The linear correlation coefficient and root mean square difference for sea-ice concentrations of July are denoted
by “Corr.” and “RMSD”. Slope, Corr, and RMSD for June, July (this figure), and August are summarized in Tables 5–7.

Table 6. Statistical parameters of the comparison AMSR-E sea-ice concentration vs. MODIS sea-ice concentration (see Fig. 4) for July 2009.
Each column gives the value for all grid cells with MODIS sea-ice concentration > 20 %, the multiyear (MYI) ice grid cells, and the first-year
ice (FYI) grid cells (see Sect. 2.4). Slopes closest to 1, highest correlations, and lowest RMSD values are noted in bold font. Values obtained
for the ASI and NT2 algorithm are shown for completeness but are in italic font.

July Slope Correlation RMSD N

Algorithm All; FYI; MYI All; FYI; MYI All; FYI; MYI All; FYI; MYI

6H 1.05; 1.08; 1.05 0.62; 0.81; −0.03 11.8; 12.4; 11.9 9612; 967; 634
ASI 1.04; 1.09; 1.04 0.72; 0.83; −0.05 8.4; 11.8; 6.6 –
Bootstrap_f 1.12; 1.16; 1.13 0.55; 0.78; 0.14 18.1; 17.7; 20.1 –
Bootstrap_p 0.90; 0.94; 0.90 0.62; 0.85; −0.22 13.9; 9.9; 14.4 –
Bristol 1.04; 1.08; 1.05 0.62; 0.85; 0.05 11.7; 10.8; 12.0 –
NASA Team 0.97; 1.00; 0.97 0.13; 0.80; −0.16 10.3; 8.9; 10.4 –
Near90_lin 0.98; 1.03; 1.00 0.63; 0.82; 0.04 10.7; 10.9; 7.3 –
NT2 1.04; 1.10; 1.02 0.66; 0.74; −0.03 7.4; 12.1; 5.7 –

melting conditions due to varying snow properties and due
to melt ponds. It is difficult to quantify the sensitivity of such
algorithms to snow-property variations because their magni-

tude and spatiotemporal distribution is unknown. In contrast,
it should be possible to quantify the sensitivity of such al-
gorithms to melt ponds because these should theoretically
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Table 7. Statistical parameters of the comparison AMSR-E sea-ice concentration vs. MODIS sea-ice concentration (see Fig. 4) for August
2009. Each column gives the value for all grid cells with MODIS sea-ice concentration > 20 %, the multiyear (MYI) ice grid cells, and the
first-year ice (FYI) grid cells (see Sect. 2.4). Slopes closest to 1, highest correlations, and lowest RMSD values are noted in bold font. Values
obtained for the ASI and NT2 algorithm are shown for completeness but are in italic font.

August Slope Correlation RMSD N

Algorithm All; FYI; MYI All; FYI; MYI All; FYI; MYI All; FYI; MYI

6H 1.08; 1.03; 1.11 0.48; 0.62; 0.22 10.0; 8.1; 11.0 5158; 162; 505
ASI 1.13; 1.15; 1.14 0.55; 0.37; 0.25 12.5; 14.2; 13.0 –
Bootstrap_f 1.16; 1.15; 1.19 0.30; 0.49; 0.18 17.7; 15.4; 19.1 –
Bootstrap_p 1.00; 0.95; 1.03 0.27; 0.54; 0.44 17.0; 8.8; 6.2 –
Bristol 1.10; 1.07; 1.13 0.46; 0.57; 0.35 12.0; 9.5; 12.8 –
NASA Team 1.03; 0.95; 1.06 0.48; 0.53; 0.31 7.9; 8.5; 8.1 –
Near90_lin 1.10; 1.07; 1.11 0.54; 0.35; 0.37 11.2; 11.2; 11.4 –
NT2 1.10; 1.14; 1.11 0.19; 0.15; 0.08 10.6; 13.8; 10.5 –

be detected as open water. Consequently, such algorithms
should provide an open-water fraction which is the sum of
the fractions of leads and openings between the ice floes and
of the melt ponds on the sea ice. In order to isolate the influ-
ence of the melt ponds, one needs to investigate the high ice
concentration areas separately. The MODIS sea-ice param-
eter data set (Sect. 2.1), which we use, is ideal for this pur-
pose because it provides the open-water fraction (in leads and
openings), the melt-pond fraction (on sea ice) and the net sea-
ice surface fraction. By limiting our investigation to MODIS
sea-ice concentrations > 90 %, we can take the MODIS ice-
surface fraction as an inverse measure of the melt-pond frac-
tion.

3.3 AMSR-E sea-ice concentration compared to
MODIS ice-surface fraction

We compare AMSR-E sea-ice concentration (Sect. 3.2) with
the MODIS ice-surface fraction (Sect. 2.1) for grid cells with
MODIS sea-ice concentration > 90 %. For the range of ob-
served MODIS ice-surface fractions between about 50 and
100 %, we find quite different ranges of AMSR-E sea-ice
concentrations (Fig. 5). For the Bootstrap_f and 6H algo-
rithm, AMSR-E sea-ice concentrations range between 80 and
150 % and 75 and 125 %, respectively, and suggest a rela-
tively well-defined linear relationship (Fig. 5a, b). For July,
we find a slope between AMSR-E sea-ice concentration and
MODIS ice-surface fraction of 1.44 and 1.34, respectively.
The respective correlation coefficients are 0.855 and 0.820.
For the Bootstrap_p and NASA_Team algorithm, AMSR-E
sea-ice concentrations tend to cluster in a point cloud with
a shallower slope and a less well-defined linear relationship
(Fig. 5c, e). For July, the corresponding slopes are 1.14 and
1.23, respectively, and the respective correlation coefficients
are 0.428 and 0.666. AMSR-E sea-ice concentrations derived
with the ASI and the NT2 algorithm stay between 75 and
100 % and between 85 and 100 %, respectively (Fig. 5d, f);
the small range in AMSR-E sea-ice concentrations of these

two algorithms can clearly be attributed to the cutoff men-
tioned in Sect. 3.2.

