Loading AI tools
Chemical compound From Wikipedia, the free encyclopedia
Trichloroisocyanuric acid is an organic compound with the formula (CONCl)3. It is used as an industrial disinfectant, bleaching agent and a reagent in organic synthesis.[1][2][3] This white crystalline powder, which has a strong "chlorine odour," is sometimes sold in tablet or granule form for domestic and industrial use.
| |||
Names | |||
---|---|---|---|
Preferred IUPAC name
1,3,5-Trichloro-1,3,5-triazinane-2,4,6-trione | |||
Other names
| |||
Identifiers | |||
3D model (JSmol) |
|||
202022 | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
ECHA InfoCard | 100.001.621 | ||
EC Number |
| ||
240759 | |||
KEGG | |||
PubChem CID |
|||
RTECS number |
| ||
UNII | |||
UN number | 2468 | ||
CompTox Dashboard (EPA) |
|||
| |||
| |||
Properties | |||
C3Cl3N3O3 | |||
Molar mass | 232.40 g·mol−1 | ||
Appearance | Colorless solid | ||
Density | 2.19 ± 0.1 g/cm3 | ||
Melting point | 246 to 247 °C (475 to 477 °F; 519 to 520 K) | ||
Boiling point | decomposes | ||
1.2% | |||
Solubility in other solvents | Soluble in chlorocarbons, acetone, and acetonitrile | ||
Structure | |||
planar | |||
0 D | |||
Hazards | |||
Occupational safety and health (OHS/OSH): | |||
Main hazards |
lung irritant | ||
GHS labelling: | |||
Danger | |||
H272, H302, H314, H319, H335, H410 | |||
P210, P220, P260, P261, P264, P264+P265, P270, P271, P273, P280, P301+P317, P301+P330+P331, P302+P361+P354, P304+P340, P305+P351+P338, P316, P319, P321, P330, P337+P317, P363, P370+P378, P391, P403+P233, P405, P501 | |||
Flash point | NA | ||
Related compounds | |||
Related compounds |
Cyanuric chloride Dichloroisocyanuric acid Tribromoisocyanuric acid | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Trichloroisocyanuric acid is prepared from cyanuric acid via a reaction with chlorine gas and trisodium cyanurate.[4]
The compound is a disinfectant, algicide and bactericide mainly for swimming pools and dyestuffs, and is also used as a bleaching agent in the textile industry. It is widely used in civil sanitation for pools and spas, preventing and curing diseases in animal husbandry and fisheries, fruit and vegetable preservation, wastewater treatment, as an algicide for recycled water in industry and air conditioning, in anti shrink treatment for woolens, for treating seeds and in organic chemical synthesis. It is used in chemical synthesis as an easy to store and transport chlorine gas source, it is not subject to hazardous gas shipping restrictions, and its reaction with hydrochloric acid produces relatively pure chlorine.[5]
Trichloroisocyanuric acid as used in swimming pools is easier to handle than chlorine gas. It dissolves slowly in water, but as it reacts, cyanuric acid concentration in the pool will build-up. In large bodies of water, the TCCA is soluble and breaks down slowly, releasing chlorine in the water to sanitize contaminants. When TCCA instead comes in contact with or is wetted/moistened by a small amount of water and does not dissolve, it can experience a chemical reaction, generating heat and causing the decomposition of the chemical, which in turn produces toxic chlorine gas and can produce explosive nitrogen trichloride. [6]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.