Wufei Wu1, Javad Hassannataj Joloudari2,3,4, Senthil Kumar Jagatheesaperumal5, Kandala N. V. P. S. Rajesh6, Silvia Gaftandzhieva7,*, Sadiq Hussain8, Rahimullah Rabih9, Najibullah Haqjoo10, Mobeen Nazar11, Hamed Vahdat-Nejad9, Rositsa Doneva12
CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2785-2813, 2024, DOI:10.32604/cmc.2024.053037
- 15 August 2024
Abstract The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles (IoV) technology. The functional advantages of IoV include online communication services, accident prevention, cost reduction, and enhanced traffic regularity. Despite these benefits, IoV technology is susceptible to cyber-attacks, which can exploit vulnerabilities in the vehicle network, leading to perturbations, disturbances, non-recognition of traffic signs, accidents, and vehicle immobilization. This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning (DTL) models for Intrusion Detection Systems in the Internet of Vehicles (IDS-IoV) based on anomaly… More >