We obtain slope, correlation coefficient, and RMSD val-
ues of all eight algorithms (see Table 4) separately for (i) all
grid cells, (ii) only the FYI grid cells, and (iii) only the MYI
grid cells (see Sect. 2.4), and summarize these in Tables 8–10
for June, July, and August. For August we exclude all values
obtained for FYI grid cells because of their low count of 44
(Table 10). We find an increase in the slopes from June to
July for all algorithms, which is followed by a decrease for
6H, Bootstrap_f and Bristol algorithms but a further increase
for Bootstrap_p and Near90_lin algorithms from July to Au-
gust. Correlations between AMSR-E sea-ice concentrations
and MODIS ice-surface fractions are below 0.4 in June (Ta-
ble 8). In contrast, for July (Table 9) we obtain correlations
> 0.8 for 6H, Bootstrap_f, and Bristol algorithms – together
with the largest slopes. These suggest a considerable sensi-
tivity of these algorithms to the melt-pond fraction. This does
also apply to MYI grid cells. For July, the lowest correlation
of 0.43 is obtained for the Bootstrap_p algorithm – together
with the smallest slope (Table 9). This suggests the weakest
sensitivity to the melt-pond fraction among the investigated
algorithms.

We carried out the same intercomparison using a MODIS
sea-ice concentration threshold of 98 % (not shown) instead
of 90 %. By using 98 %, no results can be obtained for Au-
gust because of too few valid data. For June and July, slopes
remain similar to those in Tables 8 and 9. For June, correla-
tions are considerably smaller compared to using 90 %. Cor-
relations are a bit higher for July. Despite this better correla-
tion in July, the peak melting period (see Fig. 3), we decided
to keep the 90 % threshold to ensure a large enough num-
ber of data points. The results of the previous paragraph re-
main the same for 90 and 98 % MODIS sea-ice concentration
threshold.

We conclude the following: for one type of algorithm,
AMSR-E sea-ice concentration is linearly related to the
MODIS ice-surface fraction, as we hypothesized in the in-
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Table 8. Statistical parameters of the comparison AMSR-E sea-ice concentration vs. MODIS ice-surface fraction for MODIS sea-ice concen-
tration > 90 % (see Fig. 5) for June 2009. Each column gives the value for all grid cells with MODIS sea-ice concentration > 90 %, and the
respective multiyear (MYI) and first-year ice (FYI) grid cells. Values obtained for the ASI and NT2 algorithm are shown for completeness
but are in italic font.

June Slope Correlation RMSD N

Algorithm All; FYI; MYI All; FYI; MYI All; FYI; MYI All; FYI; MYI

6H 1.23; 1.28; 1.22 0.40; 0.33; −0.14 22.6; 25.9; 21.9 5821; 916; 649
ASI 1.09; 1.16; 1.07 0.09; −0.02; −0.01 10.8; 16.2; 7.6 –
Bootstrap_f 1.34; 1.43; 1.32 0.10; 0.36; −0.38 33.8; 38.3; 33.4 –
Bootstrap_p 0.97; 1.02; 1.00 0.09; −0.10; 0.02 11.8; 13.9; 8.8 –
Bristol 1.20; 1.28; 1.20 0.12; 0.22; −0.31 21.5; 25.8; 21.7 –
NASA Team 1.06; 1.11; 1.04 0.15; −0.15; 0.31 10.8; 16.0; 7.3 –
Near90_lin 1.08; 1.15; 1.10 0.09; 0.05; −0.28 13.8; 17.1; 13.8 –
NT2 1.07; 1.14; 1.04 0.07; −0.08; 0.06 8.9; 14.2; 5.1 –

Table 9. Statistical parameters of the comparison AMSR-E sea-ice concentration vs. MODIS ice-surface fraction for MODIS sea-ice concen-
tration > 90 % (see Fig. 5) for July 2009. Each column gives the value for all grid cells with MODIS sea-ice concentration > 90 %, and the
respective multiyear (MYI) and first-year ice (FYI) grid cells. Values obtained for the ASI and NT2 algorithm are shown for completeness
but are in italic font.

July Slope Correlation RMSD N

Algorithm All; FYI ; MYI All; FYI ; MYI All; FYI; MYI All; FYI; MYI

6H 1.34; 1.33; 1.33 0.82; 0.56; 0.84 26.8; 26.9; 26.5 7572; 491; 539
ASI 1.30; 1.30; 1.29 0.43; 0.24; 0.36 25.8; 25.1; 26.5 –
Bootstrap_f 1.44; 1.42; 1.45 0.86; 0.65; 0.91 34.1;33.7; 35.1 –
Bootstrap_p 1.14; 1.15; 1.11 0.43; 0.15; 0.02 15.9;15.9; 17.8 –
Bristol 1.33; 1.32; 1.32 0.85; 0.65; 0.85 25.9; 25.8; 26.1 –
NASA Team 1.23; 1.21; 1.21 0.67; 0.26; 0.57 19.9; 19.4; 19.8 –
Near90_lin 1.24; 1.26; 1.24 0.54; 0.33; 0.41 21.4;22.6; 22.3 –
NT2 1.29; 1.28; 1.26 0.38; 0.36; 0.38 25.3; 23.7; 24.3 –

Table 10. Statistical parameters of the comparison AMSR-E sea-ice concentration vs. MODIS ice-surface fraction for MODIS sea-ice
concentration > 90 % (see Fig. 5) for August 2009. Each column gives the value for all grid cells with MODIS sea-ice concentration
> 90 %, and the respective multiyear (MYI) and first-year ice (FYI) grid cells. Values obtained for the ASI and NT2 algorithm are shown for
completeness but are in italic font.

August Slope Correlation RMSD N

Algorithm All; FYI; MYI All; FYI; MYI All; FYI; MYI All; FYI; MYI

6H 1.28; –; 1.30 0.39; –; 0.28 23.1; –; 24.2 2091; 44; 207
ASI 1.33; –; 1.33 0.50; –; 0.65 26.8; –; 26.5 –
Bootstrap_f 1.36; –; 1.39 0.19; –; 0.19 30.3; –; 31.8 –
Bootstrap_p 1.21; –; 1.25 0.14; –; 0.79 29.8; –; 19.4 –
Bristol 1.31; –; 1.34 0.41; –; 0.51 25.3; –; 26.9 –
NASA Team 1.23; –; 1.26 0.49; –; 0.70 19.0; –; 21.0 –
Near90_lin 1.32; –; 1.33 0.54; –; 0.68 25.4; –; 25.8 –
NT2 1.29; –; 1.29 0.18; –; −0.14 23.7; –; 23.6 –

troduction; i.e., AMSR-E sea-ice concentrations are sensi-
tive to the melt-pond fraction. These are the 6H, Bootstrap_f,
and Bristol algorithms. For the other algorithms investigated,
such a linear relationship is increasingly less pronounced in
the following descending order: NASA Team, Near90_lin,
Bootstrap_p.

4 Discussion

4.1 Sea-ice concentration algorithm parameter space

To explain the different sensitivities to the melt pond frac-
tion (Sect. 3.2), we start with an illustration of the distribu-
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Figure 5. AMSR-E sea-ice concentration computed with six of the eight algorithms listed in Table 2 vs. MODIS ice-surface fraction for all
grid cells with MODIS sea-ice concentration > 90 % and cloud fraction < 5 %. Gray and black symbols denote data from the entire period
and July only, respectively. The black line denotes a linear regression of the sea-ice concentrations of July forced through (0,0) with the
slope as given in the each image. The linear correlation coefficient and root mean square difference for sea-ice concentrations of July are
denoted by “Corr.” and “RMSD”. Slope, Corr, and RMSD for June, July (this figure), and August are summarized in Tables 8–10.

tion of AMSR-E brightness temperatures and contemporary
MODIS ice-surface fractions of July 2009 in the parameter
spaces of four of the algorithms (Fig. 6). These algorithms
are NASA Team, ASI, or Near90_lin, as both rely on bright-
ness temperatures near 90 GHz, and the two bootstrap algo-
rithms. Bootstrap_f and Bootstrap_p are the two algorithms
with the highest and the lowest sensitivity of AMSR-E sea-
ice concentrations to melt-pond fraction, respectively (Fig. 5,
Tables 8, 9, 10). The NASA Team algorithm is among the
most used ones and the ASI and Near90_lin algorithm have
the advantage of a substantially finer grid resolution thanks
to using the near 90 GHz channels. In every parameter space
we show the following items.

I. A wintertime AMSR-E brightness-temperature distribu-
tion is shown for open water (black dots) and AMSR-
E NT2 sea-ice concentration > 90 % (white dots). The
spread of the black dots results from the weather influ-
ence over open water. We refer to these as winter data

points or winter brightness temperatures in the follow-
ing text.

II. Wintertime open-water (white cross) and sea-ice (black
crosses) tie points obtained from Ivanova et al. (2015)
and used to compute the AMSR-E sea-ice concentration
(see Sect. 2.3 for an explanation of why we use winter
tie points) are shown.

III. Red arrows denote the direction of increasing sea-ice
concentration.

IV. AMSR-E brightness temperatures of our data set, i.e.,
only for MODIS sea-ice concentration > 90 % for the
month of July, color-coded with the contemporary
MODIS ice-surface fraction, are shown. We refer to
these as summer data points or summer brightness tem-
peratures in the following text.

V. A red line connecting FYI and MYI tie points denotes
the ice line.
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Figure 6. Parameter spaces for NASA Team (a), ASI/Near90_lin (b), Bootstrap_f (c), and Bootstrap_p (d) algorithms. Each image contains
AMSR-E brightness-temperature data for the respective space for July 2009, color-coded with the contemporary MODIS ice-surface fraction
for cloud cover < 5 % and MODIS sea-ice concentration > 90 %. Black and white dots denote winter (10 February 2007) Arctic brightness
temperatures for 0 and > 90 % NT2 sea-ice concentration, respectively. White and black crosses denote open-water and sea-ice tie points for
winter, respectively (Ivanova et al., 2015). Red arrows show the direction of the sea-ice concentration increase. Red lines connect first-year
ice (FYI) and multiyear ice (MYI) tie points, and are referred to as ice lines in the text. For white, black, and cyan lines and crosses, see text
in Sect. 4.2.

4.1.1 NASA Team algorithm

For the NASA Team algorithm (Fig. 6a), summer data points
from July 2009 are located well within the cloud of winter
data points (see I). The NASA Team tie-point triangle (Cav-
alieri et al., 1990) is approximated by the dashed white lines
and the red (ice) line (see V). Many summer data points are
located to the left of the ice line. For these data points, NASA
Team sea-ice concentrations exceed 100 %, and MODIS ice-
surface fractions are between 80 and 100 % (see the color
scale). To the right of the ice line, summer data points co-
incide with MODIS ice-surface fractions of ∼ 70 %, and are

supposed to provide NASA Team sea-ice concentrations be-
tween 80 and 100 % (compare Fig. 5c).

4.1.2 ASI or Near90_lin algorithm

For the ASI or Near90_lin algorithm (Fig. 6b) summer data
points from July 2009 are also located well within the cloud
of winter data points. A considerable number of the sum-
mer data points are located above the ice line. For these
data points, ASI or Near90_lin sea-ice concentrations exceed
100 %. Most of the summer data points located below the ice
line correspond to ASI or Near90_lin sea-ice concentrations
between 80 and 100 %. The associated MODIS ice-surface
fractions decrease from ∼ 100 % close to the MYI tie point
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Table 11. Top row: winter tie points for first-year ice (FYI) and mul-
tiyear ice (MYI) expressed as normalized brightness-temperature
polarization difference (PR); other rows: summer tie points derived
as outlined in the text expressed as PR and brightness temperature
(TB) at vertical (TBV) and horizontal (TBH) polarization. Bright-
ness temperatures are given together with 1 standard deviation.

Frequency 19 GHz 37 GHz 89 GHz

PR (winter, FYI; MYI) 0.030; 0.043 0.025; 0.031 0.021; 0.024

PR (summer) 0.034 0.033 0.021

TBH (summer) (K) 247.6± 6.5 239.0± 4.9 226.3± 10.0

TBV (summer) (K) 265.2± 2.5 255.5± 4.5 235.0± 11.8

to ∼ 70 % when following the summer data points towards
the FYI tie point and beyond (compare Fig. 5d).

4.1.3 Bootstrap_f algorithm

For the Bootstrap_f algorithm (Fig. 6c), a substantial number
of summer data points from July 2009 fall outside the winter
data-point cloud. The majority of the summer data points are
located above the winter ice line (red: our tie points, black:
Comiso et al., 1997). The locations of these data points rel-
ative to the open-water tie point, the winter ice lines, and
the tie points for MYI and FYI suggests that Bootstrap_f
sea-ice concentrations exceed 100 % by up to a few tens of
percent (compare Fig. 5b). The distance between the open-
water tie point and the winter ice lines increases from left
(MYI tie point) to right (FYI tie point). Similar MODIS ice-
surface fractions tend to intersect the winter ice lines. There-
fore, the overestimation of Bootstrap_f sea-ice concentration
decreases with decreasing MODIS ice-surface fraction (see
also Fig. 5b).

4.1.4 Bootstrap_p algorithm

For the Bootstrap_p algorithm (Fig. 6d), only few summer
data points from July 2009 are located closely above the
winter ice lines (see also Sect. 4.1.3). Consequently, Boot-
strap_p sea-ice concentrations do not exceed 110 % (com-
pare Fig. 5e). Similar to the Bootstrap_f algorithm (Fig. 6c)
only very few summer data points are located close to the
MYI tie point. The majority of those data points which are
associated with MODIS ice-surface fractions ∼ 70 % are lo-
cated in a relatively broad band parallel to the winter ice
lines close to the FYI tie point. The distance between the
open-water tie point and the winter ice lines increases up-
ward along these lines. We therefore observe a wide range of
Bootstrap_p sea-ice concentrations between 70 and ∼ 100 %
at MODIS ice-surface fractions of∼ 70 % (compare Fig. 5e).

4.2 Summer sea-ice tie points for the bootstrap
algorithm

We used open-water and sea-ice tie points representative of
winter conditions (Sect. 2.3). We are not aware of summer
sea-ice tie points for the ASI or Near90_lin and the NASA
Team algorithms, but they do exist for the bootstrap algo-
rithm. The solid cyan line in Fig. 6c denotes the summer sea-
ice tie point for the Bootstrap_f algorithm taken from Comiso
et al. (1997). For the Bootstrap_p algorithm (Fig. 6d), the
solid and dashed cyan lines denote the summer sea-ice tie
points for the periods 1–18 July and 19 July–4 August, re-
spectively. For the period after 4 August, the summer ice line
coincides with the winter ice line (black line in Fig. 6d).

We use MODIS ice-surface fractions of the period 20 June
to 5 July to derive summer tie points from our summer bright-
ness temperatures. We only select data of MODIS ice-surface
fractions > 97.8 % and of vertically polarized 37 GHz bright-
ness temperatures > 250 K. We do not discriminate between
different ice types. We compute summer sea-ice tie points
(Table 11) at 19, 37, and 89 GHz and from these also derive
values of the normalized brightness-temperature polarization
difference (PR). These summer sea-ice tie points are added
to Fig. 6c and d as cyan crosses.

The potential impact of using summer instead of winter
sea-ice tie points will be discussed in the following subsec-
tion.

4.3 Temporal evolution

During the melting season, changes in the snow and sea-
ice microphysical properties, the associated variations in
AMSR-E brightness temperatures, and the retrieved AMSR-
E sea-ice concentrations can occur within a few days. It is
likely that Figs. 4–6 do blur such temporal variations, which,
we think, need to be discussed to understand the observed
differences in the sensitivity of the AMSR-E sea-ice con-
centration algorithms to the melt-pond fraction. Therefore
we subdivide the MODIS and AMSR-E data sets used into
pentads and discuss the temporal evolution for the four algo-
rithms shown in Fig. 6.

4.3.1 NASA Team algorithm

For the NASA Team algorithm, in the first pentad (1–5 June,
Fig. 7a), most summer data points are located at PR19 =
∼ 0.03 (compare Table 11), and there is a GR3719 value
between −0.05 and −0.01. MODIS ice-surface fractions
are ∼ 100 %. About 20 % of the data points belong to the
MYI class, while only seven data points belong to the FYI
class (see Sect. 2.4). NASA Team sea-ice concentration and
MODIS ice-surface fraction agree well with each other by
means of slope and correlation coefficient. Later, summer
data points cover a larger PR19 range, 0.02 to 0.08, and a
larger GR3719 range, 0.0 to −0.09 (16–20 June, Fig. 7b)
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Figure 7. Background: AMSR-E brightness-temperature frequency difference (gradient ratio, GR) at 37 and 19 GHz, vertical polarization,
vs. AMSR-E brightness-temperature polarization difference (polarization ratio, PR) at 19 GHz, color-coded with the co-located MODIS ice-
surface fraction for six selected pentads denoted in the upper left corner of each image together with the number N of data pairs. For white
and black dots, see Fig. 6. Foreground: NASA Team sea-ice concentration vs. MODIS ice-surface fraction for the same pentads together
with the linear regression line forced through (0,0). The slope of this line is given, together with the correlation between the two data sets
and the root mean square difference (RMSD) of the two data sets in each image.

and 0.0 to −0.12 (1–5, 6–10 July, Fig. 7c, d). We explain the
larger PR19 range by an increase in snow density (Table 2)
and snow wetness (Table 1). We explain the expansion of

GR3719 towards more negative values by an increase in the
surface layer snow grain size (Table 3). Figure 7 c and d coin-
cide with the onset of widespread melt-pond formation (see

www.the-cryosphere.net/10/2217/2016/ The Cryosphere, 10, 2217–2239, 2016



2232 S. Kern et al.: Melt ponds impact ice concentration retrieval

Fig. 3, days 30–40). MODIS ice-surface fractions are still
mostly > 85 % in Fig. 7b, range between ∼ 100 and ∼ 70 %
in Fig. 7c and decrease to between ∼ 90 and 60 % in Fig. 7d.
With further melt progress, the PR19-GR3719 cloud shrinks
to GR3719 values between +0.01 and −0.06 on 21–25 July
(Fig. 6f). At this stage MODIS ice-surface fractions are be-
tween 60 and 80 %.

NASA Team sea-ice concentrations exceed 100 % on 16–
20 June and especially 1–5 July (Fig. 7b, c) with values up
to 120 %. We find only few values > 100 % for 21–25 July,
shortly after peak melt (Fig. 7f). After the good agreement
between NASA Team sea-ice concentration and MODIS ice-
surface fraction for 1–5 June (Fig. 7a), it breaks down. Dur-
ing July the correlation between NASA Team sea-ice con-
centration and MODIS ice-surface fraction increases again,
together with the slope, which reaches 1.31 for pentad 21–
25 July (Fig. 7f, compare Table 9). Correlations are∼ 0.5 for
most of July which corresponds to an explained variance of
about 25 %. Therefore, after the onset of widespread melt-
pond formation in the beginning of July 2009, NASA Team
sea-ice concentrations and MODIS ice-surface fractions are
linearly related to some degree; i.e., the NASA Team algo-
rithm is sensitive to melt ponds. The relatively low corre-
lation highlights the importance of other processes such as
changes in those snow and sea-ice properties, which influ-
ence GR3719. These can be snow grain size and wetness
(Tables 1, 3) and, after snowmelt, sea-ice salinity, roughness,
and density (Eppler et al., 1992; Hallikainen and Winebren-
ner, 1992).

4.3.2 Bootstrap_f algorithm

For the Bootstrap_f algorithm, in the first pentad (1–5 June,
Fig. 8a), most summer data points are associated with
MODIS ice-surface fractions ∼ 100 %, and are located be-
yond the upper border of the winter data points and above the
winter ice line (see Fig. 6c). Most Bootstrap_f sea-ice con-
centrations exceed 100 % and overestimate the MODIS ice-
surface fraction. We can attribute these elevated brightness
temperatures to elevated snow wetness (and density), which
causes a larger increase in the vertically polarized bright-
ness temperatures at 37 GHz than at 19 GHz (Table 1). On
16–20 June (Fig. 8b), almost all summer data points are lo-
cated above the winter ice line and almost all Bootstrap_f
sea-ice concentrations are > 100 %; maxima exceed 140 %.
A cluster of MODIS ice-surface fractions can be identified at
∼ 95 %, which coincides with a cluster of Bootstrap_f sea-ice
concentrations centered at 130 %. Until 1–5 July (Fig. 8c),
the summer data points’ cloud gradually expands towards
lower values. Associated MODIS ice-surface fractions are
lowest (∼ 70 %) along the bottom of the cloud and high-
est (∼ 95 %) at its left end. We attribute the latter to melt–
refreeze cycles causing an increase in snow grain size as-
sociated with a smaller brightness-temperature decrease at
19 GHz than at 37 GHz (Table 3). These grid cells at the

left end of the cloud are responsible for the Bootstrap_f sea-
ice concentrations of ∼ 140 % (compare Figs. 8c and 6c).
Throughout the remaining three pentads (Fig. 8d, e, f), sum-
mer data points shift towards lower 19 GHz brightness tem-
peratures and cover a smaller brightness-temperature range
at both frequencies. We attribute this to complete snowmelt.
Snow wetness and grain size variations do not influence
the brightness temperatures anymore. MODIS ice-surface
fractions are between 60 and 80 % now (Fig. 8f); compare
Fig. 7f. Maximum Bootstrap_f sea-ice concentrations de-
creased to ∼ 120 % until 21–25 July.

The good agreement between Bootstrap_f sea-ice concen-
tration and MODIS ice-surface fraction in the first pentad of
June breaks down during June and re-emerges during July.
Between the third pentad of July and the second pentad of
August, average correlations are∼ 0.65 explaining > 40 % of
the variance. The average slope is 1.45 for these six pentads.
Therefore, with the onset of widespread melt-pond formation
Bootstrap_f sea-ice concentrations and MODIS ice-surface
fractions are linearly related to each other; i.e., the Boot-
strap_f algorithm is sensitive to melt ponds. This sensitivity
is stronger than for the NASA Team algorithm (Sect. 4.3.1),
which could be explained by a smaller influence of the other
surface properties mentioned in the previous section.

It is difficult to quantify how this result would change
by using summer sea-ice tie points, which we did not use
to compute AMSR-E sea-ice concentrations with the two
bootstrap algorithms for the reasons given in Sect. 2.3, but
did include in Fig. 6c, d as cyan lines. The distance be-
tween the cyan line and the winter ice lines in proximity
to the FYI tie point, measured along the dashed white line
(Fig. 6c), suggests that we would reduce Bootstrap_f sea-
ice concentrations by 10–15 %. Therefore, on the FYI side
of the parameter space, Bootstrap_f sea-ice concentrations
would be ∼ 100 %. However, to the left of the FYI tie point,
the location of the summer data points (Figs. 6c, 8c, d) sug-
gests that Bootstrap_f sea-ice concentrations would still be
> 120 %. Therefore, using summer sea-ice tie points would
reduce the slope between Bootstrap_f sea-ice concentrations
and MODIS ice-surface fractions, but whether the correla-
tions would be similarly high and whether we can exclude
unknown nonlinear effects cannot be answered in the present
paper.

4.3.3 The other algorithms

The temporal evolution of Bootstrap_p sea-ice concentra-
tions in relation to the MODIS ice-surface fraction during
June is similar to the Bootstrap_f algorithm (Fig. S1a, b in the
Supplement). One principal difference is the smaller slope
we obtain with Bootstrap_p sea-ice concentrations compared
to the Bootstrap_f algorithm: ∼ 0.9 vs. ∼ 1.1 for 1–5 June
and ∼ 1.1 vs. 1.3 for 1–5 July; additionally, correlations are
smaller. Secondly, we find larger variations of Bootstrap_p
sea-ice concentrations around MODIS ice-surface fractions;
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Figure 8. Background: vertically polarized AMSR-E brightness temperature at 19 GHz vs. at 37 GHz, color-coded with the co-located
MODIS ice-surface fraction for the same six selected pentads as in Fig. 7 denoted in the upper left corner of each image, together with the
number N of data pairs. For white and black dots, see Fig. 6. Foreground: same as in Fig. 7 but for the Bootstrap_f algorithm.
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for example, Bootstrap_p sea-ice concentrations range from
50 to 110 % at 90 % MODIS ice-surface fraction. We at-
tribute this to the large and polarization-dependent sensitiv-
ity of 37 GHz brightness temperatures to variations in snow
properties (Tables 1, 2, 3). In June, any linear relationship to
the emerging melt-pond coverage is obscured by this sensi-
tivity. During the first two July pentads, scatter is as high as
during most of June. Brightness temperatures associated with
MODIS ice-surface fractions of ∼ 90 and ∼ 60 % are often
located right next to each other in the algorithms’ parame-
ter space (Fig. S1c, d), which is different to the Bootstrap_f
algorithm (Fig. 8c, d). After mid-July, a linear relationship
between Bootstrap_p sea-ice concentration and MODIS ice-
surface fraction emerges. The average slope is 1.25 and cor-
relations increase from 0.34 (16–20 July) to 0.76 (6–10 Au-
gust). In summary, the Bootstrap_p algorithm is also sen-
sitive to melt ponds. The sensitivity is smaller than for the
Bootstrap_f algorithm, and snow-property variations seem to
be of larger influence.

How does this result change if we use summer sea-ice tie
points (Fig. 6d, cyan lines, and Sect. 4.3.2)? The early sum-
mer ice line (Fig. 6d, solid cyan line) is steeper than the win-
ter ice lines, and intersects them close to the FYI tie point.
Therefore, close to the FYI tie point and to the right, all sum-
mer data points are below the summer ice line, causing Boot-
strap_p sea-ice concentrations < 100 %. However, to the left
of the FYI tie point, summer data points are located above the
summer ice line, causing Bootstrap_p sea-ice concentrations
of up to ∼ 130 % close to the MYI tie point (Fig. 6d). There-
fore, for data from 2009, using the early summer sea-ice tie
points would not generally provide sea-ice concentrations,
which improve the relationship between Bootstrap_p sea-ice
concentrations and MODIS ice-surface fractions. The mid-
summer ice line (Fig. 6d, dashed cyan line) is located par-
allel below the winter ice lines. A large fraction of the sum-
mer data points is located above the summer ice line, causing
Bootstrap_p sea-ice concentrations > 100 %. For instance,
for 21–25 July (Fig. S1f), about one-third of the data points
would have a Bootstrap_p sea-ice concentration > 100 %;
this is currently three data points. Therefore, for data from
2009, using the midsummer sea-ice tie points would increase
Bootstrap_p sea-ice concentrations and increase the slope be-
tween them and MODIS ice-surface fractions, but would not
necessarily improve the correlation. Compared to the win-
ter sea-ice tie points, using the early summer (midsummer)
sea-ice tie points would result in a decreased (enhanced) sen-
sitivity of the Bootstrap_p algorithm to melt ponds.

The temporal development of brightness temperatures,
sea-ice concentrations, and ice-surface fractions obtained
with the Near90_lin algorithm (Figs. S2, 6b) is comparable
to that obtained with the Bootstrap_p algorithm (Fig. S1).
The scatter in summer data points and the scatter between
Near90_lin sea-ice concentrations and MODIS ice-surface
fractions is a little less pronounced and peaks earlier. We
attribute the scatter again to snow-property variations (Ta-

bles 1, 2, 3). For the smaller electromagnetic wavelength at
89 GHz compared to 37 GHz, scattering by coarse-grained
snow is more effective than the impact of snow wetness,
which is evident in the migration of summer data points to-
wards lower values (compare Figs. S1b and S2b). Maximum
Near90_lin sea-ice concentrations of ∼ 120 % (Fig. S2b) are
larger than we expect from comparison with Fig. 6b and
can possibly be attributed to an unaccounted weather influ-
ence in the open-water tie point (Fig. 6b, white line). Af-
ter mid-July, correlations increase to their maximum in 6–
10 August of 0.81. Slopes are considerably larger than for
the Bootstrap_p sea-ice concentration and vary around 1.33.
Slopes and correlations vary considerably between pentads,
which we attribute mainly to the larger weather influence at
89 GHz. Enhanced sensitivity of the smaller electromagnetic
wavelength at 89 GHz to surface property variations, be it
remaining or new snow (Grenfell, 1986) or sea-ice surface
wetness changes, might also contribute. We conclude that the
Near90_lin algorithm, or other algorithms employing near-
90 GHz data such as the ASI algorithm, is only sensitive to
melt ponds to some degree. Snow and sea-ice property vari-
ations, but also the weather influence, impact sea-ice con-
centration retrieval with this type of algorithm as much as or
even more than we observe for the Bootstrap_p algorithm.

With respect to the 6H algorithm and the Bristol algorithm,
we state that both algorithms reveal a temporal development
of slopes and correlations between AMSR-E sea-ice concen-
trations and MODIS ice-surface fractions (Figs. S3, S4, Ta-
bles 8, 9, 10), which are similar to the Bootstrap_f algorithm.
Both algorithms, 6H more than Bristol, are sensitive to melt
ponds.

4.3.4 Implications for summer sea-ice concentrations

A MODIS ice-surface fraction value of 60 % can, in reality,
be anything between case A, 100 % sea ice with 40 % melt-
pond fraction, and case B, 60 % sea ice with 0 % melt-pond
fraction, as laid out in the Introduction. Slopes between the
AMSR-E sea-ice concentration and the MODIS ice-surface
fraction obtained, for example, for the NASA Team algo-
rithm, of 1.31 (Fig. 7f) would convert 60 % MODIS ice-
surface fraction into 78 % NASA Team sea-ice concentra-
tion. In case B this would be an overestimation by 18 %,
while in case A this would be an underestimation by 22 %.

We compute the average slope and correlation values of
all algorithms, except ASI and NT2, for the six pentads 11–
15 July to 6–10 August together with a resulting over- or un-
derestimation of the actual sea-ice concentrations of cases A
and B for which we chose ice-surface fractions of 60 and
80 %. The Bootstrap_f algorithm is most sensitive to melt
ponds (highest slope), followed by the Bristol and 6H algo-
rithms (Table 12). The Bootstrap_p algorithm is least sen-
sitive to melt ponds (lowest slope), followed by the NASA
Team algorithm. This sensitivity is most pronounced for the
Bristol algorithm (largest correlation), followed by the Boot-
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Table 12. Slope of the linear relationship and correlation between AMSR-E sea-ice concentrations and MODIS ice-surface fractions for
the six algorithms, which do not cut off sea-ice concentrations, averaged over the six pentads from 11–15 July to 6–10 August. For each
algorithm, the average value ±1 standard deviation (SD), the range in the slope values, and the range in the correlations are given. (EV)
denotes the explained variance. Cases A60 and A80 denote 100 % sea-ice concentration with 40 and 20 % (apparent) open-water fraction due
to melt ponds, i.e., 60 and 80 % ice-surface fraction, respectively. Case B60 and B80 denote 60 and 80 % sea-ice concentration in the case of
40 and 20 % real open-water fraction; i.e., the ice-surface fraction = the sea-ice concentration. A “∗” indicates saturation; i.e., the retrieved
AMSR-E sea-ice concentration exceeds 100 %. Bold numbers denote the maximum values for mean slope and mean correlation.

Algorithm 6H Bootstrap_f Bootstrap_p Bristol NASA Team Near90_lin

Mean slope ±1 SD 1.36± 0.04 1.44 ±0.02 1.24± 0.03 1.36± 0.02 1.29± 0.03 1.33± 0.03
Mean correlation ±1 SD 0.55± 0.16 0.62± 0.10 0.49± 0.14 0.68 ±0.09 0.51± 0.10 0.46± 0.20
(EV) (30 %) (38 %) (24 %) (46 %) (26 %) (21 %)
Slope range 1.29 to 1.41 1.41 to 1.47 1.21 to 1.29 1.34 to 1.39 1.26 to 1.32 1.29 to 1.38
Correlation 0.33 to 0.78 0.48 to 0.79 0.34 to 0.76 0.58 to 0.82 0.38 to 0.69 0.21 to 0.81

Underestimation of case A/overestimation of case B sea-ice concentrations by the respective algorithm

Case A60 −18.4 % −13.6 % −25.6 % −18.4 % −22.6 % −20.2 %
Case A80 0.0 %∗ 0.0 %∗ −0.8 % 0.0 %∗ 0.0 %∗ 0.0 %∗

Case B60 +21.6 % +26.4 % +14.4 % +21.6 % +17.4 % +19.8 %
Case B80 +20.0 %∗ +20.0 %∗ +19.2 % +20.0 %∗ +20.0 %∗ +20.0 %∗

strap_f algorithm. The sensitivity is least pronounced for the
Near90_lin algorithm (smallest correlation), followed by the
Bootstrap_p algorithm. Most pronounced means that snow
and sea-ice property variations as well as the weather in-
fluence have a comparably small influence. These variations
have a larger influence on AMSR-E sea-ice concentrations
retrieved with an algorithm with a less pronounced sensi-
tivity to melt ponds. The algorithms with the largest sen-
sitivity to melt ponds interestingly provide the smallest un-
derestimation of the concentration of melt-pond-covered sea
ice and the largest overestimation of the concentration of
non-ponded sea ice (e.g., the Bootstrap_f and Bristol algo-
rithms, Table 12). The algorithms with the smallest sensitiv-
ity to melt ponds provide the largest underestimation of the
concentration of melt-pond-covered sea ice and the smallest
overestimation of the concentration of non-ponded sea ice
(e.g., Bootstrap_p, Table 12).

Using summer sea-ice tie points for the Bootstrap_f algo-
rithm would presumably reduce the mean slope as discussed
in Sect. 4.3.2, leading to a smaller under- and overestimation
of the sea-ice concentrations of cases A and B, compared to
Table 12. Using the midsummer tie point for the Bootstrap_p
algorithm would, in contrast, presumably increase the mean
slope as discussed in Sect. 4.3.3, leading to a larger under-
and overestimation of the sea-ice concentrations of cases A
and B, respectively, compared to Table 12.

5 Conclusions

We investigate the sensitivity to melt ponds of eight sea-
ice concentration retrieval algorithms based on satellite mi-
crowave brightness temperatures, by comparing contempo-
rary daily estimates of sea-ice concentration and melt-pond
fraction. We derive gridded daily sea-ice concentrations from
the Advanced Microwave Scanning Radiometer aboard the
Earth Observation Satellite (AMSR-E) brightness tempera-
tures of June–August 2009. We use a consistent set of tie
points to aid intercomparison of the algorithms. We derive
the gridded daily fraction of melt ponds, open water between
ice floes, and ice-surface fraction from contemporary Moder-
ate Resolution Spectroradiometer (MODIS) reflectance mea-
surements with a neural network based classification ap-
proach. We discuss potential uncertainty sources of these
data, and conclude that MODIS ice-surface fractions are as
accurate as 5–10 %. We carry out the comparison of AMSR-
E and MODIS data sets at 100 km grid resolution.

AMSR-E sea-ice concentrations agree fairly well with
MODIS sea-ice concentrations, the sum of the ice-surface
fraction, and the melt-pond fraction, with slopes of a linear
regression between 0.90 and 1.16. However, for some algo-
rithms, AMSR-E sea-ice concentrations scatter widely for
MODIS sea-ice concentrations larger than 80 %. We note that
the eventual overestimation of the concentration of the sea
ice in between the melt ponds, to produce seemingly “cor-
rect” sea-ice concentrations that include the melt ponds, will
result in incorrectly overestimating the concentration of sea
ice in areas with real open water.

We isolate the influence of melt ponds by only compar-
ing AMSR-E sea-ice concentrations with MODIS ice-surface
fractions for grid cells with MODIS sea-ice concentrations
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above 90 %. By doing so, we can use the ice-surface fraction
instead of the melt-pond fraction as a measure of the impact
of melt ponds and can keep the effect of potential misclassi-
fication between the two spectrally close surface types, open
water and melt ponds, as small as possible. For most of June,
we find a nonlinear relation between both data sets. We at-
tribute this to the influence of snow-property variations im-
pacting the microwave brightness temperatures and a melt-
pond fraction that is still small. After June, for one group of
algorithms, e.g., the Bristol and Comiso Bootstrap frequency
mode (Bootstrap_f) algorithms, sea-ice concentrations are
linearly related to MODIS ice-surface fractions. For other
algorithms, e.g., Near90GHz and Comiso Bootstrap polar-
ization mode (Bootstrap_p), the linear relationship is weaker
and develops later in summer.

We take the degree of correlation between AMSR-E sea-
ice concentration and MODIS ice-surface fraction as a mea-
sure of an algorithm’s sensitivity to the melt ponds, and use
the obtained linear regression slope to estimate differences
between actual and retrieved sea-ice concentration. All algo-
rithms underestimate the sea-ice concentration of 100 % sea
ice with an open-water fraction of 40 % due to melt ponds
(case A) by between 14 % (Bootstrap_f) and 26 % (Boot-
strap_p). The underestimation reduces to 0 % for a melt-pond
fraction of ∼ 20 %. The concentration of sea ice with a sim-
ilarly large open-water fraction due to leads and openings
between the ice floes (case B) is overestimated by between
26 % (Bootstrap_f) and 14 % (Bootstrap_p) for 60 % sea-ice
concentration and by 20 % for all algorithms for 80 % sea-ice
concentration.

One next step would be to extend the analysis to more
years to confirm the results of our case study with a larger
number of data. Currently, at pentad scale, the number of
data is too small to use a higher MODIS sea-ice concentra-
tion threshold of, e.g., 98 % to better isolate the influence
of melt ponds. Based on a substantially smaller number of
data, using a threshold of 98 % at monthly instead of a pen-
tad scale, we find that for the month of July, the correlation
between AMSR-E sea-ice concentrations and MODIS ice-
surface fraction increases from 0.86 to 0.92 (Bootstrap_f),
from 0.85 to 0.91 (Bristol), and from 0.67 to 0.76 (NASA
Team), while the slopes of the linear regression remain simi-
lar.

For reasons outlined in the description of the algorithms,
we use a consistent set of sea-ice tie points derived for winter
conditions. By applying published summer sea-ice tie points
for the bootstrap algorithms, we find that the slopes of the
linear regression would be reduced for Bootstrap_f but not
for Bootstrap_p. As a result, Bootstrap_f would underesti-
mate sea-ice concentrations for case A less, but overestimate
sea-ice concentrations for case B more.

We suggest that algorithms that are more sensitive to melt
ponds could be easily optimized further because the influ-
ence of snow and sea-ice surface property variations, of
which distribution is unknown, seems to be less pronounced,

while methods to derive melt-pond fraction, which would be
needed for the optimization, have been developed. Accord-
ing to our results, this applies to the Bootstrap_f, Bristol, and
Near90_lin algorithms, and the CalVal algorithm, which is
similar to the Bootstrap_f mode and is used in the SICCI al-
gorithm. The Bootstrap_p and NASA Team algorithms seem
to be less suitable for further optimization. While these seem
to have the lowest sensitivity to melt ponds, and therefore
lowest underestimation for case A, they seem to overesti-
mate the sea-ice concentration for case B most among the
algorithms investigated.

6 Data availability

The following data are used in the present paper:

– AMSR-E/Aqua L2A global swath spatially resam-
pled brightness temperatures data set, version 3:
http://nsidc.org/data/docs/daac/ae_l2a_tbs.gd.html,
doi:10.5067/AMSR-E/AE_L2A.003;

– MODIS surface reflectance daily L2G global
500 m and 1 km product (MOD09GA: http:
//reverb.echo.nasa.gov/reverb/) on sinusoidal tile
grid used for MODIS L2 data: http://landweb.nascom.
nasa.gov/developers/sn_tiles/sn_grid.html;

– NT2 sea ice concentration from the AMSR-E/AQUA
daily L3 12.5 km brightness temperature, sea ice
concentration and snow depth polar grids product, ver-
sion 3 (http://nsidc.org/data/docs/daac/ae_si12_12km_
tb_sea_ice_and_snow.gd.html), doi:10.5067/AMSR-
E/AE_SI12.003;

– EASE Grid sea ice age, NSIDC, DAAC,
doi:10.5067/PFSVFZA9Y85G.

The daily MODIS melt pond fraction data set co-located
with AMSR-E brightness temperatures and sea ice concen-
trations is owned by the ESA SICCI project and is avail-
able upon request by sending an email to stefan.kern@uni-
hamburg.de or icdc.cen@lists.uni-hamburg.de.

The Supplement related to this article is available online
at doi:10.5194/tc-10-2217-2016-supplement.
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